SESIÓN 2 Splines e integración numérica
|
|
|
- Xavier Serrano Herrera
- hace 7 años
- Vistas:
Transcripción
1 SESIÓN Splines e integración numérica ) Sea f x = x 4 para x [,] y sea s: [,] R el spline cúbico que aproxima a f definido a partir de los puntos de abscisas, y. Razona cual de las siguientes expresiones corresponde a s: (a) s x = x 4, x, (b) s x = x x x, x + x x, Solución Por definición, un spline cúbico es un polinomio de grado menor ó igual que tres en, y en,, por lo que la solución (a) es falsa. Como debe tener segunda derivada continua en, la función del apartado (b) será un spline si cumple con: lim s x = x lim s x = x lim s x = x lim x + s(x) lim x + s(x) lim x + s(x) Como f x = x 4 si: x = y = f = 4 = x = y = f = 4 = x = y = f = 4 = El spline que aproxima a f x = x 4 debe pasar por los puntos,,,,,
2 s(x) lim s x = lim s(x) x x + lim x x x = lim x + x + x = OK lim x lim s x x = lim x = lim s = = s = s = + = lim s x = lim s(x) x x + lim x x 6x = lim x + x + 6x = OK s(x) x + + x x + = Luego s(x) es un spline. Para saber si s(x) es el spline que aproxima a f x,,,,, Como el spline es unico, la respuesta (b) es correcta. OK = x 4, debe pasar por los puntos x
3 ) Se construye un spline por tres puntos de abscisas, y. Se sabe que el polinomio correspondiente al intervalo [, ] es de la forma s x = ax x 4x + y el que corresponde con [, ] es s x = x + bx + 6. Calcular los valores de a y b. Qué vale el spline en x =.5? Solución Se han de cumplir las condiciones: s = s s = s Así que calculamos e igualamos las expresiones s = s : s = a 4 + = 8a 8 + = 8a 8 s = + b + 6 = b + Igualando las expresiones: 8a 8 = b + 8a b = 4 4a b = ( ) Ahora calculamos e igualamos las expresiones s = s : s x = ax 6x 4 s = a 6 s x = 6x + b s = 4 + b Igualando las expresiones: a 6 = b + 4 a b = 4 ( )
4 s(x) Resolviendo (*) y (**): 4a b = a b = 4 8a = restando las ecuaciones a = 5 b = 4 5 = a = 5, b = Para calcular que vale el spline en x =.5 valoramos s.5 : s x = x x + 6 s.5 = = =.5 s. 5 = x
5 ) Sea S:, R un spline cúbico definido a partir de 4 puntos de abscisas (,,, ). Sabiendo que S x = x x + para x [,] y que S = = S obtener la expresión de S(x) para x,. Idem para x [,]. Solución Sean: s (x) el spline S(x) para, s (x) el spline S(x) para, s (x) el spline S(x) para lo, s () =? s () = s x = x x + s = s = s =? s (x) s (x) s (x) ) s = s = 4)s = ) s = s = s () =? ) s = s = Del enunciado del problema tenemos las siguientes condiciones: S x s x = x x + para x [,] = x x + S = s = s = S = s =
6 Supongamos que s x = ax + bx + cx + d. Necesitamos 4 condiciones para calcular los 4 parámetros a, b, c, d. Las tenemos: Condiciones para s x : s = s = s = s = s = s = s = s = s x = x x + s x = x s x = 6x s x = ax + bx + c s x = 6ax + b Como: s = a + b + c + d = d = s = a + b + c + = a + b + c = (*) s = a + b + c = c = Sustituyendo el valor de c = en la ecuación obtenemos que: a + b = (**) s = s = 6a + b = b = Sustituyendo el valor de b = en (**) a = s x = x x +
7 Tenemos que s x = x x + s x = x s = s = 6 s () = s () = s () = s x = x x + s = s = s =? s (x) s (x) s (x) s = s = s = s = s = s () = Supongamos de nuevo que: Como: s x = ex + fx + gx + h s x = ex + fx + g s x = 6ex + f s = s = e + f + g + h =.() s = s = e + f + g =.. () s = s = 6 6e + f = 6 e + f =. () s = e + 4f + g =..(4)
8 e + f + g + h =.() e + f + g =.. () e + f =. () e + 4f + g =..(4) De 4 : 9e + f =. 5 De 5 y : e = 7 e = 7 Sustituyendo el valor de e = 7 en la ecuación (5) obtenemos que f =. Sustituyendo en (4) los valores de e y de f obtenemos que g =. Sustituyendo en los valores de e, f, g obtenemos que h = s x = 7 x + x x + s (x) s (x) s (x)
