EXAMEN FINAL DE METODOS NUMERICOS (MB536)
|
|
|
- María del Pilar Cano Valenzuela
- hace 7 años
- Vistas:
Transcripción
1 EXAMEN FINAL DE METODOS NUMERICOS (MB56) DURACION: MINUTOS SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO A4 ESCRIBA CLARAMENTE SUS PROCEDIMIENTOS PROHIBIDO EL USO DE MEDIOS DE COMUNICACIÓN ELECTRÓNICA Problema Un bloque se desplaza sobre una superficie plana por efecto de una fuerza cuya magnitud y el ángulo, que forma con la horizontal, varían en función de la posición x que va tomando el bloque. Debido a restricciones experimentales, solo ha sido posible registrar la siguiente información: x (pies) (libras) (radianes) Aplicando integración numérica con el menor error posible a) ( Pts.) Calcular el trabajo ( ) realizado por el bloque en su recorrido. Si se tiene que Trabaje con 4 lugares decimales. b) ( Pts.) Escriba comandos Matlab para graficar los datos del problema. Problema La posición de un vehículo de toneladas sobre una pista recta, es registrada por un instrumento de medición por ondas de radio, entregando la siguiente información: Tiempo (s) Posición(m) 5 6 Haciendo uso de un spline cubico natural, calcule lo siguiente: a) ( Ptos.) Determine el spline indicando sus resultados parciales. b) ( Pto.) La posición a los 7 segundos. c) ( Pto.) La velocidad del vehículo a los 8 segundos. d) ( Pto.) La fuerza que genera el motor para poder mover el vehículo en el instante 8 segundos, considerando que Fuerza=masa x aceleración. Problema a) ( Pto.) Determine el sistema de EDOs correspondiente a la ecuación del circuito eléctrico descrito en la figura : b) ( Pts.) Determine los dos primeros valores de la función solución para la corriente de malla con un tamaño de paso h =. ms desde el momento t = con el método de Euler. Con valores iniciales i()=, di()/dt=/l c) ( Pto.) Determine el algoritmo de Taylor de orden. Datos: C= μf L= mh. u e (t)=v en t, después V. Figura Circuito Eléctrico
2 Problema 4 Representamos por u el potencial electroestático entre dos esferas metálicas concéntricas de radios R y R ( R R ), tales que el potencial de la esfera interior se mantiene constante a V voltios y el potencial de la esfera exterior a voltios. El potencial en la región entre las dos esferas está gobernado por la ecuación de Laplace d u du, R r R dr r dr Suponiendo que R mm, R 4 mm y V voltios: a) (.5 Pts.) Aproximar el valor del potencial u para r usando el método del disparo lineal. Considere h=, V R R r b) ( Pto.) Si la solución exacta es u ( r), determinar el error r R R exacto cometido en la aproximación de a). c) (.5 Pto.) Implementar una función en Matlab que dadas las pendientes iniciales s y s con soluciones aproximadas un, un. Calcule la pendiente mejorada y el valor de unδ function Y=dispalin(f,a,b,alpha,beta,s,s,uN,uN,h) % f: nombre del archivo.m donde se define el sistema % a, b: extremos del intervalo % s, s: pendientes iniciales % alpha, beta: valores extremos % h: tamaño de paso Los Profesores
3 Solución a) Según la tabla calculamos x (pies) Ahora aplicamos integración por partes según lo siguiente: Estos cuatro integrandos se evalúan con Simpson (h =.5), Trapecios (h = 5), Simpson (h=.5) y Simpson (h = 5), respectivamente Finalmente sumando tenemos: Comandos de Matlab Respuesta >> x=[ ]; >>fx=[ ]; >>tetha=[ ]; >>fxcos=fx.*cos(tetha); >>plot(x,fx,x,fxcos), gridon,xlabel('eje X'),ylabel('Eje Y') Solución Preparando la tabla de valores i x y hi y[xi,xi+]
