Nombre.: Carné.: Correo Electrónico.:

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Nombre.: Carné.: Correo Electrónico.:"

Transcripción

1 UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERIA DEPARTAMENTO DE MATEMATICA MATEMATICA INTERMEDIA 3 N TERCER EXAMEN PARCIAL Nombre.: Carné.: Correo Electrónico.: Tema 1.: Un cuerpo de masa igual a 4 kg está unido a un resorte de constante k = 16 N/m. Se alarga el resorte una distancia de 0.3 m y se suelta desde el reposo. Si sobre el sistema se aplica una fuerza F(t) = 1.5 Cos 4t, determine la posición y velocidad del cuerpo en todo tiempo. Tema 2.: Un circuito RLC en serie, está formado por un resistor R = 12 Ω, un capacitor C = 0.1 F y un inductor L = 2 H. Se le conecta una fuente de voltaje que suministra 20 Cos 5t Voltios. Si inicialmente el capacitor está descargado y no circula corriente alguna por el circuito, encuentre una expresión para la carga y la corriente en todo tiempo t. Tema 3.: Explique la relación entre el coeficiente de amortiguamiento y la constante del resorte, en un sistema masa-resorte en un movimiento libre amortiguado, cuando el discriminante de las raíces de la ecuación característica toma los siguientes valores: a). λ^2 ω^2 > 0 b). λ^2 ω^2 = 0 c). λ^2 ω^2 < 0

2 RESOLUCIÓN DEL TERCER EXAMEN PARCIAL TEMA 1. APLICACIÓN: SISTEMA MASA-RESORTE Un cuerpo de masa igual a 4 kg está unido a un resorte de constante k = 16 N/m. Se alarga el resorte una distancia de 0.3 m y se suelta desde el reposo. Si sobre el sistema se aplica una fuerza F(t) = 1.5 Cos 4t, determine la posición y velocidad del cuerpo en todo tiempo. SOLUCION Datos: Condiciones iniciales: 4 16 / Ecuación diferencial a resolver, para determinar la posición: cos cos 4 Resolver la ecuación diferencial de la homogénea relacionada: 4 0 Ecuación característica: Solución complementaria:! " " # $%& '( " ' &)* '( Resolver la ecuación diferencial 4 3 cos 4 Por el método de coeficientes constantes indeterminados, suponemos una solucion: +, cos 4 - sin , sin 4 4- cos , cos sin 4 Sustituyendo: 116, cos sin 4 4, cos 4 4- sin 4 3 cos 4 4, 1 16, cos sin 4 3 cos 4

3 112, cos sin 4 3 cos 4 Igualando términos semejantes, se obtiene el sistema de ecuaciones: 112, 3, Solución particular:! # 2 $%& 4( 3' La solución total de la ecuación diferencial!( " # $%& '( " ' &)* '( # 3' $%&4( Aplicar condiciones iniciales: cos 0 5 sin 0 1 cos cos 2 5 sin 2 1 cos sin 2 5 cos sin sin 0 5 cos sin Entonces la solución de la ecuación diferencial, y función posición: La función de la velocidad:!( 43 # $%& '( $%& 4( #7 3' 9(! ( 1 43 #7 &)* '( 1 # &)* 4( 3'

4 TEMA 2. APLICACIÓN: CIRCUITO RLC Un circuito RLC en serie, está formado por un resistor R = 12 Ω, un capacitor C = 0.1 F y un inductor L = 2 H. Se le conecta una fuente de voltaje que suministra 20 Cos 5t Voltios. Si inicialmente el capacitor está descargado y no circula corriente alguna por el circuito, encuentre una expresión para la carga y la corriente en todo tiempo t. SOLUCION : ; < ; ; 5 = Datos: < 12 Ω : 2? = 20 cos 5 Condiciones iniciales: ;0 0 0 ; 0 0 Ecuación diferencial a resolver, para determinar la posición: 2 ; ; 12 ; 20 cos ; 6 ; 5; 10 cos 5 Resolver la ecuación diferencial de la homogénea relacionada: ; 6 ; 5; 0 Ecuación característica: Solución complementaria: " " # A B( " ' A BC( Resolver la ecuación diferencial ; 6 ; 5; 10 cos 5 Por el método de coeficientes constantes indeterminados, suponemos una solucion: ; +, cos 5 - sin 5 ;0 + 15, sin 5 5- cos 5 ; , cos sin 5 Sustituyendo: 125, cos sin , sin cos 5 5, cos 5 5- sin 5 10 cos 5 125, , cos , 5- sin 5 10 cos 5 120, cos , sin 5 10 cos 5

