Métodos Numéricos. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Métodos Numéricos. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D."

Transcripción

1 Métodos Numéricos Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D.

2 Integración numérica

3 Integración numérica Objetivo: aproximar el valor de la integral I = f (x)dx Limitaciones de la integración analítica Las expresiones analíticas de desconocidas b ò a f (x) son f (x) tiene una integral analítica complicada o desconocida

4 Integración numérica de Newton-Cotes Métodos que remplazan una función complicada o datos tabulados por un polinomio de aproximación que es fácil de integral I = b ò f f n (x)dx a b ò a Donde f n (x) es un polinomio de la forma

5 Integración numérica de Newton-Cotes Aproximación de una integral mediante el área bajo una línea recta.

6 Integración numérica de Newton-Cotes Aproximación de una integral mediante el área bajo una parábola.

7 La regla del trapecio La regla del trapecio es la primera de las formulas de integración de Newton- Cotes. Corresponde al caso donde el polinomio es de primer grado (línea recta). I = b ò f a 0 + a 1 xdx a La recta que pasa por los puntos y esta dada por: a 0 + a 1 x = f (a) + b ò a (a, f (a)) (b, f (b)) f (b) - f (a) (x- a) b- a El área bajo la línea recta f 1 (x) es una aproximación de la integral de f(x) entre los límites a y b b ò a f (a) + f (b) - f (a) b- a (x - a)dx = (b- a) f (a) + f (b) 2

8 La regla del trapecio I = b ò a f (b- a) f (a) + f (b) 2 Geométricamente, la regla del trapecio equivale a aproximar el área bajo la curva f(x), como el área del trapecio que se forma al unir los puntos (a, f (a)) (b, f (b))

9 Error de la regla del trapecio Cuando usamos la integral bajo un segmento de línea recta para aproximar la integral bajo una curva, se tiene un error que puede ser importante. Una estimación al error de truncamiento para una sola aplicación de la regla del trapecio es E t = f ''(x)(b- a)3 Donde x esta en algún lugar del intervalo de a a b

10 Ejemplo de la regla del trapecio Aproxime la integral de la curva f (x) = x x 3-900x x 5 Entre a=0 y b=0.8 usando la regla del trapecio f (a = 0) = 0.2 f (b = 0.8) = b- a = 0.8 (b- a) f (a) + f (b) 2 = =

11 Ejemplo de la regla del trapecio Aproxime la integral de la curva f (x) = x x 3-900x x 5

12 Ejemplo de la regla del trapecio Aproxime la integral de la curva f (x) = x x 3-900x x 5 I = 0.8 El área bajo la curva es mucho mayor que el área debajo de la aproximación lineal, de acuerdo a la gráfica mostrada en la diapositiva anterior. Cuanto es el error debido al aproximar la integral del polinomio de grado usando la regla del trapecio? ò f (x)dx = ( x x 3-900x x 5 )dx 0 = ò 0

13 Ejemplo de la regla del trapecio El error porcentual es de E(%) = *100 = 89.5% Cómo se puede disminuir el error? Se puede dividir el intervalo de interés, en más intervalos. En otras palabras aplicar varias veces la regla del trapecio en el intervalo de interés

14 La regla del trapecio de aplicación Una forma de mejorar la precisión de la regla del trapecio consiste en dividir el intervalo de integración de a a b en varios segmentos, y aplicar el método a cada uno de ellos. La área asociada a cada uno de los intervalos se suman después para obtener la integral en todo el intervalo. Las ecuaciones resultantes se llaman fórmulas de integración, de aplicación múltiple o compuesta. Vamos a dividir el intervalo de interés en n segmentos del mismo ancho, es decir tendremos n+1 puntos igualmente espaciados. múltiple

15 La regla del trapecio de aplicación múltiple Aplicando la regla del trapecio a cada una de las integrales

16 La regla del trapecio de aplicación múltiple Simplificando, se obtiene I = b ò f h n-1 é 2 f (a) + 2 f (x ) ù ê å i + f (b) ú ë i=1 û a I = é b ê ò f (b- a) ê a ê ëê n-1 ù f (a) + 2å f (x i ) + f (b) ú i=1 ú 2n ú ûú

17 Erro de la regla del trapecio de aplicación múltiple Simplificando, se obtiene E t = - n-1 (b- a)3 å f '' (x 12n 3 i ) i=1 E a = (b- a)3 12n 2 n-1 å i=1 f '' (x i ) n = (b- a)3 12n 2 f '' Así, si se duplica el número de segmentos, el error de truncamiento se divide entre 4

18 Ejemplo de la regla del trapecio Aproxime la integral de la curva f (x) = x x 3-900x x 5 Entre a=0 y b=0.8 usando la regla del trapecio de aplicación múltiple Usaremos inicialmente n=2, lo cual da un h=0.4 f (a = 0) = 0.2 I = b ò a = = f (x)dx f (x 1 = 0.4) = f (b = 0.8) = b- a n = h [ 2 f (a) + 2 f (x 1) + f (b)] [ * ]

19 Ejemplo de la regla del trapecio Aproxime la integral de la curva f (x) = x x 3-900x x 5 Entre a=0 y b=0.8 usando la regla del trapecio de aplicación múltiple Usaremos inicialmente n=2, lo cual da un h=0.4

20 Ejemplo de la regla del trapecio Aproxime la integral de la curva f (x) = x x 3-900x x 5 Entre a=0 y b=0.8 usando la regla del trapecio de aplicación múltiple Usaremos inicialmente n=2, lo cual da un h=0.4 E(%) = *100 = 34.9% Utilizando dos divisiones del intervalo el error ha disminuido de un 89.5% a un 34.9%

21 Ejemplo de la regla del trapecio Aproxime la integral de la curva f (x) = x x 3-900x x 5 Entre a=0 y b=0.8 usando la regla del trapecio de aplicación múltiple Usaremos n=3, lo cual da un h= f (a = 0) = 0.2 f (x 1 = ) = f ( = ) = f (b = 0.8) = b- a n = I = b ò a = = f h [ 2 f (a) + 2 f (x 1) + 2 f ( ) + f (b)] [ * * ]

22 Ejemplo de la regla del trapecio Aproxime la integral de la curva f (x) = x x 3-900x x 5 Entre a=0 y b=0.8 usando la regla del trapecio de aplicación múltiple Usaremos inicialmente n=3, lo cual da un h=0.2667

23 Ejemplo de la regla del trapecio Aproxime la integral de la curva f (x) = x x 3-900x x 5 Entre a=0 y b=0.8 usando la regla del trapecio de aplicación múltiple Usaremos inicialmente n=3, lo cual da un h= E(%) = *100 = 16.5% Utilizando tres divisiones del intervalo el error ha disminuido de un 89.5% a un 16.5%