4 Ordenando para resolver el sistema de ecuaciones para hallar las M Considerando spline cubico natural M y M = H M Y 4 M M 8 Resolviendo M M.585 M.86 M a) PSi=ai(t-ti)^+bi(t-ti)^+ci(t-ti)+di a b c d p p p b) P(7)= 7.76 c) Derivando el polinomio P y evaluando en 8 P (8)= 4.57 m/s d) P (8)=M=.8m/s^= aceleración Fuerza=4456 N Solución La ecuación integral se transforma mediante la derivación de una ecuación diferencial de primer orden y de forma explícita para i (t) se escribe: a) Hacer Datos: b)algoritmo de Euler:
5 c) Solución 4 (a) u'' u', r u() ; ( ) ( )=[ ] [ ] [ ] r [,4]. u'() un = 49.4 s = un =.6 s = (b) La solución aproximada para r=: u ( ) 7.64 Valor Exacto= Error=.6974 ( c ) function Y=dispalin(f,a,b,alpha,beta,s,s,uN,uN,h) %f:nombre del archivo.m donde se define el sistema %a,b:extremos del intervalo %s,s: pendientes iniciales %alpha,beta: valores extremos %h tamaño de paso s=s+(s-s)*(beta-un)/(un-un); Y=ode45(f,[a:h:b],[alpha s]);
UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 08/07/2016 DACIBAHCC EXAMEN FINAL DE METODOS NUMERICOS (MB536)
UNIVERSIDAD NACIONAL DE INENIERIA P.A. 06- FACULTAD DE INENIERIA MECANICA 08/07/06 EXAMEN FINAL DE METODOS NUMERICOS (MB536) DURACION: 0 MINUTOS SOLO SE PERMITE EL USO DE UNA HOA DE FORMULARIO A ESCRIBA
Universidad Nacional de Ingeniería P.A Facultad de Ingeniería Mecánica 10/07/15 DACIBAHCC EXAMEN FINAL DE METODOS NUMERICOS (MB536)
Universidad Nacional de Ingeniería P.A. 5- Facultad de Ingeniería Mecánica /7/5 EXAMEN FINAL DE METODOS NUMERICOS (MB536) SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO Y CALCULADORA ESCRIBA CLARAMENTE
EXAMEN FINAL DE METODOS NUMERICOS (MB536) t y(t) L bt
Universidad Nacional de Ingeniería P.A. 5- Facultad de Ingeniería Mecánica //5 EXAMEN FINAL DE METODOS NUMERICOS (MB5) SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO Y CALCULADORA ESCRIBA CLARAMENTE
UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 23/12/2011 DACIBAHCC EXAMEN SUSTITUTORIO DE METODOS NUMERICOS (MB536)
EXAMEN SUSTITUTORIO DE METODOS NUMERICOS (MB536) SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO A4 Y CALCULADORA ESCRIBA CLARAMENTE SUS PROCEDIMIENTOS PROHIBIDO EL USO DE CELULARES U OTROS EQUIPOS DE
SESIÓN 2 Splines e integración numérica
SESIÓN Splines e integración numérica ) Sea f x = x 4 para x [,] y sea s: [,] R el spline cúbico que aproxima a f definido a partir de los puntos de abscisas, y. Razona cual de las siguientes expresiones
INTEGRACIÓN APROXIMADA: PRUEBA DE 2º B
Matemáticas II Curso 7-8 Ejercicio : INTEGRACIÓN APROXIMADA: PRUEBA DE º B En el diseño de un parque se ha previsto aprovechar una hondonada con una profundidad media de m para construir un lago como el
EXAMEN PARCIAL DE METODOS NUMERICOS (MB536)
UNIVERSIDAD NACIONAL DE INGENIERIA P.A. - FACULTAD DE INGENIERIA MECANICA // EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) DURACION: MINUTOS SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO ESCRIBA CLARAMENTE
Integración numérica MAT 1105 F EJERCICIOS RESUELTOS. 1. Obtenga: a) Integrando por el método del trapecio. Se utilizan las siguientes formulas:
MAT 1105 F Integración numérica EJERCICIOS RESUELTOS 1 1. Obtenga: a) Integrando por el método del trapecio. Se utilizan las siguientes formulas: Donde: 4 2 Ecuación lineal Luego, Área del trapecio -1-1
