REAL SOCIEDAD MATEMÁTICA ESPAÑOLA
|
|
|
- Amparo Páez Torres
- hace 7 años
- Vistas:
Transcripción
1 REL SOCIEDD MTEMÁTIC ESPÑOL LI OLIMPID MTEMÁTIC ESPÑOL Comunidad de Madrid FSE CERO: jueves 0 de noviembre de 04 En la hoja de respuestas, escribe la letra de la opción que creas correcta Cada respuesta correcta te aportará puntos; cada respuesta en blanco punto, y cada respuesta errónea, 0 puntos. No está permitido el uso de calculadoras, instrumentos de medida o de cualquier aparato electrónico. TIEMPO: horas.. La media de los cinco enteros consecutivos a, a +, a +, a +, a + 4 es b. Cuál es la media de los cinco enteros consecutivos b, b +, b +, b +, b + 4? ) a + ) a + 4 C) a + D) a + 6 E) a + 7. Dos rectas perpendiculares se cortan en el punto (6, 8). Si las ordenadas en el origen (corte con el eje Y) de ambas rectas suman cero, cuál es el área del triángulo de vértices y dichos cortes con el eje Y? ) 4 ) 48 C) 4 D) 60 E) 7. Si > > 0 y es el x % mayor que, x es igual a ) 00 ) 00 C) 00 D) 00 E) Lanzamos al aire cuatro dados de seis caras. Cuál es la probabilidad de que al menos tres de ellos muestren la misma cara? ) 6 7 ) 7 C) 9 D) 6 E) 6. Cuál es la mayor potencia de que divide a ? ) 00 ) 00 C) 004 D) 00 E) Para cuántos enteros x se verifica que el número x 4 x + 0 es negativo? ) 8 ) 0 C) D) 4 E) 6 7. Los enteros positivos a y b verifican que las rectas y = ax +, y = x + b cortan al eje de abscisas en el mismo punto. Cuál es la suma de todas las posibles abscisas de este punto de intersección? ) 0 ) 8 C) D) E) 8 8. En el interior de un cuadrado de lado dibujamos dos triángulos equiláteros como muestra la figura. Cuál es el área del rombo intersección de los dos triángulos? ) 4 ) C) D) 8 E)
2 9. Cuántos enteros positivos x 00 verifican que x + x es un cuadrado perfecto? ) 6 ) 7 C) 8 D) 9 E) 0 0. Dividimos un círculo de radio en dos sectores, el menor de 0º, utilizando cada uno de ellos para formar la cara lateral de un cono. Cuál es el cociente entre los volúmenes del cono pequeño y del mayor? ) 8 ) 4 0 C) 0 D) 6 E). En el rectángulo CD, con = 6 y D = 0, sea G el punto medio de D. Prolongamos desde el lado hasta el punto E, con E =, y sea F el punto de intersección de ED con C. Cuál es el área del cuadrilátero FDG? ) 8 ) 67 C) D) 68 E) 7. Si la nota de cada uno de los chicos de una clase hubiera sido 4 puntos más, la media de toda la clase habría subido punto. Qué porcentaje de chicas había en la clase? ) 40% ) 0% C) 7% D) 80% E) 60%. Esteban y Joaquín comienzan simultáneamente a caminar desde dos puntos distintos y, en sentido opuesto, por un mismo sendero y se cruzan al cabo de horas. Esteban llega al punto desde el que salió Joaquín horas y media antes de que Joaquín llegue al punto desde el que salió Esteban. Cuántas horas duró la excursión de Joaquín? ) 6 ) 6, C) 7 D) 7, E) 8, 4. Programamos un ordenador para que transmita una cierta sucesión de cinco dígitos, ceros y unos, cinco veces. Una de las cinco veces lo hizo correctamente, otra vez tuvo un error, otra vez dos, otra vez tres y la otra vez cuatro errores. Las cinco respuestas son las que se proponen a continuación. Cuál fue la correcta? ) 0000 ) 0000 C) 000 D) 000 E) 00. Cuál es la longitud del lado del triángulo C sabiendo que C =, D =, D = 8 y CD =? ) 8 ) 8,7 C) 9 D) 9, E) 9, C D 6. Cuál es el mayor entero k para el que 8! es divisible entre 4 k? ) ) C) 4 D) 8 E) 7. En un concurso de televisión hay un premio guardado en una de cinco cajas,, C, D y E con la misma probabilidad en cada una. El concursante elige la caja. El realizador del concurso, que sabe en qué caja está el premio, abre dos de las otras cuatro, la y la C, en las no está el premio. Cuál es la probabilidad de que el premio esté en la caja D? ) ) C) D) E) 8. Considera el conjunto de todas las soluciones enteras (x, y) de la ecuación x = y Cuál es la suma de todos los valores, y, del conjunto de soluciones? ) 0 ) C) 6 D) 4 E) 96