24 Ejemplo de la regla del trapecio múltiple en Matlab n = 5; a = 0; b = 0.8; x = linspace(a,b,n+1); x2 = x.*x; x3 = x2.*x; x4 = x3.*x; x5 = x4.*x; y = *x-200*x2+675*x3-900*x4+400*x5; integral = y(1); for i = 2:n integral = integral + 2*y(i); end integral = integral + y(n+1); h = (b-a)/n; integral = integral*h/2; integral

25 Ejemplo de la regla del trapecio múltiple en Matlab for n= 2:15 a = 0; b = 0.8; x = linspace(a,b,n+1); x2 = x.*x; x3 = x2.*x; x4 = x3.*x; x5 = x4.*x; y = *x-200*x2+675*x3-900*x4+400*x5; integral = y(1); for i = 2:n integral = integral + 2*y(i); end integral = integral + y(n+1); h = (b-a)/n; integral = integral*h/2; resultado(n-1,:)= [n,h, integral]; end Resultados obtenidos para diferentes valores de n n h Integral 2 0,4000 1, ,2667 1, ,2000 1, ,1600 1, ,1333 1, ,1143 1, ,1000 1, ,0889 1, ,0800 1, ,0727 1, ,0667 1, ,0615 1, ,0571 1, ,0533 1,6292 A medida que n incrementa, el valor de la integral que se obtiene usando la regla del trapecio múltiple se aproxima a la solución analítica

26 Regla de Simpson 1/3 Además de aplicar la regla del trapecio con una segmentación fina, otra forma de obtener una estimación más exacta de una integral consiste en usar polinomios de grados superior para unir los puntos. Por ejemplo, otro punto entre la mitad entre f(a) y f(b), los tres puntos se pueden unir con una parábola. Si hay dos puntos igualmente espaciados entre f(a) y f(b), los cuatro puntos se pueden unir con mediante un polinomio de tercer grado. Las formulas que resultan de tomar las integrales bajo esos polinomios se conocen como reglas de Simpson é ê ê ê ëê f (x 0 ) = a 0 + a 1 x 0 + a 2 x 0 2 f (x 1 ) = a 0 + a 1 x 1 + a 2 x 1 2 f ( ) = a 0 + a 1 + a x 0 x x 1 x ù é ú ê ú ê ú ê ûú ë a 0 a 1 a 2 ù é ú ê ú = ê ú ê û ë f (x 0 ) f (x 1 ) f ( ) ù ú ú ú û é ê ê ê ë a 0 a 1 a 2 ù é ú ê ú = ê ú ê û ëê -(x 1 ) / (x 0 x 1 + x 0 - x 1 - x 0 2 ) -(x 0 ) / (x 0 x 1 - x 0 + x 1 - x 1 2 ) (x 0 x 1 ) / (x 0 x 1 - x 0 - x ) (x 1 + ) / (x 0 x 1 + x 0 - x 1 - x 0 2 ) (x 0 + ) / (x 0 x 1 - x 0 + x 1 - x 1 2 ) -(x 0 + x 1 ) / (x 0 x 1 - x 0 - x ) -1/ (x 0 x 1 + x 0 - x 1 - x 0 2 ) -1/ (x 0 x 1 - x 0 + x 1 - x 1 2 ) 1/ (x 0 x 1 - x 0 - x ) ùé úê úê úê ûú ë f (x 0 ) f (x 1 ) f ( ) ù ú ú ú û

27 Regla de Simpson 1/3 I = b ò f ò f 2 (x)dx = h 3 f (x ) + 4 f (x ) + f (x ) a b a é (b- a) ëê [ ] f (x 0 ) + 4 f (x 1 ) + f ( ) 6 ù ûú Ancho por altura promedio

28 Regla de Simpson 1/3 Error E t = h5 f 4 (x) E t = - (b- a) f 4 (x) Así, la regla de Simpson 1/3 es más exacta que la regla del trapecio. Además, es más exacta de lo esperado, porque en lugar de ser el error proporcional a la tercera derivada, el error es proporcional a la cuarta derivada. En otras palabras, da resultados exactos para polinomios cúbicos aun cuando se obtenga un parábola.

29 Aplicación de la regla de Simpson 1/3 Aproxime el valor de la integral de la siguiente función f (x) = x x 3-900x x 5 Usando la regla de Simpson 1/3 0.8 é ëê f (a = 0) = 0.2 f (x 1 = 0.4) = f (b = 0.8) = * ù ûú =

30 Aplicación de la regla de Simpson 1/3 Error Aproxime el valor de la integral de la siguiente función f (x) = x x 3-900x x 5 E t = ( ) 100 = 16.6% Es aproximadamente 5 veces más precisa que una sola aplicación de la regla del trapecio

31 Regla de Simpson 1/3 de aplicación múltiple La regla de Simpson se mejora al dividir el intervalo de integración en varios segmentos de un mismo tamaño. Se debe utilizar un número par de segmentos para implementar el método Aproxime el valor de la integral de la siguiente función f (x) = x x 3-900x x 5 Usando la regla de Simpson 1/3 de aplicación múltiple f (a = 0) = 0.2 f (x 1 = 0.2) = f ( = 0.4) = f (x 3 = 0.6) = f (b = 0.8) = é ( ) + 2(2.456) + 0,232 ëê 12 ù ûú =

32 Regla de Simpson3/8 De manera similar a la obtención de la regla del trapecio y Simpson 1/3, es posible ajustar un polinomio de Lagrange de tercer grado a cuatro puntos e integrarlo 3h ( 8 f (x 0)+ 3f (x 1 ) + 3 f ( ) + f (x 3 )) E t = - (b- a) f 4 (x) La regla 3/8 es más exacta que la regla de 1/3. Por lo general, se prefiere la regla de Simpson 1/3, ya que alcanza una exactitud de tercer orden con tres puntos en lugar de los cuatro puntos requeridos en la versión 3/8. No obstante, la regla de 3/8 es útil cuando el número de segmentos es impar.

33 Regla de Simpson3/8 Aproxime el valor de la integral de la siguiente función f (x) = x x 3-900x x 5 Usando la regla de Simpson 3/8 f (a = 0) = 0.2 f (x 1 = ) = f ( = ) = f (b = 0.8) = é ( ) ëê 8 ù ûú = E t = = 7.4%

34 Evalué la integral siguiente: p /2 ò 0 Tarea cos(x)dx (a) De forma analítica (b) Con una aplicación de la regla de trapecio (c) Con aplicación múltiple de la regla de trapecio n=3 (d) Con una aplicación de la regla de Simpson 1/3 (e) Con una aplicación de la regla de Simpson 3/8

CALCULO NUMERICO REGLA DEL TRAPECIO. Considérese la función f(x), cuya gráfica entre los extremos X = a y X = b se muestra en la fig. 1.