CAPÍTULO. 7 Métodos numéricos
CAPÍTULO 7 Métodos numéricos 7.3 Método de Euler mejorado Consideremos ahora el polinomio de Taylor de orden de y.x/ en x D x 0 para aproximar a la solución del PVI y 0 D f.x; y/, con y.x 0 / D y 0. Esta
EXAMEN PARCIAL DE METODOS NUMERICOS (MB536)
EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO Y CALCULADORA ESCRIBA CLARAMENTE SUS PROCEDIMIENTOS PROHIBIDO EL USO DE CELULARES U OTROS EQUIPOS DE COMUNICACION
Ampliación de Matemáticas y Métodos Numéricos
Ampliación de Matemáticas y Métodos Numéricos Relación de ejercicios. Introducción a los Métodos Numéricos Ej. El problema del cálculo del punto de corte de dos rectas con pendiente similar es un problema
7.3 Método de Euler mejorado
43 Ecuaciones diferenciales Ejercicios 7..1 Euler. Soluciones en la página 477 Determine una aproximación lineal de la solución y.x/ de cada una de los siguientes PVI en el punto indicado utilizando el
Marzo 2012
Marzo 2012 http:///wpmu/gispud/ Para determinar la carga transferida a través del tiempo a un elemento, es posible hacerlo de varias formas: 1. Utilizando la ecuación de carga, evaluando en los tiempos
METODOS NUMERICOS. Curso
Boletín 1 de prácticas. 1. Localizar las raíces de la ecuación F (x) = 0, para los siguientes casos: (a) F (x) = x + e x. (b) F (x) = 0.5 x + 0.2 sen(x). (c) F (x) = x tg(x). (d) F (x) = x 5 3. (e) F (x)
CAPÍTULO. Métodos numéricos
CAPÍTULO 7 Métodos numéricos 7.2 Método de Euler En general, la solución de un PVI, y 0 D f.x; y/, con y.x 0 / D y 0, es una función y.x/ que se puede desarrollar mediante un polinomio de Taylor de cualquier
EXAMEN PARCIAL DE METODOS NUMERICOS (MB536)
EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO Y CALCULADORA ESCRIBA CLARAMENTE SUS PROCEDIMIENTOS PROHIBIDO EL USO DE CELULARES U OTROS EQUIPOS DE COMUNICACION
Cuadratura de Newton-Cotes
Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación INTEGRACION NUMERICA Ayudante: Rodrigo Torres Aguirre INTEGRACION
Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas.
Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas. 1.- El polinomio p 3 (x) = 2 (x + 1) + x(x + 1) 2x(x + 1)(x 1) interpola a los primeros cuatro datos de la tabla x
Integración Numérica
Integración Numérica Contenido Integración Numérica Método de Coeficientes Indeterminado Método de Curvatura de Newton-Cotes Método de Romberg Integración Numérica Los métodos numéricos utilizados para
FACULTAD DE INGENIERÍA DIVISIÓN DE CIENCIAS BÁSICAS EXAMENFINALDEANÁLISIS NUMÉRICO SEMESTRE
EXAMENFINALDEANÁLISIS NUMÉRICO SEMESTRE 014- Estudiante: Calificación: INSTRUCCIONES: Este examen es la demostración de su capacidad de trabajo y comprensión de la asignatura, es un documento oficial de
Unidad IV: Diferenciación e integración numérica
Unidad IV: Diferenciación e integración numérica 4.1 Diferenciación numérica El cálculo de la derivada de una función puede ser un proceso "difícil" ya sea por lo complicado de la definición analítica
APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA INTEGRACIÓN NUMÉRICA. IEM APLICACIONES COMPUTACIONALES
APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA INTEGRACIÓN NUMÉRICA MOTIVACIÓN REPRESENTACIÓN GRÁFICA DE UNA DERIVADA Aproximación Definición MOTIVACIÓN REPRESENTACIÓN GRÁFICA DE UNA INTEGRAL