3 9. Cuál es el mínimo valor de la expresión 4 y x y 4 x x, yr ) ) C) D) E) 0. El dominio de la función m f ( x) lg lg4 lg lg6 lg x es un intervalo de longitud con m y n 4 6 n primos entre sí. Cuál es el valor de m + n? ) 9 ) C) 7 D) 9 E). Si P(x) es un polinomio de tercer grado con P(0) = k, P() = k y P( ) = k, cuál es el valor de P() + P( )? ) 0 ) k C) 6k D) 7k E) 4k. En el interior del cuadrado CD de área 96 hay dos cuadrados que se solapan como muestra la figura. Si el área del mayor de los dos es el cuádruple de la del menor y el área de la región común a ambos es, cuál es el área de la región sombreada? ) 64 ) 7 C) 76 D) 80 E) 84. En el dibujo se observan dos semicírculos iguales y tres cuadrados. Cuál es el cociente entre las áreas de las regiones sombreadas? D? C ) ) C) 4 D) 4 E) 6 4. El mayor número primo conocido, formado solamente por ceros y unos es el número Cuántas cifras tiene? ) 640 ) 64 C) 80 D) 8 E) Si x, y, z son enteros positivos menores que 0 tales que 00x 0y z x y z el valor de x y z? ) ) C) 9 D) E) 7 6. Para cuántos enteros positivos n, resulta que n + 8 es un cuadrado perfecto? ) 0 ) C) D) E) 4, Cuál es 7. Para cuántos enteros positivos n, se verifica que el resto de la división de entre n es 6? ) 9 ) 7 C) 9 D) 49 E) Cuál es el resto de la división de P ( x) x x x x x x entre ( x )( x )? ) x ) 7 C) x + D) E) 6x
4 9. En la figura que observas, E es el centro de la circunferencia que pasa por, y D. El centro de la circunferencia que pasa por E y C es D. Si el ángulo en es de 6º, el valor del ángulo en C es: D 6º E C ) 8º ) 0º C) º D) 4º E) 6º 0. Si x, definimos ( x) lg lg xlg x f lg. Cuál de las siguientes afirmaciones es verdadera? ) f ( x) 0 x ) f ( x) 0 x C) f ( x) 0 x D) f ( x) 0 para un único valor de x E) f ( x) 0 para más de un valor de x
5 LI OLIMPID MTEMÁTIC ESPÑOL FSE CERO-COMUNIDD DE MDRID Primera sesión, jueves 0 de noviembre de 04 Hoja de respuestas Nombre y apellidos:.. Tfno.. Centro Curso.. Fecha de nacimiento C D E.-.- C D E C D E C D E C D E C D E 0.- Espacio reservado para el equipo calificador. CORRECTS () EN LNCO () INCORRECTS PUNTUCIÓN
REAL SOCIEDAD MATEMÁTICA ESPAÑOLA. XLIV OLIMPIADA MATEMÁTICA ESPAÑOLA Comunidad de Madrid. Primera sesión, viernes 23 de noviembre de 2007
REL SOCIEDD MTEMÁTIC ESPÑOL XLIV OLIMPID MTEMÁTIC ESPÑOL Comunidad de Madrid Primera sesión, viernes de noviembre de 00 En la hoja de respuestas, escribe la letra que corresponde a la opción que creas
REAL SOCIEDAD MATEMÁTICA ESPAÑOLA. XLIII OLIMPIADA MATEMÁTICA ESPAÑOLA Comunidad de Madrid. Primera sesión, viernes 24 de noviembre de 2006
REAL SOCIEDAD MATEMÁTICA ESPAÑOLA XLIII OLIMPIADA MATEMÁTICA ESPAÑOLA Comunidad de Madrid Primera sesión, viernes 4 de noviembre de 006 En la hoja de respuestas, rodea con un círculo la opción que creas
XIV Concurso Intercentros de Matemáticas de la Comunidad de Madrid
PRUE POR EQUIPOS 1º y 2º de E.S.O. (45 minutos) 1. Si x e y representan cifras distintas de cero, encuentra todos los números de siete cifras de la forma yxyxyxy divisibles por 18 y que verifican que el
VI Concurso Intercentros de Matemáticas de la Comunidad de Madrid PRUEBA POR EQUIPOS PRUEBA INDIVIDUAL Primer ciclo de E.S.O.
VI oncurso Intercentros de Matemáticas de la omunidad de Madrid PRUE POR EQUIPOS (45 minutos) PRUE INDIVIDUL Primer ciclo de E.S.O. (90 minutos) PRUE INDIVIDUL Segundo ciclo de E.S.O. (90 minutos) PRUE