CALCULO NUMERICO REGLA DEL TRAPECIO. Considérese la función f(x), cuya gráfica entre los extremos X = a y X = b se muestra en la fig. 1. REGLA DEL TRAPECIO La regla del trapecio o regla trapezoidal es una de las fórmulas cerradas de Newton-Cotes. Considérese la función f(x), cuya gráfica entre los extremos X = a y X = b se muestra en la

Más detalles

Integración Numérica

Integración Numérica Integración Numérica Contenido Integración Numérica Método de Coeficientes Indeterminado Método de Curvatura de Newton-Cotes Método de Romberg Integración Numérica Los métodos numéricos utilizados para

Más detalles

El método de los trapecios es muy simple y se puede explicar fácilmente a partir de la siguiente figura.

El método de los trapecios es muy simple y se puede explicar fácilmente a partir de la siguiente figura. REGLA DEL TRAPECIO El método de los trapecios es muy simple y se puede explicar ácilmente a partir de la siguiente igura. REGLA DEL TRAPECIO SIMPLE I ( b a) ( a) 2 ( b) Eligiendo un espaciado se divide

Más detalles

Análisis Numérico para Ingeniería. Clase Nro. 13

Análisis Numérico para Ingeniería. Clase Nro. 13 Análisis Numérico para Ingeniería Clase Nro. 13 Aproximación de Funciones Temas a tratar: Métodos de Newton-Cotes. Método de los Trapecios. Método de 1/3 de Simpson. Método de 3/8 de Simpson. Método de

Más detalles

Cuadratura de Newton-Cotes

Cuadratura de Newton-Cotes Profesor: Jaime Álvarez Maldonado Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación INTEGRACION NUMERICA Ayudante: Rodrigo Torres Aguirre INTEGRACION

Más detalles

SESIÓN 2 Splines e integración numérica

SESIÓN 2 Splines e integración numérica SESIÓN Splines e integración numérica ) Sea f x = x 4 para x [,] y sea s: [,] R el spline cúbico que aproxima a f definido a partir de los puntos de abscisas, y. Razona cual de las siguientes expresiones

Más detalles

Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas.

Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas. Hojas de problemas de interpolación y cuadratura numérica. Ampliación de Matemáticas. 1.- El polinomio p 3 (x) = 2 (x + 1) + x(x + 1) 2x(x + 1)(x 1) interpola a los primeros cuatro datos de la tabla x

Más detalles

Formulas de Newton-Cotes

Formulas de Newton-Cotes Formulas de Newton-Cotes. Usando las reglas del Trapecio, Punto Medio, Simpson y las formulas de Newton-Cotes abiertas con n =,, aproxime el valor de las siguientes Integrales. Construya una tabla para

Más detalles

El vapor Ortega fué ren olcado a la Habana seiridestruido por un incendio. La dictadura no ha de íavorecei a un solo partido sino a la nación entera

El vapor Ortega fué ren olcado a la Habana seiridestruido por un incendio. La dictadura no ha de íavorecei a un solo partido sino a la nación entera Ñ - [ - - - - - 6 - - - - / - - - -- - - - - - - - - - ] 8 / / / ] - / - - Ó - - 8 - - Ü - -- / - - - - - - Ó -- - - - / - Ü - - $ 8 - / $ - - - -------------------------- - ] - - - - - - - Ü - - - Q --

Más detalles

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL

Preliminares Interpolación INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL INTERPOLACIÓN Y APROXIMACIÓN POLINOMIAL Contenido Preliminares 1 Preliminares Teorema 2 Contenido Preliminares Teorema 1 Preliminares Teorema 2 Teorema Preliminares Teorema Teorema: Serie de Taylor Supongamos

Más detalles

Las aproximaciones numéricas que podamos hacer (para h > 0) serán: Diferencias hacia adelante:

Las aproximaciones numéricas que podamos hacer (para h > 0) serán: Diferencias hacia adelante: 4 DIFERENCIACIÓN E INTEGRACIÓN NUMÉRICA 4.1. Derivación numérica La derivación numérica es una técnica de análisis numérico para calcular una aproximación a la derivada de una función en un punto utilizando

Más detalles

Universidad de Montemorelos Facultad de Ingeniería y tecnología

Universidad de Montemorelos Facultad de Ingeniería y tecnología Universidad de Montemorelos Facultad de Ingeniería y tecnología Proyecto elaborado como requisito parcial De la material Calculo Integral Equipo Calculeitors: Sydney Javier Domínguez Jesus Daniel Maldonado

Más detalles

CÁLCULO NUMÉRICO (0258)

CÁLCULO NUMÉRICO (0258) CÁLCULO NUMÉRICO (58) Tema 5. Diferenciación e Integración Numérica Enero 5. Utilice la fórmula para calcular la derivada de f(x) = cos(x) en utilizar la fórmula. f(x + ) f(x) f'(x) x = y con =.. Estime

Más detalles

Cálculo I Aplicaciones de las Derivadas: Linealización y Diferenciales. Julio C. Carrillo E. * 1. Introducción 1. 2.

Cálculo I Aplicaciones de las Derivadas: Linealización y Diferenciales. Julio C. Carrillo E. * 1. Introducción 1. 2. 4.7. Aplicaciones de las Derivadas: Linealización y Diferenciales Julio C. Carrillo E. * Índice 1. Introducción 1 2. Errores 2 3. Linealización 4 4. Diferenciales 10 A. Teorema de Taylor (Opcional) 17

Más detalles

INTEGRACIÓN NUMÉRICA

INTEGRACIÓN NUMÉRICA INTEGRACIÓN NUMÉRICA En los cursos de Cálculo Integral, nos enseñan como calcular una integral definida de una función contínua mediante una aplicación del Teorema Fundamental del Cálculo: Teorema Fundamental

Más detalles

Integración numérica MAT 1105 F EJERCICIOS RESUELTOS. 1. Obtenga: a) Integrando por el método del trapecio. Se utilizan las siguientes formulas:

Integración numérica MAT 1105 F EJERCICIOS RESUELTOS. 1. Obtenga: a) Integrando por el método del trapecio. Se utilizan las siguientes formulas: MAT 1105 F Integración numérica EJERCICIOS RESUELTOS 1 1. Obtenga: a) Integrando por el método del trapecio. Se utilizan las siguientes formulas: Donde: 4 2 Ecuación lineal Luego, Área del trapecio -1-1

Más detalles

Integración numérica

Integración numérica Integración numérica Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Índice Motivación y objetivos Cuadratura

Más detalles

Cuadratura Numérica. Javier Segura. J. Javier Segura Cuadratura Numérica

Cuadratura Numérica. Javier Segura. J. Javier Segura Cuadratura Numérica Cuadratura Numérica Javier Segura Tema: Integración numérica. Contenidos Fórmulas de Newton-Cotes: Error en las fórmulas de Newton-Cotes. Fórmulas compuestas de Newton-Cotes. Error; Evaluación recurrente.