9 x+ 4) Aproximar la integral I = dx utilizando los métodos de rectángulos y trapecios con 4 subintervalos y estimar el error cometido. Compararlo con el resultado exacto de la integral. Solución f x = x +, a =, b = ; n + = 5; h = b a n = 4 = ; m j = x j + x j+ x+ El valor exacto es I = dx = ln(x + ) = ln ln = ln =.98 m = 4 m = 4 m = 4 m = 4 x = x =.5 x = x =.5 x 4 = La integral por el método de los rectángulos es: 4 I = f m j h = f 4 + f 4 + f 4 + f 4 j= = =.795 =.89 Error absoluto R = Valor exacto valor aproximado = =.9
10 f x = f = ; f x = f.5 =, f x = f = ; f x = f.5 = 5 ; f x 4 = f = La integral por el método de los trapecios es: I = b a n f x + f x + f x + f x + f x 4 = = 67 6 =.6 Error absoluto T = Valor exacto valor aproximado =.98.6 =.8 La cota de error para el método de los rectángulos es: e R h 4 b a M, M = max f(x) : a x b f x = x+ f x = x+ f x = M x+ = (Decreciente, máximo en ) e R 4 = 4 =.47
11 La cota de error para el método de los Trapecios es: e T h b a M, M = max f(x) : a x b e R = =.8
12 5) Utilizando el método de Simpson compuesto con subintervalos aproximar la integral: Solución f x = sen(x) x I = π π h = sen x dx x b a n = π + π = π ; x = π, x = π 6, x = π 6, x = π I = h 6 j= f x j + 4f m j + f x j m = π m = m = π x = π x = π 6 x = π 6 x = π I = π 8 f x + 4f m + f x + f x + 4f m + f x + f x + 4f m + f x I = π 8 f π + 4f π + f π 6 + f π 6 + 4f + f π 6 + f π 6 + 4f π + f π I = π =. 74
13 6) Aplica la integración de Romberg con filas al cálculo aproximado de x dx con h =. Solución La solución exacta es x dx =.5
14 f x = x I = h n i= f x i + f(x i ) h = h = h = n = : I(h ) = f + f() = n = : I(h ) = 4 f + f + f() = = 5 6 n = : I(h ) = 8 f + f 4 + f + f 4 + f() I(h ) = = 7 64
15 Nivel Nivel Nivel Integral Trapecios I h j+ I(h j) I h j+ 5 I(h j) 4 =. 5
16 7) Dada la integral xdx calcular el número de subintervalos necesarios para que al aplicar el método de los rectángulos el error cometido sea menor que -6. Solución La cota de error en el método de los rectángulos es: e R h 4 b a M, M = max f(x) : a x b En nuestro caso M = max 4x : x = 4 = 4 =.5 Donde h = b a ; Entonces e n R b a n 4 b a M = b a 4n M n b a 4e R M n = b a 4e R M = =.6~ subintervalos
17 8) Sea f x = x x < ln x x > trapecios con 5 subintervalos.. Calcular la integral f x dx usando el método de los Solución Dividimos el intervalo, en 5 subintervalos: h = 5 = 5 =.4 f x = x g x = ln (x) x = x = 5 x = 4 5 x = 6 5 x 4 = 8 5 x 5 = I = b a n f x + f x + f x + f x + f x 4 + f(x 5 ) I = 5 f + f 5 + f g g g() I = = =. 48 5
18 9) Obtener una fórmula basada en el método de los trapecios para aproximar la integral: Aplicarla al cálculo de: I = I = a b d f x, y dxdy c x + y dxdy Usando tres subintervalos para la x y para la y. Repetir el problema para el método de Simpson. Solución b a d c La integral I = f(x, y) se puede calcular mediante los trapecios usando n subintervalos para a, b y m subintervalos para c, d mediante la aproximación: I T = h n i= k m j= f x i, y j + f x i, y j + k m j= f x i, y j + f x i, y j Ó: I T = hk 4 n i= m j= f x i, y j + f x i, y j + f x i, y j + f x i, y j Donde h = b a n d c ; k = ; en nuestro caso h = m = k y n =, por lo tanto: Ó: I T = 6 i= j= f x i, y j + f x i, y j + f x i, y j + f x i, y j
19 I T = 6 i= j= f x i, y j + f x i, y j + f x i, y j + f x i, y j Desarrollando la fórmula anterior: I T = 6 [f x, y + f x, y + f x, y + f x, y + f x, y + f x, y + f x, y + f x, y + f x, y + f x, y + f x, y + f x, y ] [f x, y + f x, y + f x, y + f x, y + f x, y + f x, y + f x, y + f x, y + f x, y + f x, y + f x, y + f x, y ] [f x, y + f x, y + f x, y + f x, y + f x, y + f x, y + f x, y + f x, y + f x, y + f x, y + f x, y + f x, y ] El resultado final es I T =. 7794