5 Igualando términos semejantes, se obtiene el sistema de ecuaciones: 120, , 0, Solución ' 2 C $%& C( 1 3 &)* C( C La solución total de la ecuación " # A B( " ' A BC( ' C $%& C( 1 3 &)* C( C Aplicar condiciones iniciales: ; D E 5 D E 2 5 cos sin ; 0 0 ; 15 6 D BF 1 55 D BGF 1 2 sin cos D E 1 55 D E 1 2 sin cos Resolviendo el sistema: Entonces la solución de la ecuación diferencial, y función de la carga # 4 AB( 1 #3 ' ABC( ' C $%& C( 1 3 &)* C( C La función de la corriente: ( 1 # 4 AB( #3 4 ABC( 1 ' &)* C( 1 3 $%& C(

6 TEMA 3. CONCEPTOS DE AMORTIGUAMIENTO Explique la relación entre el coeficiente de amortiguamiento y la constante del resorte, en un sistema masa-resorte en un movimiento libre amortiguado, cuando el discriminante de las raíces de la ecuación característica toma los siguientes valores: Solución: El movimiento libre amortiguado de un sistema masa-resorte se describe por: 0 Donde: DI JK KIK DI JK LMNIKND D KMO PK DNM DI JK LMNIKND DJ ODIMOD Siendo: 0 Entonces: Ecuación característica: Cuyas raíces son: Por lo tanto: 2Q 6 1Q SQ 1 R R 2Q R 0 2Q R 0 1Q 1T SQ 1 R a). λ^2 ω^2 > 0 En este caso el sistema está sobreamortiguado, porque el coeficiente de amortiguamiento es grande comparado con la constante de resorte. Las raíces de la ecuación característica son reales y distintas, por lo que la solución correspondiente es: D BUF VL 6 D UX BY XF L D B UX BY XF Z Esta ecuación representa un movimiento uniforme y no oscilatorio. b). λ^2 ω^2 = 0 En este caso el sistema está críticamente amortiguado, porque cualquier ligera disminución en la fuerza de amortiguamiento daría como resultado un movimiento oscilatorio. Las raíces de la ecuación característica son reales y repetidas, por lo que la solución correspondiente es: D BUF L 6 L

7 c). λ^2 ω^2 < 0 En este caso el sistema está subamortiguado puesto que el coeficiente de amortiguamiento es pequeño comparado con la constante del resorte. Las raíces de la ecuación característica son complejas conjugadas, por lo que la solución correspondiente es: D BUF VL 6 cos SR 1 Q L sin SR 1 Q Z Esta ecuación representa un movimiento oscilatorio, pero debido al coeficiented BUF las amplitudes de vibración disminuyen al aumentar el tiempo.

Otros circuitos RLC de 2do orden

Otros circuitos RLC de 2do orden Matemáticas Aplicadas MA101 Semana 08 EDO de 2do orden no homogénea - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Otros circuitos RLC de 2do orden

Más detalles

Semana 07 EDO de 2do orden no homogénea - Aplicaciones

Semana 07 EDO de 2do orden no homogénea - Aplicaciones Matemáticas Aplicadas MA101 Semana 07 EDO de 2do orden no homogénea - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Otros circuitos RLC de 2do orden

Más detalles

Semana 09 EDO de 2do orden no homogénea - EDO orden n - Aplicaciones

Semana 09 EDO de 2do orden no homogénea - EDO orden n - Aplicaciones Matemáticas Aplicadas MA101 Semana 09 EDO de 2do orden no homogénea - EDO orden n - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería En ingeniería es frecuente

Más detalles

Respuesta forzada sinusoidal (solución EDO no homogénea)

Respuesta forzada sinusoidal (solución EDO no homogénea) Matemáticas Aplicadas MA101 Semana 09 EDO de 2do orden no homogénea - EDO orden n - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería En ingeniería es frecuente

Más detalles

ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN

ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN ECUACIONES DIFERENCIALES LINEALES DE SEGUNDO ORDEN Movimiento Libre No Amortiguado Una de las aplicaciones de las ecuaciones diferenciales de segundo orden es la resolución de problemas de movimiento armónico

Más detalles

Semana 06 EDO de orden alto - Aplicaciones

Semana 06 EDO de orden alto - Aplicaciones Matemáticas Aplicadas MA101 Semana 06 EDO de orden alto - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Aplicaciones Ecuaciones diferenciales de orden