Más detalles

UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas. Matemáticas. Manuel Fernández García-Hierro Badajoz, Febrero 2008

UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas. Matemáticas. Manuel Fernández García-Hierro Badajoz, Febrero 2008 UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas Matemáticas Manuel Fernández García-Hierro Badajoz, Febrero 2008 Capítulo X Integración numérica Introducción La integral definida I(f) = b a f(x)

Más detalles

Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 5

Cursada Segundo Cuatrimestre 2012 Guía de Trabajos Prácticos Nro. 5 Temas: Interpolación polinomial simple. Interpolación de Lagrange. Polinomio interpolador de Newton. Interpolación polinomial segmentada (Spline). Ajuste de curvas. Regresión por mínimos cuadrados. 1.

Más detalles

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica

Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Luis Alvarez León Univ. de Las Palmas de G.C. Luis Alvarez León () Métodos Numéricos Univ. de Las Palmas de G.C. 1 /

Más detalles

ANÁLISIS NUMÉRICO. = n ELIZABETH VARGAS

ANÁLISIS NUMÉRICO. = n ELIZABETH VARGAS ANÁLISIS NUMÉRICO y = P 1(x) y = f (x) P n+1 = P n f ( P f '( P n n ) ) ELIZABETH VARGAS ANÁLISIS NUMÉRICO ELIZABETH VARGAS Puerto Ordaz, Abril 2004 ANÁLISIS NUMÉRICO ELIZABETH VARGAS AUTOR: Elizabeth

Más detalles

Lección 4.1. Aplicaciones de la Derivada: Valores Máximos y Mínimos. 04/07/2011 Prof. José G. Rodríguez Ahumada 1 de 16

Lección 4.1. Aplicaciones de la Derivada: Valores Máximos y Mínimos. 04/07/2011 Prof. José G. Rodríguez Ahumada 1 de 16 Lección 4.1 Aplicaciones de la Derivada: Valores Máximos y Mínimos 04/07/011 Prof. José G. Rodríguez Ahumada 1 de 16 Objetivo Al finalizar esta lección podrás: Diferenciar entre los valores extremos relativos

Más detalles

Tutorial para resolver integrales con métodos numéricos

Tutorial para resolver integrales con métodos numéricos Tutorial para resolver integrales con métodos numéricos USUARIO TURORIAL PARA RESOLVER METODOS NUMERICOS SEBASTIAN MORENO SOFIA OJEDA UNIVERSIDAD MARIANA FACULTAD DE INGENIERIA INGENIERIA DE PROCESOS PASTO

Más detalles

Integración Numérica. Regla de Simpson.

Integración Numérica. Regla de Simpson. Integración Numérica. Regla de Simpson. MAT-251 Dr. CIMAT A.C. e-mail: alram@cimat.mx web: http://www.cimat.mx/~alram/met_num/ Dr. Salvador Botello CIMAT A.C. e-mail: botello@cimat.mx Lo que ya se vió

Más detalles

VISUALIZACIÓN INTERACTIVO DEL MÉTODO GAUSS LEGENDRE DOS NODOS Y REGLA DE SIMPSON ADAPTATIVA. Oscar E. ARES, Fernando J.

VISUALIZACIÓN INTERACTIVO DEL MÉTODO GAUSS LEGENDRE DOS NODOS Y REGLA DE SIMPSON ADAPTATIVA. Oscar E. ARES, Fernando J. III REPEM Memorias Santa Rosa, La Pampa, Argentina, Agosto 00 CB 36 VISUALIZACIÓN INTERACTIVO DEL MÉTODO GAUSS LEGENDRE DOS NODOS Y REGLA DE SIMPSON ADAPTATIVA Oscar E. ARES, Fernando J. QUIROGA VILLEGAS

Más detalles

ETS Minas: Métodos matemáticos Guía de estudio: Tema 6 Integración numérica

ETS Minas: Métodos matemáticos Guía de estudio: Tema 6 Integración numérica ETS Minas: Métodos matemáticos Guía de estudio: Tema 6 Integración numérica Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Octubre 2008, versión

Más detalles

Análisis Numérico: Soluciones de ecuaciones en una variable

Análisis Numérico: Soluciones de ecuaciones en una variable Análisis Numérico: Soluciones de ecuaciones en una variable MA2008 Contexto Uno de los problemas básicos en el área de Ingeniería es el de la búsqueda de raíces: Dada una función o expresión matemática

Más detalles

3. Interpolación polinomial

3. Interpolación polinomial 1 I.T.I. GESTIÓN CÁLCULO NUMÉRICO BOLETÍN CON LOS EJERCICIOS RESUELTOS CURSO 4-5 3. Interpolación polinomial 1. Obtener el polinomio interpolador de Lagrange para cierta función f de la que conocemos que:

Más detalles

Técnicas numéricas para las Ecuaciones diferenciales de primer orden: Método de Euler

Técnicas numéricas para las Ecuaciones diferenciales de primer orden: Método de Euler Lección 6 Técnicas numéricas para las Ecuaciones diferenciales de primer orden: Método de Euler 61 Introducción a los métodos numéricos En este capítulo y en los anteriores estamos estudiado algunas técnicas

Más detalles

INTEGRACIÓN NUMÉRICA. Ejemplos

INTEGRACIÓN NUMÉRICA. Ejemplos .4 Integración numérica.nb 16 INTEGRACIÓN NUMÉRICA Dentro del paquete NumericalMath`NewtonCotes`, Mathematica proporciona comandos que permiten implementar las fórmulas de cuadratura para el caso de abscisas

Más detalles

Métodos Numéricos Cap 5: Interpolación y Aproximación polinomial

Métodos Numéricos Cap 5: Interpolación y Aproximación polinomial 1/12 Aproximación funcional e Interpolación Representación mediante funciones analíticas sencillas de: Información discreta. (Resultante de muestreos). Funciones complicadas. Siendo y k = f(x k ) una cierta

Más detalles

Taller de Informática I Dpto. Computación F.C.E. y N. - UBA

Taller de Informática I Dpto. Computación F.C.E. y N. - UBA Ajuste de Curvas El ajuste de curvas es un proceso mediante el cual, dado un conjunto de N pares de puntos {xi, yi} (siendo x la variable independiente e y la dependiente), se determina una función matemática

Más detalles

Métodos Numéricos: soluciones Tema 2 Aproximación e interpolación

Métodos Numéricos: soluciones Tema 2 Aproximación e interpolación Métodos Numéricos: soluciones Tema 2 Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Febrero 2008, Versión 1.3