20 ) Dada la tabla de valores de una cierta función: Calcular el valor aproximado de: x f(x) f x dx La fórmula que utilizaremos es la de los rectángulos para x j, y j : j=:4 un conjunto de puntos b a f x dx = n j= En nuestro caso: x = a =, x n = b =.6, y j = f x j y j h j ; donde h j = x j x j, con x = a y x n = b, j =,,,4. Ademas:. h = x x =., h = x x =., h = x x =., h 4 = x 4 x =.,.6 f x dx = =. 76
1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Solución:
RELACIÓN DE PROBLEMAS DE SELECTIVIDAD DE ANÁLISIS. I Departamento de Matemáticas 1.- Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función
INTEGRAL DEFINIDA. APLICACIONES
COLEGIO SAN ALBERTO MAGNO MATEMÁTICAS II INTEGRAL DEFINIDA. APLICACIONES. 008 MODELO OPCIÓN A. Ejercicio. [ 5 puntos] Dadas las funciones f : [0,+ ) R y g : [0, + ) R definidas por y calcula el área del
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES
MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 5 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad
Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.
Ejercicios Temas 3 y 4: Interpolación polinomial. Ajuste de curvas.. El número de personas afectadas por el virus contagioso que produce la gripe en una determinada población viene dado por la siguiente
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
PROBLEMAS DE INTEGRALES INDEFINIDAS
PROBLEMAS DE INTEGRALES INDEFINIDAS Integración por partes. Mediante la integración por partes, hallar una primitiva de la función y = Ln (1 + x) Calcular una primitiva de una función, es hallar su
1 Método de la bisección. 1.1 Teorema de Bolzano Teorema 1.1 (Bolzano) Contenido
E.T.S. Minas: Métodos Matemáticos Resumen y ejemplos Tema 3: Solución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A xcos(x)+b sen(x) Ejercicio 1.- [2 5 puntos] Sabiendo que lím x 0 x 3 es finito, calcula b y el valor del límite. Ejercicio 2.- Sean f : R R y g : R R las funciones definidas mediante f(x) = x(x
Grado en Química Bloque 1 Funciones de una variable
Grado en Química Bloque Funciones de una variable Sección.7: Aproximación de funciones. Desarrollo de Taylor. Aproximación lineal. La aproximación lineal de una función y = f(x) en un punto x = a es la
IES Fco Ayala de Granada Sobrantes del 2010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna. Opción A
Opción A Ejercicio 1 opción A, modelo 6 del 010 [ 5 puntos] Dada la función f : R R definida como f(x)= a.sen(x)+ bx + cx + d, determina los valores de las constantes a, b, c y d sabiendo que la gráfica
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 004 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- Sea f : R R definida por f(x) = x 3 +ax 2 +bx+c. a) [1 75 puntos] Halla a,b y c para que la gráfica de f tenga un punto de inflexión de abscisa x = 1 2 y que la recta tangente en
Tema 6: Ecuaciones diferenciales lineales.
Tema 6: Ecuaciones diferenciales lineales Una ecuación diferencial lineal de orden n es una ecuación que se puede escribir de la siguiente forma: a n (x)y (n) (x) + a n 1 (x)y (n 1) (x) + + a 0 (x)y(x)
Fundamentos matemáticos. Tema 8 Ecuaciones diferenciales
Grado en Ingeniería agrícola y del medio rural Tema 8 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna [email protected] 2016 Licencia Creative Commons 4.0 Internacional J.
CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.
CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función
IES Fco Ayala de Granada Junio de 2012 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Junio de 01 (Común Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 01 común Sea f : R R la función definida como f(x) = e x.(x ). [1 punto]
2 ln x dx. Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = 1 x dx dv = dx v = x y por tanto
Tema 6 Integración Definida Ejercicios resueltos Ejercicio Calcular la integral definida ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = dx, entonces u =ln x du = x dx dv
IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Solución Germán-Jesús Rubio Luna. Opción A
IES Fco Ayala de Granada Junio de 2011 (Específico Modelo 5) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo Junio 2011 específico1 [2'5 puntos] Un alambre de 100 m de longitud se divide
1. ECUACIONES DIFERENCIALES ORDINARIAS
1 1. ECUACIONES DIFERENCIALES ORDINARIAS 1.1. PRIMERAS DEFINICIONES. PROBLEMA DEL VALOR INICIAL Definición 1.1. Una ecuación diferencial es una ecuación en la que intervienen una variable dependiente y
Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica
Métodos Numéricos Grado en Informática Tema 5: Diferenciación e Integración Numérica Luis Alvarez León Univ. de Las Palmas de G.C. Luis Alvarez León () Métodos Numéricos Univ. de Las Palmas de G.C. 1 /
Funciones reales. Números complejos
Funciones reales. Números complejos Funciones reales 1. Encuentra todos los números reales x que verifican: a) (x 1)(x 3) > 1 b) x + 1 > 1 1 x c) x 1 + x + 1 < 1 d) 5 < x 2 14x + 5 < 26 2. Si la gráfica
UNIVERSIDAD NACIONAL DE GENERAL SARMIENTO Matemática I Segundo Parcial (21/11/09) xe2x JUSTIFIQUE TODAS SUS RESPUESTAS
Segundo Parcial (21/11/09) 1. Sea f(x) = 1 +2 xe2x a) Hallar dominio, intervalos de crecimiento y decrecimiento y extremos locales de f. b) Hallar (si las hay) las asíntotas horizontales y verticales de
a) Calcula el valor de k. b) Halla la ecuación de la recta tangente a la gráfica de la función f en el punto de abscisa x = 1.
Selectividad CCNN 0. [ANDA] [JUN-A] Sea la función f: definida por f(x) = e x (x - ). a) Calcula la asíntotas de f. b) Halla los extremos relativos (abscisas donde se obtienen y valores que se alcanzan)
IES Fco Ayala de Granada Septiembre de 2013 (Modelo 3 Especifico) Solucíon Germán-Jesús Rubio Luna. Opción A
Opción A Ejercicio opción A, modelo 3 Septiembre 03 específico x Sea f la función definida por f(x) = para x > 0, x (donde ln denota el logaritmo neperiano) ln(x) [ 5 puntos] Estudia y determina las asíntotas
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 0 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
IES Fco Ayala de Granada Septiembre de 2013 (Modelo 4 Especifico 2) Solución Germán-Jesús Rubio Luna. Opción A
IES Fco Ayala de Granada Septiembre de 013 (Modelo 4 Especifico ) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 Septiembre 013 específico [ 5 puntos] Un rectángulo está inscrito en un
INTEGRACIÓN NUMÉRICA
INTEGRACIÓN NUMÉRICA En los cursos de Cálculo Integral, nos enseñan como calcular una integral definida de una función contínua mediante una aplicación del Teorema Fundamental del Cálculo: Teorema Fundamental
IES Fco Ayala de Granada Junio de 2011 (Específico 2 Modelo 1) Soluciones Germán-Jesús Rubio Luna
PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 010-011 Opción A Ejercicio 1, Opción A, Modelo especifico de Junio de 011 [ 5 puntos] Una ventana normanda consiste en un rectángulo
IES Fco Ayala de Granada Sobrantes de 2011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada Sobrantes de 011 (Modelo 4) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 4 del 011 [ 5 puntos] Queremos hacer junto a la carretera un cercado rectangular
IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A
IES Francisco Ayala Modelo (Septiembre) de 7 Germán Jesús Rubio Luna Opción A Ejercicio n de la opción A de septiembre, modelo de 7 3x+ Sea f: (,+ ) R la función definida por f(x)= x. [ 5 puntos] Determina
Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o
DERIVADAS Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3) - f(-1) =
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva,
Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones
Métodos Numéricos: Resumen y ejemplos Tema 5: Resolución aproximada de ecuaciones Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Abril 009,
IES Fco Ayala de Granada (Modelo 2 del 2012) Soluciones Germán-Jesús Rubio Luna
IES Fco Ayala de Granada (Modelo del 01) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 011-01 Opción A Ejercicio 1, Opción A, Modelo de 01 Sea la
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- Sean f : R R y g : R R las funciones definidas por f(x) = x 2 + ax + b y g(x) = c e (x+1) Se sabe que las gráficas de f y g se cortan en el punto ( 1, 2) y tienen en ese punto la
5 Demostrar cada una de las siguientes afirmaciones empleando la definición de
Hallar el dominio de las siguientes funciones: x 3 a) x +ln(x ) b) ln x + 6 x + c) x x d) ln x x + e) cos x + ln(x 5π) + 8π x Graficar la función sen(x π ). Hallar para que valores de x es 3 Hallar las
7 Ecuación diferencial ordinaria de orden n con coecientes constantes
7 Ecuación diferencial ordinaria de orden n con coecientes constantes La ecuación lineal homogénea de coecientes constantes de orden n es: donde a 1, a 2,..., a n son constantes. a n y (n) + a n 1 y n
IES Fco Ayala de Granada Modelos del 2010 (Modelo 1) Soluciones Germán-Jesús Rubio Luna. Opción A
Opción A Ejercicio opción A, modelo de año 200 [2 5 puntos] Entre todos los triángulos rectángulos de 5 metros de hipotenusa, determina los catetos del de área máxima. Función a maximizar A (/2)(x)(y)
CBC. Matemática (51) universoexacto.com 1
CBC Matemática (51) universoexacto.com 1 PROGRAMA ANALÍTICO 1 :: UNIDAD 1 Números Reales y Coordenadas Cartesianas Representación de los números reales en una recta. Intervalos de Distancia en la recta
1. Halle el dominio de la función f(x) = ln(25 x2 ) x 2 7x + 12 ; es decir, el conjunto más grande posible donde la función está definida.