Más detalles

Semana 07 EDO de 2do orden homogénea - Aplicaciones. Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería

Semana 07 EDO de 2do orden homogénea - Aplicaciones. Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Matemáticas Aplicadas MA101 Semana 07 EDO de 2do orden homogénea - Aplicaciones Elizabeth Villota Facultad de Ingeniería Mecánica Universidad Nacional de Ingeniería Aplicaciones Ecuaciones diferenciales

Más detalles

Contenido. 4. Modelos lineales oscilatorios. 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/30 30

Contenido. 4. Modelos lineales oscilatorios. 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/30 30 Contenido 4. Modelos lineales oscilatorios 1 / Omar De la Peña-Seaman IFUAP Ecuaciones Diferenciales Facultad de Ingeniería 1/30 30 Contenido: Tema 04 4. Modelos lineales oscilatorios 4.1 Oscilaciones:

Más detalles

FISICA ONDULATORIA DPTO. DE FISICA -UNS GUÍA 1

FISICA ONDULATORIA DPTO. DE FISICA -UNS GUÍA 1 Prof: Sergio Vera Sistemas con un grado de libertad (SDOF) 1. Una masa de 0,453 kg unida a un resorte liviano introduce un alargamiento de 7,87 mm. Determine la frecuencia natural del sistema. Graficar

Más detalles

5 Aplicaciones de ED de segundo orden

5 Aplicaciones de ED de segundo orden CAPÍTULO Aplicaciones de ED de segundo orden.3.4 Circuito de corriente alterna V.t/ D V 0 sen t o I C En la figura anterior se muestra un circuito de corriente alterna; este circuito está formado por una

Más detalles

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz

ECUACIÓN DE OSCILACIONES. Tomado del texto de Ecuaciones Diferenciales de los Profesores. Norman Mercado. Luis Ignacio Ordoñéz ECUACIÓN DE OSCILACIONES Tomado del texto de Ecuaciones Diferenciales de los Profesores Norman Mercado Luis Ignacio Ordoñéz Muchos de los sistemas de ingeniería están regidos por una ecuación diferencial

Más detalles

Taller No. 10: Ecuaciones Lineales de Segundo Orden El Oscilador Masa-Resorte Amortiguado

Taller No. 10: Ecuaciones Lineales de Segundo Orden El Oscilador Masa-Resorte Amortiguado Taller No. 10: Ecuaciones Lineales de Segundo Orden El Oscilador Masa-Resorte Amortiguado Objetivo Reforzar los temas que fundamentan el conocimiento de las ecuaciones diferenciales de segundo orden en

Más detalles

Aplicaciones de ED de segundo orden

Aplicaciones de ED de segundo orden CAPÍTULO Aplicaciones de ED de segundo orden..3 Vibraciones forzadas Los sistemas estudiados hasta ahora exhiben una dinámica que depende de ciertas constantes intrínsecas al sistema, es decir, las únicas

Más detalles

4.3 Problemas de aplicación 349

4.3 Problemas de aplicación 349 4. Problemas de aplicación 49 4. Problemas de aplicación Ejemplo 4.. Circuito Eléctrico. En la figura 4.., se muestra un circuito Eléctrico de mallas en el cual se manejan corrientes, una en cada malla.

Más detalles

Aplicaciones de Ecuaciones Diferenciales Ordinarias

Aplicaciones de Ecuaciones Diferenciales Ordinarias Luis Eduardo López M. Docente Tiempo Completo Departamento de Ciencias Básicas Programa de Ingeniería Electrónica Facultad de Ingeniería Institución Universitaria CESMAG Periodo B de 2015 Contenido 1 Ecuaciones

Más detalles

Teoría de Circuitos: circuitos RLC

Teoría de Circuitos: circuitos RLC Teoría de Circuitos: circuitos RLC Pablo Monzón Instituto de Ingeniería Eléctrica (IIE) Facultad de Ingeniería-Universidad de la República Uruguay Segundo semestre - 2017 Contenido 1 Introducción 2 Respuesta

Más detalles

Circuitos Eléctricos RL RC y RLC

Circuitos Eléctricos RL RC y RLC Circuitos Eléctricos RL RC y RLC Andrés Felipe Duque 223090 Grupo:10 Resumen. En esta práctica podremos analizar básicamente los circuitos RLC donde se acoplan resistencias, capacitores e inductores, y