1. He escrito el No he escrito el He escrito el No he escrito el 4.
º Nivel. El número que está justamente entre 8 y 0 es 80 B) 0 C) 8 E) 80. Halla la suma de todos los primos comprendidos entre y 00 que verifiquen ser múltiplos de más y múltiplos de 5 menos. 8 B) 7 C)
Problemas propuestos en el XXXIV Concurso Puig Adam
Problemas propuestos en el XXXIV oncurso Puig dam Problema 1 (7 puntos) NIVEL I (3º de E.S.O.) Primera parte (1 hora 30 minutos) Juan efectúa las mil divisiones enteras siguientes: 2016 entre 1, 2016 entre
VII CONCURSO DE PRIMAVERA DE MATEMÁTICAS. 2ª FASE : Día 5 de abril de ( 1º y 2º de Bachillerato)
VII CONCURSO DE PRIMAVERA DE MATEMÁTICAS ª FASE : Día 5 de abril de 003 NIVEL IV ( 1º y º de Bachillerato) Lee detenidamente las instrucciones!!! *Escribe ahora los siguientes datos: Apellidos Nombre Colegio
2) Estudia crecimiento, decrecimiento y existencia de extremos relativos. x 4x
EJERCICIOS DE ANÄLISIS 1) Estudia el dominio, ceros y signo, continuidad, límites en caso que tienda a + y -, máimos y mínimos relativos de las siguientes funciones. Realiza en cada caso el bosquejo correspondiente.
VIII Concurso Intercentros de Matemáticas de la Comunidad de Madrid
PRUE POR EQUIPOS 1º y º de E.S.O. (45 minutos) 1.- Pedro y Juan eligen ocho números de los nueve que hay escritos en este diagrama, cuatro cada uno; así pues hay un número que no elige ninguno. Pedro observa
LA RECTA Y SUS ECUACIONES
UNIDAD 1 LA RECTA Y SUS ECUACIONES PROBLEMAS PROPUESTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivos
TORNEOS GEOMÉTRICOS 2018 Segunda Ronda. Primer Nivel - 5º Año de Escolaridad. Apellido Nombres. Calle..N Piso.Dpto..CP.. Localidad.Provincia.
TORNEOS GEOMÉTRICOS 2018 Segunda Ronda Primer Nivel - 5º Año de Escolaridad Apellido Nombres. DNI.. Tu Escuela. Tu Domicilio Calle..N Piso.Dpto..CP.. Localidad.Provincia. Lee con atención: 1- Es posible
*SIMETRAL DE UN TRAZO.: perpendicular en el punto medio.
*DISTANCIA ENTRE DOS PUNTOS EN EL PLANO: P(x a, y b ). Q(x a, y b ) 2 b + ya yb d= ( ) ( ) 2 x a x *SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *ALTURA: perpendicular bajada del vértice al
Problemas de fases nacionales e internacionales
Problemas de fases nacionales e internacionales 1.- (China 1993). Dado el paralelogramo ABCD, se consideran dos puntos E, F sobre la diagonal AC e interiores al paralelogramo. Demostrar que si existe una
Una recta es una línea (de puntos) que no tiene ni principio ni final. Un segmento es la parte de una recta que se encuentra entre 2 puntos.
RECTAS Y ÁNGULOS RECTAS Una recta es una línea (de puntos) que no tiene ni principio ni final. Un punto divide a una recta en 2 semirrectas. Un segmento es la parte de una recta que se encuentra entre
EL LENGUAJE MATEMÁTICO
Actividad 1 Lee las siguientes frases con contenido matemático y averigua qué objetos matemáticos aparecen y qué símbolos matemáticos se utilizan: a) Los números dos y cuatro son números pares. b) Los
LIV OME - FASE CERO, COMUNIDAD DE MADRID
LIV OME - FSE ERO, OMUNIDD DE MDRID 24 de noviembre de 2017 1. olocamos cifras en los huecos del número 2, una en cada hueco, para formar un número de tres cifras. De cuántas formas podemos hacerlo para
LA RECTA Y SUS ECUACIONES
UNIDAD LA RECTA Y SUS ECUACIONES EJERCICIOS RESUELTOS Objetivo general. Al terminar esta Unidad resolverás ejercicios y problemas correspondientes a las rectas en el plano y sus ecuaciones. Objetivo. Recordarás
Un punto carece de dimensiones, es sólo una posición en el espacio. Se acostumbra denotar los puntos por letras mayúsculas, por ejemplo.
Un punto carece de dimensiones, es sólo una posición en el espacio. Se acostumbra denotar los puntos por letras mayúsculas, por ejemplo. A: punto A. Una línea es una secuencia infinita de puntos. Las líneas
TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS.
TEMA 11: ÁREA Y FIGURAS GEOMÉTRICAS. LOS POLÍGONOS El polígono es una porción del plano limitado por una línea poligonal cerrada. Un polígono se nombra con las letras mayúsculas situadas en los vértices.
VII CONCURSO DE PRIMAVERA DE MATEMÁTICAS. 1ª FASE : Día 26 de febrero de NIVEL II ( 1º y 2º de E.S.O.)
VII CONCURSO DE PRIMAVERA DE MATEMÁTICAS 1ª FASE : Día 26 de febrero de 2003 NIVEL II ( 1º y 2º de E.S.O.) Lee detenidamente las instrucciones!!! *Escribe ahora los siguientes datos: Apellidos Nombre Colegio
ECUACIÓN DE LA RECTA. 6. Hallar la ecuación de la recta que pase por el punto A ( 1, 2) y que determina en el eje X un segmento de longitud 6.