Cálculo I (Grado en Ingeniería Informática) Problemas resueltos, 0-3 y 03-4 (segunda parte) Preparado por los profesores de la asignatura: Pablo Fernández, Dragan Vukotić (coordinadores), Luis Guijarro,
TERCER TRABAJO EN GRUPO Grupo 10
TERCER TRABAJO EN GRUPO Grupo 10 Problema 1.- Se considera la ecuación x 3 + x + mx 6 = 0. Utilizando el Teorema de Bolzano demostrar que: (i) Si m > 3 la ecuación tiene al menos una raíz real menor que.
PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad
PRIMITIVAS E INTEGRAL DEFINIDA Ejercicios de selectividad Sea f : R R la función definida por f() = e /. (a) En qué punto de la gráfica de f la recta tangente a ésta pasa por el origen de coordenadas?
Aplicaciones de Sistemas de Ecuaciones Lineales
Aplicaciones de Sistemas de Ecuaciones Lineales Departamento de Matemáticas, CCIR/ITESM 10 de enero de 2011 Índice 3.1. Introducción............................................... 1 3.2. Objetivo.................................................
Definición de la integral de Riemann (Esto forma parte del Tema 1)
de de de Riemann (Esto forma parte del Tema 1) Departmento de Análise Matemática Facultade de Matemáticas Universidade de Santiago de Compostela Santiago, 2011 Esquema de Objetivos del tema: Esquema de
PAU Madrid. Matemáticas II. Año Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos.
PAU Madrid. Matemáticas II. Año 22. Examen modelo. Opción A. Ejercicio 1. Valor: 2 puntos. Se considera una varilla AB de longitud 1. El extremo A de esta varilla recorre completamente la circunferencia
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2006 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 006 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
Matemáticas Febrero 2013 Modelo A
Matemáticas Febrero 0 Modelo A. Calcular el rango de 0 0 0. 0 a) b) c). Cuál es el cociente de dividir P(x) = x x + 9 entre Q(x) = x +? a) x x + x 6. b) x + x + x + 6. c) x x + 5x 0.. Diga cuál de las
Derivadas 6 ACTIVIDADES. 1. Página 140. Función f(x) x 2 1: Función g(x) x 3 7: 2. Página Página Página
Derivadas 6 ACTIVIDADES 1. Página 140 Función f(x) x 2 1: Función g(x) x 3 7: 2. Página 140 3. Página 141 4. Página 141 5. Página 142 211 Derivadas 6. Página 142 Las derivadas laterales no existen, por
Problemas Tema 1 Solución a problemas de Repaso de 1ºBachillerato - Hoja 02 - Todos resueltos
página /9 Problemas Tema Solución a problemas de Repaso de ºBachillerato - Hoja 02 - Todos resueltos Hoja 2. Problema. Sea f x )=a x 3 +b x 2 +c x+d un polinomio que cumple f )=0, f ' 0)=2, y tiene dos
1. Raíces y logaritmos
1 RAÍCES Y LOGARITMOS 1 1. Raíces y logaritmos 1. Racionalizar los denominadores: a) 1 b) 1 11 4 c) 7 + 7 d) 5 5 +. Despejar x en las siguientes igualdades: a) x = 6 b) 7 x = 15 c) x = 6 d) 5x = 1. Calcular
GEOMETRÍA. que pasa por el punto P y es paralelo a π. (0,9 puntos) b) Determinar la ecuación del plano π
GEOMETRÍA 1.- Se considera la recta r : ( x, y, z) = ( t + 1, t,3 t), el plano π: x y z = 0y el punto P (1,1,1). Se pide: a) Determinar la ecuación del plano π 1 que pasa por el punto P y es paralelo a
sobre un intervalo si para todo de se tiene que. Teorema 1 Sean y dos primitivas de la función en. Entonces,
Integral indefinida Primitiva e integral indefinida. Cálculo de primitivas: métodos de integración. Integración por cambio de variable e integración por partes. Integración de funciones racionales e irracionales.