Más detalles

CAPÍTULO. 7 Métodos numéricos

CAPÍTULO. 7 Métodos numéricos CAPÍTULO 7 Métodos numéricos 7.3 Método de Euler mejorado Consideremos ahora el polinomio de Taylor de orden de y.x/ en x D x 0 para aproximar a la solución del PVI y 0 D f.x; y/, con y.x 0 / D y 0. Esta

Más detalles

Integracion Numerica

Integracion Numerica Universidad Nacional de Ingeniería Facultad de Ciencias Física Computacional CC063 Integracion Numerica Prof: J. Solano 202-I Problema: Integrando un espectro Un experimento ha medido dn(t)/dt, el numero

Más detalles

Sea una ecuación diferencial ordinaria explícita de primer orden con una condición en el inicio: y (x) = f(x, y), y(x 0 ) = y 0

Sea una ecuación diferencial ordinaria explícita de primer orden con una condición en el inicio: y (x) = f(x, y), y(x 0 ) = y 0 187 9.1. Fórmula de Euler El objetivo de los métodos numéricos es proporcionar fórmulas generales y algoritmos que no dependan de los datos de un problema particular. Las siguientes fórmulas y algoritmos

Más detalles

7.3 Método de Euler mejorado

7.3 Método de Euler mejorado 43 Ecuaciones diferenciales Ejercicios 7..1 Euler. Soluciones en la página 477 Determine una aproximación lineal de la solución y.x/ de cada una de los siguientes PVI en el punto indicado utilizando el

Más detalles

ECUACIONES DIFERENCIALES Julián de la Horra Departamento de Matemáticas U.A.M.

ECUACIONES DIFERENCIALES Julián de la Horra Departamento de Matemáticas U.A.M. Introducción ECUACIONES DIFERENCIALES Julián de la Horra Departamento de Matemáticas U.A.M. En diferentes situaciones que aparecen con frecuencia en las Ciencias Experimentales, es complicado poder escribir

Más detalles

EJERCICIO COMPUTACIONAL N o 5. CUADRATURA Y DERIVACIÓN NUMÉRICAS

EJERCICIO COMPUTACIONAL N o 5. CUADRATURA Y DERIVACIÓN NUMÉRICAS EJERCICIO COMPUTACIONAL N o 5. CUADRATURA Y DERIVACIÓN NUMÉRICAS Ángel Durán Departamento de Matemática Aplicada Universidad de Valladolid 14 de mayo de 2011 Contenidos 1 Cuadratura numérica Técnicas elementales

Más detalles

INTEGRACIÓN APROXIMADA

INTEGRACIÓN APROXIMADA Humboldt Marine Training INTEGRACIÓN APROXIMADA Preparado por Ing. Boris L. GUERRERO B. Valparaíso, CHILE, 2011. 1 INDICE DE MATERIAS Anexo A.. 3 Método Trapecios. 3 Problema Método Trapecios. 4 1ª Regla

Más detalles

INTERPOLACIÓN NUMÉRICA Y APROXIMACIÓN NUMÉRICA.

INTERPOLACIÓN NUMÉRICA Y APROXIMACIÓN NUMÉRICA. 2.3.-Interpolacion y aproximacion.nb 1 INTERPOLACIÓN NUMÉRICA Y APROXIMACIÓN NUMÉRICA. INTERPOLACIÓN NUMÉRICA El comando InterpolatingPolynomial. Este comando permite obtener el polinomio de interpolación

Más detalles

Ecuaciones en Derivadas Parciales y Análisis Numérico

Ecuaciones en Derivadas Parciales y Análisis Numérico Ecuaciones en Derivadas Parciales y Análisis Numérico Prácticas Capítulo 4. Series de Fourier. 4.1 Serie de Fourier Vamos a intentar representar algunas funciones por su serie de Fourier de senos. Tomamos

Más detalles

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 2 Aproximación e interpolación

E.T.S. Minas: Métodos Matemáticos Soluciones Tema 2 Aproximación e interpolación E.T.S. Minas: Métodos Matemáticos Soluciones Tema 2 Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Curso 2006/07

Más detalles

INTEGRACIÒN NUMÈRICA DE UNA FUNCIÒN CON LÍMITES DEFINIDOS POR EL MÈTODO DE LA REGLA RECTANGULAR

INTEGRACIÒN NUMÈRICA DE UNA FUNCIÒN CON LÍMITES DEFINIDOS POR EL MÈTODO DE LA REGLA RECTANGULAR Ing. Yamil Armando Cerquera Rojas - yacerque@hotmail.com INTEGRACIÒN NUMÈRICA DE UNA FUNCIÒN CON LÍMITES DEFINIDOS POR EL MÈTODO DE LA REGLA RECTANGULAR Ing. Esp. Yamil Armando Cerquera Facultad de Ingeniería

Más detalles

EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA. 1) *Probar que si g interpola a la función f en,,, y h interpola a f en,,,,

EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA. 1) *Probar que si g interpola a la función f en,,, y h interpola a f en,,,, Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación EJERCICIOS RESUELTOS DE INTERPOLACION NUMERICA Profesor: Jaime Álvarez Maldonado Ayudante: Rodrigo

Más detalles

Resolución de Ecuaciones No Lineales

Resolución de Ecuaciones No Lineales Facultad de Ingeniería Industrial Universidad Nacional Mayor de San Marcos Métodos Computacionales Contenido 1 Introducción Introducción 2 Localización de Raíces Localización de Raíces 3 Métodos Iterativos

Más detalles

LA INTEGRAL DEFINIDA. APLICACIONES

LA INTEGRAL DEFINIDA. APLICACIONES 13 LA INTEGRAL DEFINIDA. APLICACIONES REFLEXIONA Y RESUELVE Dos trenes Un Talgo y un tren de mercancías salen de la misma estación, por la misma vía y en idéntica dirección, uno tras otro, casi simultáneamente.

Más detalles

Métodos Numéricos en Ecuaciones Diferenciales Ordinarias

Métodos Numéricos en Ecuaciones Diferenciales Ordinarias Tema 4 Métodos Numéricos en Ecuaciones Diferenciales Ordinarias 4.1 Introducción Estudiaremos en este Tema algunos métodos numéricos para resolver problemas de valor inicial en ecuaciones diferenciales

Más detalles

Capítulo 3. Polinomios

Capítulo 3. Polinomios Capítulo 3 Polinomios 29 30 Polinomios de variable real 31 Polinomios de variable real 311 Evaluación de polinomios Para el cálculo eficiente de los valores de un polinomio se utiliza el algoritmo de Horner,

Más detalles

Asignaturas antecedentes y subsecuentes Análisis Numérico II

Asignaturas antecedentes y subsecuentes Análisis Numérico II PROGRAMA DE ESTUDIOS Análisis Numérico I Área a la que pertenece: Área Sustantiva Profesional Horas teóricas: 3 Horas prácticas: 2 Créditos: 8 Clave: F0033 Asignaturas antecedentes y subsecuentes Análisis

Más detalles

M.C. Soraida Zúñiga Mtz.