ECUACIÓN DE LA RECTA 1. El ángulo de inclinación de una recta mide 53º y pasa por los puntos ( 3, n) y ( 5, 4). Hallar el valor de n. A) 1 /5 B) 8 /5 C) 1 /5 D) 8 /5 E) 7 /3. Qué tipo de triángulo es el
Consideraciones previas: *DISTANCIA ENTRE DOS PUNTOS EN EL PLANO: P(x. ). Q(x. d= ( ) ( ) 2. *SIMETRAL DE UN TRAZO.: perpendicular en el punto medio.
Consideraciones previas: *DISTANCIA ENTRE DOS PUNTOS EN EL PLANO: P(x a, y b ). Q(x a, y b ) x 2 b + ya yb d= ( ) ( ) 2 a x *SIMETRAL DE UN TRAZO.: perpendicular en el punto medio. *ALTURA: perpendicular
COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS
LUGARES GEOMÉTRICOS Y CÓNICAS 01. Halla la ecuación de la circunferencia de centro ( 5, 12) y radio 13. Comprueba que pasa por el punto (0, 0). 02. Halla las ecuaciones de los siguientes lugares geométricos:
Proyecto conjunto de El Mercurio y Cepech 1
MTEMÁTICS-FCSÍMIL N 5. Si = - entonces + = ) - ) C) D) E) 9. Una función se dice par si ( ) = f( ) funciones es(son) par(es)? + I. g( ) = II. g ( ) = + III. g( ) = + IV. g( ) = ) Sólo I ) Sólo II C) Sólo
PRUEBA DE CUARTO GRADO.
PRUEBA DE CUARTO GRADO. Francisco tiene 10 cajas y 44 monedas. Quiere poner las monedas en las cajas repartiéndolas de modo que cada caja contenga un número distinto de monedas. Puede hacerlo? Si puede,
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS
ACTIVIDADES SELECTIVIDAD APLICACIONES DERIVADAS Ejercicio 1 De la función se sabe que tiene un máximo en, y que su gráfica corta al eje OX en el punto de abscisa y tiene un punto de inflexión en el punto
UNIDAD 8 Geometría analítica
Pág. 1 de 5 I. Sabes hallar puntos medios de segmentos, puntos simétricos de otros y ver si varios puntos están alineados? 1 Los puntos A( 1, 3), B(2, 6), C (7, 2) y D( 5, 3) son vértices de un cuadrilátero.
GEOMETRÍA ANALÍTICA PARA LA CLASE. A (x 2 ;y 2 ) y 2. d(a,b) y 2 y 1. x 1 x 2. y 1. B (x 1 ;y 1 ) x 2. Geometría Analítica DISTANCIA ENTRE DOS PUNTOS
GEOMETRÍA ANALÍTICA La Geometría Analítica hace uso del Álgebra y la Geometría plana. Con ella expresamos y resolvemos fácilmente problemas geométricos de forma algebraica, siendo los sistemas de coordenadas
Matemáticas, opción B EDUCACIÓN SECUNDARIA 4
Evaluación: EXAMEN DE LA UNIDAD 1 Fecha: Ejercicio nº 1.- a) Escribe en forma de intervalo, en forma de desigualdad y clasifícalo en cada caso: - 3 5 b) Escribe en forma de desigualdad, clasifícalo y representa:
V CONCURSO DE PRIMAVERA DE LA RIOJA
V CONCURSO DE PRIMAVERA DE LA RIOJA 1ª FASE Día 6 de Febrero de.003 NIVEL II (1º Y º DE ESO) Lee detenidamente las instrucciones!!! Escribe ahora los siguientes datos: Apellidos Nombre Año de nacimiento
1.- Escribe los conjuntos (N, Z, Q, I, R) a los que pertenecen los siguientes números:
MATEMÁTICAS º ESO REPASO SEPTIEMBRE 08.- Escribe los conjuntos (N, Z, Q, I, R) a los que pertenecen los siguientes números: // // //, //, // // //.- Representa en la recta real los siguientes números o
1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a)
Ejercicios de cónicas 1º bachillerato C 1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) b) c) d) e) f) g) h) i) Soluciones: a) Circunferencia de centro ( y radio 3. Excentricidad
MATEMÁTICAS 4º ESO Ejercicios de recuperación para Septiembre
MATEMÁTICAS 4º ESO Ejercicios de recuperación para Septiembre ESTOS EJERCICIOS DEBERÁN SER ENTREGADOS AL COMIENZO DEL EXÁMEN DE SEPTIEMBRE. SU PRESENTACIÓN SE VALORARÁ CON UN MAXIMO DE UN 10% DE LA NOTA
XXXI CONCURSO PUIG ADAM DE RESOLUCIÓN DE PROBLEMAS Facultad de Matemáticas U.C.M. Madrid, 8 de junio de 2013
XXXI ONURSO PUIG M E RESOLUIÓN E PROLEMS Facultad de Matemáticas U..M. Madrid, 8 de junio de 013 NIVEL I (3º de E.S.O.) Primera parte (1 hora 30 minutos) Problema 1. La suma de dos números naturales es
UNIDAD 2: ELEMENTOS GEOMÉTRICOS