Análisis Numérico para Ingeniería. Clase Nro. 13
Análisis Numérico para Ingeniería Clase Nro. 13 Aproximación de Funciones Temas a tratar: Métodos de Newton-Cotes. Método de los Trapecios. Método de 1/3 de Simpson. Método de 3/8 de Simpson. Método de
EXAMEN PARCIAL DE METODOS NUMERICOS (MB536)
UNIVERSIDAD NACIONAL DE INGENIERIA P.A. 013- FACULTAD DE INGENIERIA MECANICA 18/10/013 EXAMEN PARCIAL DE METODOS NUMERICOS (MB36) SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO Y CALCULADORA ESCRIBA
Métodos Numéricos en Ecuaciones Diferenciales Ordinarias
Tema 4 Métodos Numéricos en Ecuaciones Diferenciales Ordinarias 4.1 Introducción Estudiaremos en este Tema algunos métodos numéricos para resolver problemas de valor inicial en ecuaciones diferenciales
Universidad de Montemorelos Facultad de Ingeniería y tecnología
Universidad de Montemorelos Facultad de Ingeniería y tecnología Proyecto elaborado como requisito parcial De la material Calculo Integral Equipo Calculeitors: Sydney Javier Domínguez Jesus Daniel Maldonado
Primera parte: Funciones trigonome tricas (cont). Tiempo estimado: 1.3 h
1. DATOS DE IDENTIFICACIÓN Asignatura: Cálculo Diferencial Docente: Alirio Gómez Programa : INGENIERÍA Semestre: 4 Fecha de elaboración: 21-07-2013 Guía Nº: 2 Título: Funciones. Alumno: Grupo: CB-N-2 Primera
Análisis Numérico para Ingeniería. Clase Nro. 13
Análisis Numérico para Ingeniería Clase Nro. 13 Aproximación de Funciones Temas a tratar: Métodos de Newton-Cotes. Método de los Trapecios. Método de 1/3 de Simpson. Método de 3/8 de Simpson. Método de
2. Continuidad y derivabilidad. Aplicaciones
Métodos Matemáticos (Curso 2013 2014) Grado en Óptica y Optometría 7 2. Continuidad y derivabilidad. Aplicaciones Límite de una función en un punto Sea una función f(x) definida en el entorno de un punto
Problemas propuestos y resueltos cinemática unidimensional Preparado por: Profesora Pilar Cristina Barrera Silva
Problemas propuestos y resueltos cinemática unidimensional Preparado por: Profesora Pilar Cristina Barrera Silva Lanzamiento vertical Propuesto por: Profesora Pilar Cristina Barrera Silva Se lanza un objeto
EXAMEN PARCIAL DE METODOS NUMERICOS (MB536)
EXAMEN PARCIAL DE METODOS NUMERICOS (MB536) SOLO SE PERMITE EL USO DE UNA HOJA DE FORMULARIO Y CALCULADORA ESCRIBA CLARAMENTE SUS PROCEDIMIENTOS PROHIBIDO EL USO DE CELULARES U OTROS EQUIPOS DE COMUNICACION
Métodos Numéricos - Cap. 7. Ecuaciones Diferenciales Ordinarias PVI 1/8
No se puede mostrar la imagen en este momento. Métodos Numéricos - Cap. 7. Ecuaciones Diferenciales Ordinarias PVI 1/8 Ecuaciones Diferenciales Ordinarias (EDO) Una Ecuación Diferencial es aquella ecuación
CAPÍTULO. 7 Métodos numéricos
CAPÍTULO 7 Métodos numéricos 7.4 Método de Runge-Kutta En las secciones previas se resolvió el PVI y 0 D f.x; y/, con y.x 0 / D y 0 utilizando aproximaciones lineal y cuadrática de la solución y.x/. Observamos
5. Derivación e integración numérica
5. Derivación e integración numérica 5.. Ejercicios Ejercicio 5. Calcular usando la fórmula del punto medio: la integral: b a ( ) f(x)dx a+b = (b a)f xdx Calcular la integral y dar el error. Dibujar el
Nombre y Apellidos: e f(x) dx. Estudiar si converge la integral impropia
Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Febrero 27 de Enero de 26 Nombre y Apellidos: DNI: 6.25 p.) ) Se considera la función f : [, ) R definida