M.C. Soraida Zúñiga Mtz. M.C. Soraida Zúñiga Mtz www.soraidazuniga.pbworks.com soraida_zuniga@hotmail.com EVALUACION 70 % EXAMEN 30% TAREAS Y TRABAJOS EN CLASE Obligatorio. PRESENTACIONES EN LIBRETA, CON LIBRETA COMPLETA cada

Más detalles

1. INTRODUCCIÓN A LA COMPUTACIÓN NUMÉRICA: Segunda parte: Teoría de Errores

1. INTRODUCCIÓN A LA COMPUTACIÓN NUMÉRICA: Segunda parte: Teoría de Errores 1. INTRODUCCIÓN A LA COMPUTACIÓN NUMÉRICA: Segunda parte: Teoría de Errores Jorge Eduardo Ortiz Triviño jeortizt@unal.edu.co http://www.docentes.unal.edu.co/jeortizt/ Objetivos de la sección Exponer los

Más detalles

2. Derivación numérica

2. Derivación numérica Derivación numérica Ing. Jesús Javier Cortés Rosas M. en A. Miguel Eduardo González Cárdenas M. en A. Víctor D. Pinilla Morán Facultad de Ingeniería, UNAM * 2006 Resumen Introducción. Derivación numérica.

Más detalles

SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRAICAS Y TRASCENDENTES

SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRAICAS Y TRASCENDENTES SOLUCIÓN NUMÉRICA DE ECUACIONES ALGEBRAICAS Y TRASCENDENTES EL PROBLEMA DE OBTENER LOS CEROS O RAÍCES DE UNA ECUACIÓN ALGEBRAICA O TRASCENDENTE, ES UNO DE LOS REQUERIDOS MAS FRECUENTEMENTE, DEBIDO A ELLO

Más detalles

INTEGRACIÓN APROXIMADA: PRUEBA DE 2º B

INTEGRACIÓN APROXIMADA: PRUEBA DE 2º B Matemáticas II Curso 7-8 Ejercicio : INTEGRACIÓN APROXIMADA: PRUEBA DE º B En el diseño de un parque se ha previsto aprovechar una hondonada con una profundidad media de m para construir un lago como el

Más detalles

Volumen de Revolución Ejemplo. Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x el eje 0x:

Volumen de Revolución Ejemplo. Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x el eje 0x: Volumen de Revolución Ejemplo Se obtiene al hacer girar una región limitada alrededor de un eje. Por ejemplo, si la función: f(x) x 2 1 gira sobre el eje 0x: Sólidos de Revolución conocidos ALGUNAS APLICACIONES

Más detalles

Asignaturas antecedentes y subsecuentes Cálculo Diferencial, Cálculo Integral, Álgebra Lineal I, Cómputo Científico y Programación

Asignaturas antecedentes y subsecuentes Cálculo Diferencial, Cálculo Integral, Álgebra Lineal I, Cómputo Científico y Programación PROGRAMA DE ESTUDIOS ANÁLISIS NUMÉRICO I Área a la que pertenece: Área de Formación Integral Profesional Horas teóricas: 3 Horas prácticas: 2 Créditos: 8 Clave: F0033 Asignaturas antecedentes y subsecuentes

Más detalles

Unidad VI: Solución de ecuaciones diferenciales 6.1 Métodos de un paso

Unidad VI: Solución de ecuaciones diferenciales 6.1 Métodos de un paso Unidad VI: Solución de ecuaciones diferenciales 6. Métodos de un paso Los métodos de Euler. MÉTODO NUMÉRICO UNIDAD 6 Una de las técnicas más simples para aproximar soluciones de ecuaciones diferenciales

Más detalles

Métodos Numéricos - Cap. 7. Ecuaciones Diferenciales Ordinarias PVI 1/8

Métodos Numéricos - Cap. 7. Ecuaciones Diferenciales Ordinarias PVI 1/8 No se puede mostrar la imagen en este momento. Métodos Numéricos - Cap. 7. Ecuaciones Diferenciales Ordinarias PVI 1/8 Ecuaciones Diferenciales Ordinarias (EDO) Una Ecuación Diferencial es aquella ecuación

Más detalles

T E X T O D E L M A N U A L D E H T M L, W E B M A E S T R O, P O R F R A N C I S C O A R O C E N A

T E X T O D E L M A N U A L D E H T M L, W E B M A E S T R O, P O R F R A N C I S C O A R O C E N A T E X T O D E L M A N U A L D E H T M L, W E B M A E S T R O, P O R F R A N C I S C O A R O C E N A Q U E S E E N C U E N T R A E N I N T E R N E T E N : h t t p : / / w w w. l a n d e r. e s / w e b m

Más detalles

Grado en Química Bloque 1 Funciones de una variable

Grado en Química Bloque 1 Funciones de una variable Grado en Química Bloque Funciones de una variable Sección.7: Aproximación de funciones. Desarrollo de Taylor. Aproximación lineal. La aproximación lineal de una función y = f(x) en un punto x = a es la

Más detalles

1. Estudiar el problema siguiente: Hallar un polinomio de grado 2 tal que:

1. Estudiar el problema siguiente: Hallar un polinomio de grado 2 tal que: Interpolación 1. Estudiar el problema siguiente: Hallar un polinomio de grado 2 tal que: px ( ) = z ; px ( ) = z; p ( x) = z 0 0 1 1 2 2 2. Queda determinado un polinomio p(x) de grado 3 por los siguiente

Más detalles

5. INTEGRALES. 5.1 Integral indefinida

5. INTEGRALES. 5.1 Integral indefinida 5. INTEGRALES 5.1 Integral indefinida Al igual que la derivada, el concepto de integral surge como una herramienta de la mecánica clásica desarrollada fundamentalmente por Newton y Leibnitz. La aplicación

Más detalles

Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación

Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación Tema 8 Ceros de funciones Versión: 23 de abril de 2009 8.1 Introducción Dada f : [a, b] R R, continua, se plantea el problema de encontrar ceros de f, es decir raíces de la ecuación f(x) = 0. (8.1) La

Más detalles

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: LA INTEGRAL DEFINIDA

UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN. Tema: LA INTEGRAL DEFINIDA UNIDAD II. INTEGRAL DEFINIDA Y LOS MÉTODOS DE INTEGRACIÓN Tema: LA INTEGRAL DEFINIDA La integral definida Anteriormente se mencionó que la Integral Indefinida da como resultado una familia de funciones

Más detalles

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano.