UNIDAD 2: ELEMENTOS GEOMÉTRICOS POLÍGONO Región del plano limitada por una línea poligonal cerrada. 1. Dibuja polígonos y señala los lados, vértices y ángulos. 4 lados Ángulo Vértice Lado 5 lados Este
Hoja de actividad sobre las propiedades de las figuras geométricas planas
Nombre Unidad 4.6: Diseños en nuestro mundo Hoja de actividad sobre las propiedades de las figuras geométricas planas Fecha Instrucciones: Mira cada figura con detenimiento. Nombra cada una de las figuras
PRUEBA DE MATEMÁTICA FACSÍMIL N 1
PRUEBA DE MATEMÁTICA FACSÍMIL N. A, B, C y D son números naturales tales que A > B, C > D, B < D y C < A. Cuál de las siguientes alternativas indica un orden creciente de estos números? A) A C D B B) B
INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO
PRIMER EXAMEN PARCIAL INSTITUTO POLITÉCNICO NACIONAL CECYT LÁZARO CÁRDENAS DEL RÍO ÁREA BÁSICA ACADÉMIA DE MATEMÁTICAS TURNO MATUTINO GUÍA DE GEOMETRÍA ANALÍTICA 2016-2017A SISTEMA DE COORDENADAS, LUGARES
Matemáticas. Tercero ESO. Curso Exámenes
Matemáticas. Tercero ESO. Curso 2014-2015. Exámenes 140930 nombre: 1. Calcular: (a) 1 + 1 + 2 3 3 2 (b) 3 5 + 3 1 4 2 3 2. Calcular: (a) 2 4 + 2 8 3 + 1 2 3 5 (b) 1 3 + 2 9 1 5 8 5 3. Calcular: (a) 8
XVII OLIMPIADA NACIONAL DE MATEMÁTICA. Nombre y Apellido:... Grado:... Sección:... Puntaje:...
SEGUNDA RONDA COLEGIAL - 5 DE AGOSTO DE 005 - NIVEL 1 Nombre y Apellido:........................... Grado:...... Sección:..... Puntaje:..... Los dibujos correspondientes a los problemas de Geometría, no
Ejercicios 16/17 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.
Ejercicios 16/17 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =
LIII OME - SEGUNDA PRUEBA FASE LOCAL, COMUNIDAD DE MADRID =
LIII OME - SEGUND PUE FSE LOCL, COMUNIDD DE MDID 1 de diciembre de 016 1. El producto de dos números del conjunto {1,, 3,..., 6} es igual a la suma de los restantes. Encuentra dichos números. La suma de
Escuela Pública Experimental Desconcentrada Nº3 Dr. Carlos Juan Rodríguez Matemática 3º Año Ciclo Básico de Secundaria Teoría Nº 2 Segundo Trimestre
Potenciación de polinomios Para resolver la potencia de un monomio se deben aplicar las propiedades de la potenciación. n n n ab a b a) 6 x x 9x b) x x 8x c) Cuadrado de un binomio El cuadrado de un binomio
DIBUJO GEOMÉTRICO. - Segmento: es una parte limitada de la recta comprendida entre dos puntos que por lo tanto se nombraran con mayúscula.
DIBUJO GEOMÉTRICO 1. SIGNOS Y LÍNEAS. A. El punto: es la intersección de dos rectas. Se designa mediante una letra mayúscula y se puede representar también con un círculo pequeño o un punto. A B C D X
n Por ejemplo, en un pentágono tenemos que saber que sus ángulos suman 540º y cada ángulo del pentágono son 108º.
MATEMÁTICAS 3º ESO TEMA 10 PROBLEMAS MÉTRICOS EM EL PLANO- 1. ÁNGULOS EN LOS POLÍGONOS La suma de los ángulos de un polígono de n lados es: 180º (n-2) 180º(n - 2) La medida de cada ángulo de un polígono
( ) 5 x [ ) [ ) VERSIÓN 0. cos ln e π. sgn 3
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS MATEMÁTICAS SEGUNDA EVALUACIÓN DE MATEMÁTICAS INGENIERÍAS GUAYAQUIL, AGOSTO 27 DE 2012 Nombre: Paralelo: VERSIÓN 0 INSTRUCCIONES Escriba sus
CONCURSO CANGURO PRUEBA JUNIOR NOVENO GRADO
CONCURSO CANGURO PRUEBA JUNIOR NOVENO GRADO ) % de una torta circular es cortada como indica la figura. Cuál es la medida del ángulo marcado por la interrogación? A) 30 B) 4 C) 4 D) E) 20 2) Un círculo
Problemas propuestos en el XXXIII Concurso S E V E N E I G H T
Problemas propuestos en el XXXIII Concurso NIVEL I (3º de E.S.O.) Primera parte ( hora 30 minutos) Problema (7 puntos) En la siguiente posible suma cada letra representa un dígito (0,,,, 9), letras diferentes
Ejercicios 17/18 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.