Semana 05 EDOs Exactas - Aplicaciones
Matemáticas Aplicadas MA101 Semana 05 EDOs Exactas - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería EDOs de 1er orden (Semana 01) Ecuaciones no lineales
El objetivo de esta sección es aproximar la integral definida de una función ƒ(x) en un intervalo [a, b] es
INTEGRACIÓN NUMÉRICA El objetivo de esta sección es aproximar la integral definida de una función ƒ(x) en un intervalo [a, b] es decir Los métodos de integración numérica se usan cuando ƒ(x) es difícil
MÉTODOS NUMÉRICOS. Curso o. B Resolución de ecuaciones I (ecuaciones generales f (x) = 0)
MÉTODOS NUMÉRICOS. Curso 06-07. 1 o. B Resolución de ecuaciones I (ecuaciones generales f (x = 0 1. Utiliza el método de bisección para calcular con una precisión de 10 las soluciones de x 3 7x + 14x 6
Interpolación. Escuela de Ingeniería Informática de Oviedo. (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35
Interpolación Escuela de Ingeniería Informática de Oviedo (Dpto. de Matemáticas-UniOvi) Computación Numérica Interpolación 1 / 35 Contenidos 1 Introducción 2 Interpolación de Taylor Cálculo del polinomio
Física (ENCB 2005 etapa nacional escrito)
1 ( 25) Física (ENCB 2005 etapa nacional escrito) Aplicando análisis dimensional, determine la Puntos: 1 ecuación correcta del momento respecto al origen en la siguiente figura. W = Fuerza Total de la
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA clave m Primero
UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA clave-1-1-m-1--18 CURSO: Matemática Aplicada 4 SEMESTRE: Primero CÓDIGO DEL CURSO: 1 TIPO DE EXAMEN: Primer Examen
ETS Minas: Métodos matemáticos Guía de estudio: Tema 6 Integración numérica
ETS Minas: Métodos matemáticos Guía de estudio: Tema 6 Integración numérica Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Octubre 2008, versión
Métodos Numéricos: Solución de los ejercicios Tema 3: Integración Numérica
Métodos Numéricos: Solución de los ejercicios Tema : Integración Numérica Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Febrero 8, versión.4
CINEMÁTICA. MOVIMIENTO RECTILÍNEO
CINEMÁTICA. MOVIMIENTO RECTILÍNEO 1. Un cuerpo se desplaza en el eje X tal que su velocidad en función del tiempo está 2 dada por V = ( 8t - 0,8t ) m/s. a) Hallar la aceleración y grafíquela en función
Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 5
Temas: Interpolación polinomial simple. Interpolación de Lagrange. Polinomio interpolador de Newton. Interpolación polinomial segmentada (Spline). Ajuste de curvas. Regresión por mínimos cuadrados. 1.
MATEMÁTICAS II Soluciones Hoja Integración Aproximada Curso 07-08
Ejercicio : Para proceder a pintarlo, se necesita conocer las medidas del techo de cierto edificio singular. Dicho techo tiene forma geométrica de embudo invertido, similar a la de la superficie de revolución
CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS
Dpto. de Matemáticas IES Las Breñas 4º ESO OPCIÓN B CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS 1: Números reales. Septiembre-2016 Números no racionales. Expresión decimal - Reconocimiento de algunos irracionales.
UNIDAD IV. Ecuaciones diferenciales Lineales
UNIDAD IV Ecuaciones diferenciales Lineales 24 UNIDAD 4 0, ECUACIONES DIFERENCIALES LINEALES Se llama ecuación lineal de primer orden a la que es lineal con respecto a la función incógnita y su derivada.