No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. FUNCIONES GRAFICAS No es otra cosa, que la representación de los resultados de una función sobre el plano carteciano. INTÉRVALOS Un intervalo es el conjunto de todos los números reales entre dos números

Más detalles

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2005 Primera parte

CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 2005 Primera parte CÁLCULO Primer curso de Ingeniero de Telecomunicación Examen, 7 de Septiembre de 005 Primera parte Ejercicio 1. Un espejo plano de dimensiones 80 cm y 90 cm, se rompe por una esquina según una recta. De

Más detalles

El cálculo de la viga superior no presenta mayores problemas, ya que su volumen corresponde al de un prisma recto cuyas dimensiones se indican:

El cálculo de la viga superior no presenta mayores problemas, ya que su volumen corresponde al de un prisma recto cuyas dimensiones se indican: Consideremos el problema: Usted es un ingeniero civil y se le ha encargado la tarea de construir un puente. Para ello necesita cubicar (dimensionar), para saber la cantidad de material necesario para hacer

Más detalles

Profra. Soraida Zúñiga.

Profra. Soraida Zúñiga. Profra. Soraida Zúñiga www.soraidazuniga.pbworks.com soraida_zuniga@hotmail.com INTERSEMESTRAL METODOS NUMÉRICOS HORARIO DE 8 A 11 AM (EXCEPTO MARTEs, DE 8 A 12 HRS) RECESO DE 9.40 A 10 AM (LUNCH), EXCEPTO

Más detalles

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO

UNIVERSIDAD NACIONAL DE SAN ANTONIO ABAD DEL CUSCO FACULTAD DE CS. QUIMICAS, FISICAS Y MATEMATICAS I. DATOS GENERALES DEPARTAMENTO ACADEMICO DE INFORMATICA SILABO 1.1 Asignatura : METODOS NUMERICOS 1.2 Categoría : OE 1.3 Código : IF758VCI 1.4 Créditos

Más detalles

Resolución de ecuaciones no lineales y Método de Bisección

Resolución de ecuaciones no lineales y Método de Bisección Resolución de ecuaciones no lineales y Método de Bisección Recordemos algunas ecuaciones 1) Resolver [ ] [ ] Sol: 2) Resolver la siguiente ecuación literal para la variable ; Sol: 3) Resolver Solución:

Más detalles

TEMA 5: LA INTEGRAL DEFINIDA

TEMA 5: LA INTEGRAL DEFINIDA Alonso Fernández Galián TEMA 5: LA INTEGRAL DEFINIDA Originalmente el Cálculo Diferencial e Integral estaba fuertemente vinculado a la geometría analítica. Ya vimos la aplicación de las derivadas al cálculo

Más detalles

MATEMÁTICAS 2º BACH CC y TECN INTEGRAL DEFINIDA

MATEMÁTICAS 2º BACH CC y TECN INTEGRAL DEFINIDA 1. APROXIMACIÓN DE ÁREAS BAJO UNA CURVA Hay infinidad de funciones extraídas del mundo real (científico, económico, física )para las cuales tiene especial relevancia calcular el área bajo su gráfica. Vamos

Más detalles

Anexo I. Propuesta de estudio Diseño de mallas adaptativas aplicando equidistribución Registro CGPI:

Anexo I. Propuesta de estudio Diseño de mallas adaptativas aplicando equidistribución Registro CGPI: Anexo I Propuesta de estudio Diseño de mallas adaptativas aplicando equidistribución Registro CGPI: 004004 Director del proyecto: M. C. Juan José Tapia Armenta MÉTODO DE DIFERENCIAS FINITAS Por: Fernando

Más detalles

Instituto Tecnológico de Lázaro Cárdenas Ingeniería Electrónica. Programa - Menú de Programas de Integración y Diferenciación

Instituto Tecnológico de Lázaro Cárdenas Ingeniería Electrónica. Programa - Menú de Programas de Integración y Diferenciación Instituto Tecnológico de Lázaro Cárdenas Ingeniería Electrónica Programa - Menú de Programas de Integración y Diferenciación Asignatura: Análisis Numérico Docente: M.C. Julio César Gallo Sanchez Alumno:

Más detalles

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Métodos Numéricos. Carrera: Ingeniería en Materiales. Clave de la asignatura: MAM 0522

1.- DATOS DE LA ASIGNATURA. Nombre de la asignatura: Métodos Numéricos. Carrera: Ingeniería en Materiales. Clave de la asignatura: MAM 0522 1.- DATOS DE LA ASIGNATURA Nombre de la asignatura: Carrera: Clave de la asignatura: Horas teoría-horas práctica-créditos: Métodos Numéricos Ingeniería en Materiales MAM 0522 3 2 8 2.- HISTORIA DEL PROGRAMA

Más detalles

Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.

Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc. Integración numérica Laboratori de Càlcul Numèric (LaCàN) Departament de Matemàtica Aplicada III Universitat Politècnica de Catalunya (Barcelona) http://www-lacan.upc.es Índice Motivación y objetivos Cuadratura

Más detalles

CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS

CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS Dpto. de Matemáticas IES Las Breñas 4º ESO OPCIÓN B CONTENIDOS MÍNIMOS del ÁREA DE MATEMÁTICAS 1: Números reales. Septiembre-2016 Números no racionales. Expresión decimal - Reconocimiento de algunos irracionales.

Más detalles

Métodos Numéricos (SC 854) Integración

Métodos Numéricos (SC 854) Integración c M. Valenzuela 007 008 (1 de abril de 008) 1. Definición del problema Dada una función f() se desea calcular la integral definida f para valores dados de 0 y f.. Rectángulos 0 f() d (1) Todos los métodos

Más detalles

Interpolación Polinomial

Interpolación Polinomial Pantoja Carhuavilca Métodos Computacionales Agenda y Interpolacion de y Interpolacion de Dado un conjunto de datos conocidos (x 0, y 0 ), (x 1, y 1 ),..., (x N, y N ) buscamos una función f : R R que satisfaga

Más detalles

Ecuaciones Diferenciales. Conceptos Generales

Ecuaciones Diferenciales. Conceptos Generales Tema 1 Ecuaciones Diferenciales. Conceptos Generales Introducción La Modelización y Simulación es una área enorme de la ciencia pura y aplicada, a la que intentamos aproximarnos en esta asignatura. Dadas

Más detalles

Teoremas del valor medio

Teoremas del valor medio Teoremas del valor medio Teorema de Rolle Teorema de Cauchy Teorema de Lagrange Teorema de Rolle Sea f x una función contínua en a; b, derivable en a; b y f a = f(b) entonces existe al menos un cε a; b