Ejercicios 17/18 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =
XV OLIMPIADA NACIONAL DE MATEMÁTICA SEGUNDA RONDA COLEGIAL - 1 DE AGOSTO DE NIVEL 1
SEGUNDA RONDA COLEGIAL - DE AGOSTO DE 00 - NIVEL Nombre y Apellido:................................. Grado:....... Sección:...... Puntaje:.......... Los dibujos correspondientes a problemas de Geometría,
EJERCICIOS PAU MATEMÁTICAS II ANDALUCÍA Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.
FUNCIONES I: LÍMITES, CONTINUIDAD Y DERIVAVILIDAD 1- Sea : definida por a) Halla a, b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1/2 y que la recta tangente en el punto de
2 CONCURSO DE MATEMÁTICAS CARL FRIEDRICH GAUSS Examen de Primer Año de Preparatoria. Etapa Eliminatoria
2 CONCURSO DE MATEMÁTICAS CARL FRIEDRICH GAUSS 2016 Examen de Primer Año de Preparatoria Etapa Eliminatoria Instrucciones: No utilizar celular (éste deberá de estar apagado), ipod, notebook, calculadora
Geometría 3. Ejercicio 2. Dados los puntos = ( 1, 0, 0 ),
Geometría 3 Ejercicio. Sean los puntos P (,, ), Q (,, 3) R (,3,). ) Calcula el punto P que es la proección del punto P sobre la recta que determinan Q R ) Halla la ecuación del lugar geométrico de los
XX OLIMPIADA NACIONAL DE MATEMÁTICA SEGUNDA RONDA COLEGIAL - 1 DE AGOSTO DE NIVEL 1. Nombre y Apellido:... Grado:... Sección:...
SEGUNDA RONDA COLEGIAL - 1 DE AGOSTO DE 2008 - NIVEL 1 Nombre y Apellido:................................. Grado:....... Sección:...... Puntaje:.......... Los dibujos correspondientes a los problemas de
MATEMÁTICA N O 6. Santillana FASCÍCULO PSU N O 6 MATEMÁTICA. Santillana
FASCÍCULO PSU N O 6 MATEMÁTICA . El valor de 0, 0, + es igual: A) B) C) D) 4 45 6 45 5 8 9 E) 0 9. La medida del segmento AE es: A A) 8 cm B) 4 cm C) 0 cm D) cm E) cm. 4-4 - =? - A) - 4 B) 8 C) 4 D) -
c) Demuestra que la función f(x) anterior y g(x) = 2x 1 se cortan al menos en un punto. (1 punto) 2
Junio 010 1A. a) Enuncia el teorema de Bolzano. (0,5 puntos) 1 b) Se puede aplicar dicho teorema a la función f ( x) 1 x en algún intervalo? (1 punto) c) Demuestra que la función f(x) anterior y g(x) =
Un punto divide a una recta en dos semirrectas. Ese punto es el origen de ambas semirrectas.
Una línea recta es una línea que no tiene principio ni fin. Una semirrecta es una línea que tiene principio pero no tiene final. o Un punto divide a una recta en dos semirrectas. Ese punto es el origen
UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA
C u r s o : Matemática Material N 18 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA GUÍA TEÓRICO PRÁCTICA Nº 15 SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando
NIVEL 1 (6.º y 7.º grado)
NIVEL 1 (6.º y 7.º grado) 25.ª OLIMPIADA NACIONAL JUVENIL DE MATEMÁTICA 3ª RONDA ZONAL - 29 de junio de 2013 Nombre y Apellido:.............................................. Colegio:..........................
Autor: 2º ciclo de E.P.
1 Autor: 2º ciclo de E.P. Una línea recta es una línea que no tiene principio ni fin. Una semirrecta es una línea que tiene principio pero no tiene final. o Un punto divide a una recta en dos semirrectas.
CESAR VALLEJO CREEMOS EN LA EXIGENCIA MATEMÁTICA ACADEMIA. Pregunta N. o 1. Pregunta N. o 4. Pregunta N. o 2. Pregunta N. o 5. Pregunta N.