Colegio Portocarrero. Curso Departamento de matemáticas. Análisis. (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas)
Análisis (Límites/Asíntotas/Continuidad/Derivadas/Aplicaciones de las derivadas) Problema 1: Sea la función Determina: a) El dominio de definición. b) Las asíntotas si existen. c) El o los intervalos de
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 213 Capítulo 11 Año 21 11.1. Modelo 21 - Opción A Problema 11.1.1 3 puntos Dada la función: fx
2 Métodos de solución de ED de primer orden
CAPÍTULO Métodos de solución de ED de primer orden.4 Ecuaciones diferenciales de Bernoulli Una ecuación diferencial ordinaria de primer orden de la forma a 0.x/y 0 C a.x/y D f.x/y r ; con r 0; : se denomina
TEMA 5: INTERPOLACION NUMERICA
Lino Alvarez - Aurea Martinez METODOS NUMERICOS TEMA 5: INTERPOLACION NUMERICA 1 EL PROBLEMA GENERAL DE INTER- POLACION En ocasiones se plantea el problema de que se conoce una tabla de valores de una
Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple
Órdenes de la convergencia de sucesiones. Condiciones de la convergencia lineal y cuadrática del método de iteración simple Estos apuntes están redactados por Maria de los Angeles Isidro Pérez y Egor Maximenko.
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE
Análisis de funciones de una variable 49 4. ANÁLISIS DE FUNCIONES DE UNA VARIABLE En esta sección realizaremos algunos ejercicios sobre el estudio de funciones de una variable: En la parte final hay ejercicios
7. Forma de Lagrange para el polinomio interpolador. 9. Forma de Newton para el polinomio interpolador
Métodos Numéricos: Resumen y ejemplos Tema 2: Aproximación e interpolación Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña Febrero 2008, Version
Métodos Numéricos (SC 854) Integración
c M. Valenzuela 007 008 (1 de abril de 008) 1. Definición del problema Dada una función f() se desea calcular la integral definida f para valores dados de 0 y f.. Rectángulos 0 f() d (1) Todos los métodos
TEMA 2: DERIVADA DE UNA FUNCIÓN
TEMA : DERIVADA DE UNA FUNCIÓN Tasa de variación Dada una función y = f(x), se define la tasa de variación en el intervalo [a, a +h] como: f(a + h) f(a) f(a+h) f(a) y se define la tasa de variación media
IES Fco Ayala de Granada Septiembre de 2015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna. Opción A. Ejercicio 1 opción A, modelo 3 Septiembre
IES Fco Ayala de Granada Septiembre de 015 (Modelo 3) Soluciones Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 Septiembre 015 ax + b [ 5 puntos] Halla los valores a, b y c sabiendo que
DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD
DERIVADAS, LÍMITES Y TEOREMAS DE DERIVABILIDAD Aplicando el teorema de los incrementos finitos a la función f(x) = x 2 + 4x - 2 en los extremos [-1, 3] hallar x o El teorema de Lagrange dice que: f(3)
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO
TEMA 6: DIVISIÓN DE POLINOMIOS RAÍCES MATEMÁTICAS 3º ESO 1. División de polinomios Dados dos polinomios P (el dividendo) y D (el divisor), dividir P entre D es encontrar dos polinomios Q (el cociente)
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 01 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva 1, Ejercicio, Opción A Reserva
El método de los trapecios es muy simple y se puede explicar fácilmente a partir de la siguiente figura.
REGLA DEL TRAPECIO El método de los trapecios es muy simple y se puede explicar ácilmente a partir de la siguiente igura. REGLA DEL TRAPECIO SIMPLE I ( b a) ( a) 2 ( b) Eligiendo un espaciado se divide
UNIDADES TECNOLÓGICAS DE SANTANDER DEPARTAMENTO DE CIENCIAS BÁSICAS CÁLCULO MULTIVARIABLE Primer Parcial
Primer Parcial Identifica los criterios de convergencia para determinar si una serie es convergente o no. 1,2 Representa una función mediante una serie de potencias estableciendo el intervalo de convergencia.