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900
CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0900 (1) La posición vertical de una pelota está dada por h(t) = 128 + 16t 16t 2 en donde t se mide en segundos y h(t) se mide en pies. Durante
Nombre y Apellidos: x (1 + ln(x)) si x > 0 f(x) = 0 si x = 0.
Universidade de Vigo Departamento de Matemática Aplicada II E.T.S.I. Minas Cálculo I Convocatoria de Septiembre de Septiembre de 008 Nombre y Apellidos: DNI: (6.5 p.) ) Se considera la función f : [0,
Determine la razón de cambio promedio de la función en cada intervalo.
Trabajo Práctico N 3 DERIVADA Y DIFERENCIAL Ejercicio 1: Halle la pendiente de la gráfica de las funciones en los puntos dados aplicando la definición de derivada de la función en un punto. Después halle
Métodos Numéricos. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D.
Métodos Numéricos Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Integración numérica Integración numérica Objetivo: aproximar el valor de la integral I = f (x)dx Limitaciones de la integración analítica
Curso Hoja 1. Análisis de errores
Hoja 1. Análisis de errores 1 Teniendo en cuenta que MATLAB trabaja en doble precisión, calcular el número máquina inmediatamente anterior a 1 y comprobar que dista 2 53 de 1. 2 Calcular 1 2 52, 1 2 53,
Práctica IV: Métodos de Newton-Raphson y de la secante, para encontrar las raíces de una función.
Práctica IV: Métodos de Newton-Raphson y de la secante, para encontrar las raíces de una función. Se suele llamar método de Newton-Raphson al método de Newton cuando se utiliza para calcular los ceros
Olimpíada Argentina de Física
Pruebas Preparatorias Primera Prueba: Cinemática - Dinámica Nombre:... D.N.I.:... Escuela:... - Antes de comenzar a resolver la prueba lea cuidadosamente TODO el enunciado de la misma. - Escriba su nombre
PRIMERA EVALUACIÓN. FÍSICA Julio 3 del 2015 (08h30-10h30)
PRIMERA EVALUACIÓN DE FÍSICA Julio 3 del 2015 (08h30-10h30) Como aspirante a la ESPOL me comprometo a combatir la mediocridad y actuar con honestidad, por eso no copio ni dejo copiar" NOMBRE: FIRMA: VERSION
EJERCICIO COMPUTACIONAL N o 5. CUADRATURA Y DERIVACIÓN NUMÉRICAS
EJERCICIO COMPUTACIONAL N o 5. CUADRATURA Y DERIVACIÓN NUMÉRICAS Ángel Durán Departamento de Matemática Aplicada Universidad de Valladolid 14 de mayo de 2011 Contenidos 1 Cuadratura numérica Técnicas elementales
Ecuaciones en Derivadas Parciales y Análisis Numérico
Ecuaciones en Derivadas Parciales y Análisis Numérico Prácticas Capítulo 3. Diferencias finitas para la ecuación del calor. 3.1 Resolviendo la ecuación del calor Vamos a resolver la ecuación del calor
Laboratorio Nº 1 La Descripción Gráfica de la Ecuación Diferencial Ordinaria
Universidad Diego Portales Segundo Semestre 007 Facultad de Ingeniería Instituto de Ciencias Básicas Asignatura: Ecuaciones Diferenciales Laboratorio Nº 1 La Descripción Gráfica de la Ecuación Diferencial
CURSO DE METODOS NUMERICOS Año Académico Curso Tercero de Matemáticas EXAMEN FINAL FEBRERO
Año Académico 2000-2001 Curso Tercero de Matemáticas EXAMEN FINAL FEBRERO 1. Dá el enunciado y demuestra el teorema de convergencia del método del punto fijo. (2 puntos) 2. Resuelve el siguiente sistema
Marzo DIFERENCIA DE POTENCIAL GISPUD
Marzo 2012 http:///wpmu/gispud/ 1.3 DIFERENCIA DE POTENCIAL Ejercicio 3. Diferencia de potencial. Determinar analítica y gráficamente: a) la corriente en función del tiempo. b) la carga en función del
Una función dada gráficamente proporciona una visión de conjunto de la evolución de una variable al cambiar la otra.