MTEMÁTI Pregunta N. o Determine la suma del número n más pequeño y del número N más grande cuatro cifras que sean divisibles por ; 3; 4; ; 7; y 4, simultáneamente a n y N. Pregunta N. o 4 Se tiene un terreno
Problemas para entrenamiento (abril 2013)
Problemas para entrenamiento (abril 2013) 1 En el cálculo 1 2 3 4 5 se puede remplazar por + o por ¾Cuál de los siguientes números no se puede obtener? (a) 1 (b) 3 (c) 7 (d) 13 (e) 17 2 Hay 5 cartas numeradas
4 Operaciones. con polinomios. 1. Operaciones con polinomios. Desarrolla mentalmente: a) (x + 1) 2 b)(x 1) 2 c) (x + 1)(x 1)
4 Operaciones con polinomios 1. Operaciones con polinomios Desarrolla mentalmente: a) ( + 1) 2 b)( 1) 2 c) ( + 1)( 1) P I E N S A Y C A L C U L A a) 2 + 2 + 1 b) 2 2 + 1 c) 2 1 1 Dados los siguientes polinomios:
CANGURO MATEMÁTICO 2015 QUINTO DE SECUNDARIA
CANGURO MATEMÁTICO 2015 QUINTO DE SECUNDARIA INDICACIONES Las marcas en la hoja de respuestas se deben realizar, únicamente, con LÁPIZ. Escriba su apellido paterno, apellido materno y nombres con letras
Olimpiada Kanguro 2007
Escribe tus respuestas en la HOJA DE RESPUESTAS Olimpiada Kanguro 007 Nivel Cadete (9no y 0mo año básico) Tiempo: hora y 5 minutos No se permite el uso de calculadoras. Hay una única respuesta correcta
INECUACIONES Y VALOR ABSOLUTO
INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.
A 2 TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO TEOREMA DE PITÁGORAS:
TEMA 10. POLÍGONOS ÁREAS Y PERÍMETROS ELEMENTOS CLASIFICACIÓN TRIÁNGULOS CUADRILÁTEROS POLÍGONOS REGULARES CIRCUNFERENCIA CÍRCULO A b h A b a A perímetro apotema A r TEOREMA DE PITÁGORAS: a b c 1 POLÍGONOS
SOLUCIONES SEPTIEMBRE 2016
Página de 9 SOLUCIONES SEPTIEMBRE 206 Soluciones extraídas de los libros: XII CONCURSO DE PRIMAVERA 2008 XV CONCURSO DE PRIMAVERA 20 XVI CONCURSO DE PRIMAVERA 202 Obtenibles en http://www.concursoprimavera.es#libros
TALLER DE MATEMÁTICAS NOTAS. Toda expresión algebraica del tipo. a n x n + a n 1 x n a 1 x + a 0. es un polinomio de grado n, si a n 0.
NOTAS Toda expresión algebraica del tipo es un polinomio de grado n, si a n 0. a n x n + a n 1 x n 1 +... + a 1 x + a 0 RELACIONES DE DIVISIBILIDAD 1) x n a n = (x a)(x n 1 + ax n 2 + a 2 x n 3 +... +
APLICACIONES DE LAS DERIVADAS. 1. Halla las rectas tangente y normal a las siguientes funciones en los puntos que se indican:
Matemáticas Aplicaciones de las derivadas APLICACIONES DE LAS DERIVADAS Halla las rectas tangente y normal a las siguientes funciones en los puntos que se indican: 5 a) f, c) f lntg, en en 8 b) f, en d)
XLV Olimpiada Matemática Española Primera Fase Primera sesión Viernes mañana, 23 de enero de 2008
XLV Olimpiada Matemática Española Primera Fase Primera sesión Viernes mañana, 23 de enero de 2008 SOLUCIONES 1 2 2008 1. Calcular la suma 2 h + h +... + h, 2009 2009 2009 siendo Se observa que la función
Red de Contenidos Segundo Semestre 2008 Depto. Matemática
Instituto La Salle Coordinación Académica Red de Contenidos Segundo Semestre 2008 Depto. Matemática Kínder Ámbito numérico del 1 al 20 Relación número, cantidad Escritura de numerales Adición y sustracción
ELIMINATORIA. (A) 5 (B) 7 (C) 8 (D) 13 (E) Más de 13
Problema 1 Cuál es la suma de los dígitos del número que se obtiene en 5 005 x 00? (A) 5 (B) 7 (C) 8 (D) 13 (E) Más de 13 Problema Cuál es la mitad de 00? (A) 00 (B) 00 (C) 100 (D) 007 (E) 100 Problema
UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA
C u r s o : Matemática Material N 8 GUÍA TEÓRICO PRÁCTICA Nº 5 UNIDAD: ÁLGEBRA Y FUNCIONES ECUACIÓN DE LA RECTA SISTEMA CARTESIANO ORTOGONAL Para determinar la posición de los puntos de un plano usando
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2013 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 03 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
TAREA DE VERANO MATEMÁTICAS REFUERZO 3º ESO
TAREA DE VERANO MATEMÁTICAS REFUERZO º ESO Realiza las siguientes operaciones: 7 8 7 0 0 0 8 Calcula el valor de las siguientes epresiones: : Realiza las siguientes operaciones: 7 Un embalse está lleno
XXVII CONCURSO PUIG ADAM DE RESOLUCIÓN DE PROBLEMAS Facultad de Matemáticas U.C.M. Madrid, 13 de junio de 2009
Madrid, 13 de junio de 009 NIVEL I (3º de E.S.O.) Primera parte (1 hora 30 minutos) Problema 1. Los tres apartados de este problema están encadenados. La respuesta de cada uno es un dato para el siguiente.