Más detalles

De grados tres y cuatro

De grados tres y cuatro De grados tres y cuatro Comportamiento general de las funciones polinomiales de grados tres y cuatro Funciones de grado tres. La forma general de las funciones de grado tres (cúbicas) esf x = ax 3 + bx

Más detalles

CAPÍTULO. Métodos numéricos

CAPÍTULO. Métodos numéricos CAPÍTULO 7 Métodos numéricos 7.2 Método de Euler En general, la solución de un PVI, y 0 D f.x; y/, con y.x 0 / D y 0, es una función y.x/ que se puede desarrollar mediante un polinomio de Taylor de cualquier

Más detalles

PREGUNTAS A) 120 B) 105 C) 24 D) 72. es: D) 12

PREGUNTAS A) 120 B) 105 C) 24 D) 72. es: D) 12 PREGUNTAS 1) En el Comedor Universitario sirven empanadas cada ocho días, asado cada doce días y flan cada quince. Si quiero comer un menú con estos tres platos, cada cuántos días debo ir? A) 10 B) 105

Más detalles

Área La integral definida Propiedades de la integral definida Teorema del valor medio para la integral definida Teoremas fundamentales del cálculo Aplicaciones de la integral definida: Área de una región

Más detalles

METODO DE LA BISECCIÓN Si f : a, b es continua con f a f b 0,el procedimiento de la

METODO DE LA BISECCIÓN Si f : a, b es continua con f a f b 0,el procedimiento de la METODO DE LA BISECCIÓN Si f : a, b es continua con f a f b,el procedimiento de la bisección genera una sucesión (s n ) n convergente siendo s n a n b n ytal 2 que si lim s n s se cumple que f s y n s n

Más detalles

Transferencia de Calor Cap. 4. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D.

Transferencia de Calor Cap. 4. Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Transferencia de Calor Cap. 4 Juan Manuel Rodriguez Prieto I.M., M.Sc., Ph.D. Conducción de calor en régimen transitorio Consideraremos la variación de la temperatura con el tiempo así como con la posición,

Más detalles

Métodos Numéricos (SC 854) Interpolación

Métodos Numéricos (SC 854) Interpolación Interpolación c M. Valenzuela 2007 2008 (26 de febrero de 2008) 1. Definición del problema de interpolación Dada una tabla de valores (x i,f i ) se desea estimar f(x) para valores de x que no se encuentran

Más detalles

Métodos Numéricos: Resumen y ejemplos Tema 4: Resolución aproximada de EDO s

Métodos Numéricos: Resumen y ejemplos Tema 4: Resolución aproximada de EDO s Métodos Numéricos: Resumen y ejemplos Tema 4: Resolución aproximada de EDO s Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Marzo 2008, versión

Más detalles

UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas. Matemáticas. Manuel Fernández García-Hierro Badajoz, Febrero 2008

UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas. Matemáticas. Manuel Fernández García-Hierro Badajoz, Febrero 2008 UNIVERSIDAD DE EXTREMADURA Departamento de Matemáticas Matemáticas Manuel Fernández García-Hierro Badajoz, Febrero 2008 Capítulo IX Interpolación 9.2 Introducción Interpolación es el proceso de encontrar

Más detalles

4.3 Aproximación por mínimos cuadrados.

4.3 Aproximación por mínimos cuadrados. 4.3 Aproximación por mínimos cuadrados. Como ya hemos dicho anteriormente la búsqueda de un modelo matemático que represente lo mejor posible a unos datos experimentales puede abordarse, entre otras, de

Más detalles

División algebraica I (Método de Horner)

División algebraica I (Método de Horner) División algebraica I (Método de Horner) División por Horner: División no algebraica de polinomios Esta división exige condiciones especiales: a. Aplicamos el método de Horner con el ordenamiento de los

Más detalles

HOOVER SE MUESTRA OPTIISTA AL DICTAMINAR SOBRE LA CUESTION DE EMPLEOS Y TRABAJOS EN EL FUTURO

HOOVER SE MUESTRA OPTIISTA AL DICTAMINAR SOBRE LA CUESTION DE EMPLEOS Y TRABAJOS EN EL FUTURO : 5 : - Ñ - - ] > > 5 / Z X X - Z / X Ñ $5 $5 5 Z Z Z - - $5 - - - - - 5 : - - : : 5 / 5 $ - - / -> / : Í - - - - -? {? - - - >5 - > > / - $ - $ 5 - > - < -- - 5 - $5 55 - - - - < < Ñ - Ñ? - < X ::? Ü

Más detalles

Relación de ejercicios 6

Relación de ejercicios 6 Relación de ejercicios 6 Ecuaciones Diferenciales y Cálculo Numérico Grado en Ingeniería de Tecnologías de Telecomunicación Mayo de 2017 Ejercicio 6.1. 1. Construye, usando la base canónica del espacio

Más detalles

Un algoritmo eficiente para modelar una secci on transversal del cauce del arroyo Sauce Corto, Sistema de Ventania Resumen Introducci

Un algoritmo eficiente para modelar una secci on transversal del cauce del arroyo Sauce Corto, Sistema de Ventania Resumen Introducci Un algoritmo eficiente para modelar una sección transversal del cauce del arroyo Sauce Corto, Sistema de Ventania Marcela P. Álvarez, Flavia E. Buffo, Jorge Gentili, Verónica Gil Resumen En este artículo

Más detalles

TRABAJOS PRACTICOS COMPLEMENTARIOS PARA RESOLVER CON MATLAB

TRABAJOS PRACTICOS COMPLEMENTARIOS PARA RESOLVER CON MATLAB UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO FACULTAD DE AGRONOMIA Y AGROINDUSTRIAS DEPARTAMENTO FISICO- MATEMATICO CATEDRA DE CALCULO NUMERICO TRABAJOS PRACTICOS COMPLEMENTARIOS PARA RESOLVER CON MATLAB

Más detalles

Circuitos Electrónicos Analógicos EL3004

Circuitos Electrónicos Analógicos EL3004 Circuitos Electrónicos Analógicos EL3004 Guía de Ejercicios Diodos Profesor: Marcos Díaz Auxiliar: Jorge Marín Semestre Primavera 2009 Problema 1 Considere el circuito de la figura: Calcule la corriente

Más detalles

POLINOMIOS INTERPOLANTES O DE INTERPOLACIÓN

POLINOMIOS INTERPOLANTES O DE INTERPOLACIÓN Interpolación POLINOMIOS INTERPOLANTES O DE INTERPOLACIÓN Presentación del problema: Para una función dada f(x) se desea determinar un polinomio P(x) de grado m, lo más bajo posible, el cual en los puntos

Más detalles