FUNCION NUMERICA: 5º Año-Economía- El término función proviene del latín fucto que significa acto de realizar y fue utilizado por Leibnitz en el año 1694, referido a curvas. Un siglo más tarde Euler veía
Solución Examen Cinemática 1º Bach Nombre y Apellidos: La expresión de la velocidad instantánea se obtiene derivando el vector de posición,
Solución Examen Cinemática 1º Bach Nombre y Apellidos: 1. Dada la ecuación vectorial de la posición de una partícula halla en unidades S.I. a. la velocidad en función del tiempo, v ( t ) La expresión de
Cálculo Numérico (0258) TEMA 6 SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS. Semestre
Cálculo Numérico (58) Semestre - TEMA 6 SOLUCIÓN NUMÉRICA DE ECUACIONES DIFERENCIALES ORDINARIAS Semestre - Septiembre U.C.V. F.I.U.C.V. CÁLCULO NUMÉRICO (58) - TEMA 6 Las notas presentadas a continuación
LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS
UNIVERSIDAD FRANCISCO DE PAULA SANTANDER FACULTAD DE INGENIERIA INGENIERÍA ELECTRÓNICA 1 SISTEMAS DINAMICOS 1160601 LABORATORIO No. 3 MODELAMIENTO Y ANALISIS DINAMICO DE SISTEMAS ELECTRICOS INSTRUCCIONES
Diferenciación numérica: Método de Euler explícito
Clase No. 21: MAT 251 Diferenciación numérica: Método de Euler explícito Dr. Alonso Ramírez Manzanares Depto. de Matemáticas Univ. de Guanajuato e-mail: alram@ cimat.mx web: http://www.cimat.mx/ alram/met_num/
CALCULO NUMERICO (MB535) CUARTA PRÁCTICA CALIFICADA
UNIVERSIDAD NACIONAL DE INGENIERIA FACULTAD DE INGENIERIA MECANICA AREA ACADEMICA DE CIENCIAS BASICAS Ciclo: 006-II INDICACIONES CALCULO NUMERICO (MB535) CUARTA PRÁCTICA CALIFICADA. Resolver las preguntas
Tarea 1 INSTRUCCIONES TAREA 1
Universidad de Los Andes Facultad de Ingeniería y Ciencias Aplicadas Tarea 1 Cálculo Numérico Profesores: Takeshi Asahi, Semestre 2016-01 Miguel Carrasco INSTRUCCIONES TAREA 1 1 ) Esta tarea vale por un
Interpretación Gráfica
Matemáticas Aplicadas MA101 Semana 04 Interpretaciones Gráficas de las EDO EDOs Exactas - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Interpretación
4.6. Interpolación mediante splines (polinomios a trozos) Figura 4.1: Datos de interpolación
Capítulo 4 INTERPOLACIÓN 46 Interpolación mediante splines polinomios a trozos En las figuras siguientes se puede observar alguno de los problemas que la interpolación clásica con polinomios puede plantear
CÁLCULO NUMÉRICO (0258)
CÁLCULO NUMÉRICO (58) Tema 5. Diferenciación e Integración Numérica Enero 5. Utilice la fórmula para calcular la derivada de f(x) = cos(x) en utilizar la fórmula. f(x + ) f(x) f'(x) x = y con =.. Estime
Soluciones Matemáticas II Examen Final 2º Parcial 3-Julio-07. 1) La temperatura en un punto (x, y) de una lámina metálica es T(x, y) =.