Integración aproximada
1.- Para proceder a pintarlo, se necesita conocer las medidas del techo de cierto edificio singular. Dicho techo tiene forma geométrica de embudo invertido, similar a la de la superficie de revolución
Semana 2 [1/24] Derivadas. August 16, Derivadas
Semana 2 [1/24] August 16, 2007 Máximos y mínimos: la regla de Fermat Semana 2 [2/24] Máximos y mínimos locales Mínimo local x es un mínimo local de la función f si existe ε > 0 tal que f( x) f(x) x (
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA. 1) Determinar k y h para que las rectas kx+2y-h=0, 4x+ky-2=0, se corten en un punto.
MATEMÁTICA - TERCERO - REVISIÓN INTEGRADORA ) Determinar k y h para que las rectas kxy-h=0, 4xky-=0, se corten en un punto ) La recta r: 5 x y 9 = 0, corta a la recta y = x en el punto A Obtener la ecuación
x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = 1 x dx x 2 dx = 1 2 x2 ln x x2
Tema 5 Integración Indefinida Ejercicios resueltos Ejercicio Calcular la integral x ln x dx Solución: Resolvemos la integral por partes. Si hacemos u = ln x y dv = xdx, entonces u =ln x du = x dx dv =
LA INTEGRAL DEFINIDA
LA INTEGRAL DEFINIDA Cuando estudiamos el problema del área y el problema de la distancia analizamos que tanto el valor del área debajo de la gráfica de una función como la distancia recorrida por un objeto
2.1.5 Teoremas sobre derivadas
si x < 0. f(x) = x si x 0 x o = 0 Teoremas sobre derivadas 9 2. f(x) = x 3, x o = 3 a. Determine si f es continua en x o. b. Halle f +(x o ) y f (x o ). c. Determine si f es derivable en x o. d. Haga la
COEFICIENTES INDETERMINADOS: MÉTODO DE SUPERPOSICIÓN *
40 CAPÍTULO 4 ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR 5. Determine la solución general de y 6y y 34y 0 si se sabe que y e 4x cos x es una solución. 52. Para resolver y (4) y 0, es necesario encontrar
Cálculo I (Grado en Ingeniería Informática) Problemas adicionales resueltos
Cálculo I (Grado en Ingeniería Informática) - Problemas adicionales resueltos Calcula el ĺımite lím ( n + n + n + ) n Racionalizando el numerador, obtenemos L lím ( n + n + n (n + n + ) (n + ) + ) lím
Integración Numérica. Regla de Simpson.
Integración Numérica. Regla de Simpson. MAT-251 Dr. CIMAT A.C. e-mail: [email protected] web: http://www.cimat.mx/~alram/met_num/ Dr. Salvador Botello CIMAT A.C. e-mail: [email protected] Lo que ya se vió
Capítulo 4: Derivada de una función
Capítulo 4: Derivada de una función Geovany Sanabria Contenido Razones de cambio 57 Definición de derivada 59 3 Cálculo de derivadas 64 3. Propiedadesdederivadas... 64 3.. Ejercicios... 68 3. Derivadasdefuncionestrigonométricas...
Marzo 2012
Marzo 2012 http:///wpmu/gispud/ Para determinar la carga transferida a través del tiempo a un elemento, es posible hacerlo de varias formas: 1. Utilizando la ecuación de carga, evaluando en los tiempos
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 4: FUNCIONES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 4: FUNCIONES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
JUNIO Bloque A
Selectividad Junio 009 JUNIO 009 Bloque A 1.- Estudia el siguiente sistema en función del parámetro a. Resuélvelo siempre que sea posible, dejando las soluciones en función de parámetros si fuera necesario.
VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL
VARIABLE COMPLEJA Y ANÁLISIS FUNCIONAL (Curso 00-00) HOJA Ejercicio. Determina en qué recintos es holomorfa la siguiente función: f(x + iy) x + ay + i(bx + cy) En este caso consideramos: u(x, y) x + ay
Trabajo de Matemáticas AMPLIACIÓN 3º ESO
Trabajo de Matemáticas AMPLIACIÓN º ESO ACTIVIDADES DE AMPLIACIÓN TEMA : NÚMEROS FRACCIONARIOS O RACIONALES Problema nº Un grifo tarda en llenar un depósito horas y otro tarda en llenar el mismo depósito
Práctica 4 Límites, continuidad y derivación
Práctica 4 Límites, continuidad y derivación En esta práctica utilizaremos el programa Mathematica para estudiar límites, continuidad y derivabilidad de funciones reales de variable real, así como algunas
Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación
Universidad de Santiago de Chile Facultad de Ciencia Departamento de Matemática y Ciencias de la Computación EJERCICIOS RESUELTOS DE ECUACIONES NO LINEALES Profesor: Jaime Álvarez Maldonado Ayudante: Rodrigo
Suma, diferencia y producto de polinomios
I, Polinomios Suma, diferencia y producto de polinomios Un monomio es una expresión algebraica donde los números (coeficientes) y las letras (parte literal) están separados por el signo de la multiplicación.
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2012 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva, Ejercicio,
f(x) = x 2 Ejercicio 121 Para x = 1/2 formar los cocientes incrementales f/ x para los incrementos entre x = 1 y x = 1+ x de tres maneras diferentes:
22 CAPÍTULO 3. INTEGRALES: CÁLCULO POR MEDIO DE PRIMITIVAS 3.2. La derivada En la sección 3. analizamos los incrementos y cocientes incrementales de varias funciones. En esta sección nos concentraremos
Introducción al Cálculo Numérico
Tema 1 Introducción al Cálculo Numérico 1.1 Introducción El Cálculo Numérico, o como también se le denomina, el Análisis numérico, es la rama de las Matemáticas que estudia los métodos numéricos de resolución
Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior
Métodos Matemáticos 2 Ecuaciones Diferenciales de Orden Superior L. A. Núñez * Centro de Astrofísica Teórica, Departamento de Física, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
Matemáticas II PRUEBA DE ACCESO A LA UNIVERSIDAD 2014 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR.
PRUEBA DE ACCESO A LA UNIVERSIDAD 014 Matemáticas II BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR Examen Criterios de Corrección y Calificación UNIBERTSITATERA SARTZEKO PROBAK
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás
Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás de mayo de 013 Capítulo 13 Año 01 13.1. Modelo 01 - Opción A Problema 13.1.1 (3 puntos) Dados los puntos A(1,
Reconocimiento de la integral a partir del método de los trapecios.
Grado 11 Matematicas - Unidad 4 Cómo hallo el área de superficies curvas? Bienvenidos al cálculo integral Tema Reconocimiento de la integral a partir del método de los trapecios. Nombre: Curso: En muchas
UNIDAD 10. DERIVADAS. APLICACIONES DE LAS DERIVADAS
Unidad 0. Derivadas. Aplicaciones de las derivadas UNIDAD 0. DERIVADAS. APLICACIONES DE LAS DERIVADAS. TASA DE VARIACIÓN MEDIA. Se llama TASA DE VARIACIÓN MEDIA (TVM) de una función () f en un intervalo
Estudio de ceros de ecuaciones funcionales
Capítulo 1 Estudio de ceros de ecuaciones funcionales Problema 1.1 Calcular el número de ceros de la ecuación arctang(x) = 4 x, dando un intervalo 5 donde se localicen. Solución: Denimos f(x) = arctan(x)
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 MATEMÁTICAS II TEMA 5: INTEGRALES
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 05 MATEMÁTICAS II TEMA 5: INTEGRALES Junio, Ejercicio, Opción A Junio, Ejercicio, Opción B Reserva, Ejercicio, Opción A Reserva, Ejercicio, Opción B Reserva,
Métodos Numéricos Grado en Ingeniería Informática Univ. Tema de Las 7 Interpolación Palmas de G.C. de funciones 1 / 42II
Métodos Numéricos Grado en Ingeniería Informática Tema 7 Interpolación de funciones II Luis Alvarez León Univ. de Las Palmas de G.C. Métodos Numéricos Grado en Ingeniería Informática Univ. Tema de Las
4 Ecuaciones diferenciales de orden superior
CAPÍTULO 4 Ecuaciones diferenciales de orden superior 4. educción de orden allar un método para encontrar soluciones que formen un conjunto fundamental de la ED será nuestro trabajo en las siguientes secciones.
a) Buscar dominio, crecimiento, decrecimiento y máximos absolutos. b) Buscar el área delimitada por la función y el eje '0X'.
.- Dada la función: f(x) = x 9 x a) Buscar dominio, crecimiento, decrecimiento y máximos absolutos. b) Buscar el área delimitada por la función y el eje '0X'..a.- Lo primero que hacemos es buscar el dominio,