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1. [2 5 puntos] Calcula lim x 0 siendo Ln(1 + x) el logaritmo neperiano de 1 + x. Ln(1 + x) sen x, x sen x Ejercicio 2. Sea f : R R la función definida por f(x) = e x/3. (a) [1 punto]
2. (10pts.) Cuál es el producto de los divisores comunes de 99 y 275?
3raEtapa (Examen Simultáneo) 1ro de Secundaria 1. (10 pts.) Si son números para los cuales : Hallar a) 20 b) 18 c) 16 d) 11 d) 17 e) Ninguno 2. (10pts.) Cuál es el producto de los divisores comunes de
Primer Nivel. Solución: Por los valores de los lados del triángulo, éste debe ser un triángulo rectángulo, y en consecuencia su área es (3 4 ) 6
Primer Nivel Problema 1- Los lados de un cuadrado de área 4cm se han dividido en cuatro partes iguales. Halla el área del cuadrado sombreado. Solución: Trazando los segmentos adicionales indicados en la
TORNEOS GEOMÉTRICOS Segunda Ronda. Primer Nivel - 5º Año de Escolaridad. Apellido Nombres. DNI Tu Escuela. Localidad Provincia
TORNEOS GEOMÉTRICOS 2017. Segunda Ronda Primer Nivel - 5º Año de Escolaridad Apellido Nombres DNI Tu Escuela. Tu domicilio: Calle. Nº Piso Dpto C.P... Localidad Provincia Lee con atención: 1- Es posible
Concurso Nacional de Matemáticas Pierre Fermat.
Concurso Nacional de Matemáticas Pierre Fermat Octubre de 006 Examen para nivel medio superior (Primera étap Instrucciones: Las respuestas del examen se asentarán en la hoja de respuestas anexa, la cual
GEOMETRÍA. Septiembre 94. Determinar la ecuación del plano que pasa por el punto M (1, 0, [1,5 puntos]
Matemáticas II Pruebas de Acceso a la Universidad GEOMETRÍA Junio 94 1 Sin resolver el sistema, determina si la recta x y + 1 = 0 es exterior, secante ó tangente a la circunferencia (x 1) (y ) 1 Razónalo
Problema 1 Problema 2 Problema 3 Problema 4 Problema 5
QUINTO GRADO Yo rompí un papel en 10 pedazos. Mi hermano tomó algunos de ellos y los rompió a su vez en 10 pedazos -cada uno-. Si al final quedaron 46 pedazos, Cuántos pedazos rompió mi hermanito? Mary
Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6
página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto
FIGURAS PLANAS. Es una figura plana delimitada por una línea poligonal cerrada.
1.- Qué es un polígono? FIGURAS PLANAS Es una figura plana delimitada por una línea poligonal cerrada. Los elementos de un polígono son: - Lado: Se llama lado a cada segmento que limita un polígono - Vértice:
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. cuadrante, un triángulo de área 16. Determinar la distancia del punto recta. 1, son también ceros de
1) La recta MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA r 1, tiene ordenada al origen 4 y forma con los ejes coordenados en el segundo P ; 5 a la cuadrante, un triángulo de área 16. Determinar la distancia
CRITERIOS EVALUACIÓN MATEMÁTICAS
CRITERIOS DE EVALUACIÓN ÁREA MATEMÁTICAS NIVEL 6º EDUCACIÓN PRIMARIA Identifica situaciones en las cuales se utilizan los números. Comprende las reglas de formación de números en el sistema de numeración
Un ángulo mide y otro Cuánto mide la suma de estos ángulos?
Los Ángulos Qué es un ángulo y su notación? Son dos rayos cualesquiera que determinan dos regiones del plano. Su notación: Para nombrar los ángulos, utilizaremos los símbolos
ÁNGULOS: (triángulos - cuadriláteros)
1 ÁNGULOS: (triángulos - cuadriláteros) 1. - Transforma en grados, minutos y segundos: a) 15.910" b) 27.673" c) 78.385" d) 38.890" e) 21.930" f) 35.627" g) 50.420" h) 43.692" i) 22.475" j) 95.486" k) 9.999"
APLICACIONES DE LA DERIVADA
APLICACIONES DE LA DERIVADA Ejercicio -Sea f: R R la función definida por f ( ) = + a + b + a) [ 5 puntos] Determina a, b R sabiendo que la gráfica de f pasa por el punto (, ) y tiene un punto de infleión
CONCURSO DE PRIMAVERA DE MATEMÁTICAS NIVEL IV (BACHILLERATO)
Portal Fuenterrebollo Concurso Primavera Matemáticas: NIVEL IV (BACHILLERATO) CONCURSO DE PRIMAVERA DE MATEMÁTICAS NIVEL IV (BACHILLERATO) 1. Si ax bxc 0 tiene dos raíces distintas, entonces 6 3 ax bx