Soluciones Matemáticas II Examen Final º Parcial 3-Julio-07 3x 1) La temperatura en un punto (x, y) de una lámina metálica es T(x, y) =. x + y a) Hallar la curva de nivel (isoterma) que pasa por el punto
UNIDADES TECNOLOGICAS DE SANTANDER GUÍA DE ESTUDIO 2
UNIDAD ACADÉMICA DEPARTAMENTO DE CIENCIAS BASICAS ASIGNATURA: ANALISIS NUMÉRICOS UNIDAD TEMATICA 1. ERRORES Y ARITMETICA DE PUNTO FLOTANTE COMPETENCIA 1. Comprender los procesos aritméticos que realizan
Funciones implícitas y su derivada
Funciones implícitas su derivada 4 Al considerar la función con ecuación x 3x 5x f, es posible determinar f ( x ) con los teoremas enunciados anteriormente, a que f es una función dada implícitamente en
3º E.S.O. II.- ÁLGEBRA
3º E.S.O. Se consideran mínimos exigibles para el tercer curso de E.S.O. todos los del segundo curso y los siguientes: I.- NÚMEROS Números racionales - Definir (no de forma rigurosa ) y distinguir los
TRABAJOS PRACTICOS COMPLEMENTARIOS PARA RESOLVER CON MATLAB
UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE AGRONOMIA Y AGROINDUSTRIAS DEPARTAMENTO FISICO- MATEMATICO CATEDRA DE CALCULO NUMERICO TRABAJOS PRACTICOS COMPLEMENTARIOS PARA RESOLVER CON MATLAB
1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3!, x x3
Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, - y -4 (tercera parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro, Kazaros
Métodos Numéricos CÓDIGO: Teórico - Práctico. Agosto 5 de 2018.
Página 1 de 4 FACULTAD: CIENCIAS BASICAS PROGRAMA: _FISICA DEPARTAMENTO DE: FISICA Y GEOLOGIA CURSO: ÁREA: Métodos Numéricos CÓDIGO: 157103 Profundización REQUISITOS: 167003 CORREQUISITO: -------------
Soluciones Examen febrero 2014 E = A partir de 2 determino la diferencia de potencial entre las placas (que es V 1 ): q = V 1
Soluciones Examen febrero 2014 Ejercicio 1 Parte a Supongo una carga q en las placas del capacitor. Aplicando Ley de Gauss: E. ds = q 1 kɛ 0 S E = q 2πrdkɛ 0 2 A partir de 2 determino la diferencia de
Boletín II. Cálculo diferencial de funciones de una variable
CÁLCULO Boletín II. Cálculo diferencial de funciones de una variable Ejercicios básicos 1. Sea f la función dada por 5x 2. a) Utiliza la definición de derivada para demostrar que f (x) = 10x. b) Calcula
UNIVERSIDAD NACIONAL DE INGENIERIA P.A FACULTAD DE INGENIERIA MECANICA 07/10/2016 DACBHCC EXAMEN PARCIAL DE METODOS NUMERICOS (MB536)
UNIVERSIDAD NACIONA DE INGENIERIA P.A. 2016-2 FACUTAD DE INGENIERIA MECANICA 07/10/2016 EXAMEN PARCIA DE METODOS NUMERICOS (MB536) SOO SE PERMITE E USO DE UNA HOJA DE FORMUARIO Y CACUADORA ESCRIBA CARAMENTE
CALCULO NUMERICO REGLA DEL TRAPECIO. Considérese la función f(x), cuya gráfica entre los extremos X = a y X = b se muestra en la fig. 1.
REGLA DEL TRAPECIO La regla del trapecio o regla trapezoidal es una de las fórmulas cerradas de Newton-Cotes. Considérese la función f(x), cuya gráfica entre los extremos X = a y X = b se muestra en la
1. Para la función f(x) = x sen x, halle su polinomio de Taylor de orden 2 en a = 0. x x3 3! + x5
Cálculo I (Grado en Ingeniería Informática Problemas resueltos, -, -4 y 4-5 (tercera parte Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić, Luis Guijarro (coordinadores,
PUCMM FIS 101 Prof. Remigia cabrera Genao 2014
Posición (m) Unidad II. Cinemática Rectilínea PROBLEMAS PARA RESOLVER EN LA CLASE 1. Para el móvil del gráfico determine lo que se le pide abajo, si se mueve en una recta nortesur: 7.00 6.00 5.00 4.00