Más detalles

Análisis de respuesta transitoria del sistema de suspensión de un automóvil mediante la analogía mecánico-eléctrica

Análisis de respuesta transitoria del sistema de suspensión de un automóvil mediante la analogía mecánico-eléctrica Análisis de respuesta transitoria del sistema de suspensión de un automóvil mediante la analogía mecánico-eléctrica Ma. Del Carmen Cornejo Serrano Instituto Tecnológico de Celaya. México. carmencornejoserranol@gmail.com

Más detalles

Respuesta completa en circuitos RLC con estímulo de corriente directa

Respuesta completa en circuitos RLC con estímulo de corriente directa Respuesta completa en circuitos RL con estímulo de corriente directa Objetivos Analizar la respuesta completa en circuitos RL con estímulo de corriente directa, utilizando la metodología de este material.

Más detalles

el alargamiento s Masa Longitud Masa peso

el alargamiento s Masa Longitud Masa peso MODELADO ORDEN SUPERIOR SISTEMA RESORTE-MASA, MOVIMIENTO LIBRE NO AMORTIGUADO I. Modelos lineales. Con valores iniciales: 1) Sistemas resorte-masa, movimiento libre no amortiguado (SRM/MLNA). ) Sistemas

Más detalles

Fundamentos de espectroscopia: Vibraciones

Fundamentos de espectroscopia: Vibraciones Fundamentos de espectroscopia: Vibraciones Jesús Hernández Trujillo Facultad de Química, UNAM Agosto de 2017 Vibraciones/JHT 1 / 28 Oscilador armónico Movimiento oscilatorio: Una partícula describe un

Más detalles

Electrotecnia General (Prf. Dr. José Andrés Sancho Llerandi) Tema 13

Electrotecnia General (Prf. Dr. José Andrés Sancho Llerandi) Tema 13 TEMA 13 REGÍMENES TRANSITORIOS II 2 2 13.1 CASO DE RAÍCES COMPLEJAS CONJUGADAS: a - ω r < 0. CIRCUITO OSCILANTE AMORTIGUADO, O CIRCUITO SUBAMORTIGUADO. La descarga de un condensador en un circuito sin

Más detalles

Ecuaciones lineales de segundo orden

Ecuaciones lineales de segundo orden Ecuaciones lineales de segundo orden Considere la ecuación lineal general de segundo orden A( xy ) + Bxy ( ) + Cxy ( ) = Fx ( ) donde las funciones coeficientes A, B, C y abierto I. F son continuas en

Más detalles

FÍSICA II VIBRACIONES MECÁNICAS UNIVERSIDAD POLITÉCNICA DE MADRID ETSI MINAS DEPARTAMENTO DE FÍSICA APLICADA A LOS RECURSOS NATURALES

FÍSICA II VIBRACIONES MECÁNICAS UNIVERSIDAD POLITÉCNICA DE MADRID ETSI MINAS DEPARTAMENTO DE FÍSICA APLICADA A LOS RECURSOS NATURALES 1 FÍSICA II VIBRACIONES MECÁNICAS UNIVERSIDAD POLITÉCNICA DE MADRID ETSI MINAS DEPARTAMENTO DE FÍSICA APLICADA A LOS RECURSOS NATURALES T1 Vibraciones mecánicas 2 ÍNDICE» 1.1. Ecuaciones del movimiento

Más detalles

Aplicaciones de Ecuaciones Diferenciales Lineales de orden dos no homogéneas con coeficientes constantes

Aplicaciones de Ecuaciones Diferenciales Lineales de orden dos no homogéneas con coeficientes constantes . a) Un cuerpo con masa m kilógramo kg se sujeta al extremo de un resorte que está 2 estirando 2 metros m por medio de una fuerza de 00 newtons N. En el instante t 0 el cuerpo se pone en movimiento, desplazándose

Más detalles

Ecuaciones Diferenciales Ordinarias

Ecuaciones Diferenciales Ordinarias Ecuaciones Diferenciales Ordinarias (Ecuaciones de 2do Orden) Julio López jclopez@dim.uchile.cl Depto Ingeniería Matemática, Universidad de Chile Otoño 2011, Resumen clases Julio López EDO 1/20 Operadores

Más detalles

Transformada de Laplace: Aplicación a vibraciones mecánicas

Transformada de Laplace: Aplicación a vibraciones mecánicas Transformada de Laplace: Aplicación a vibraciones mecánicas Santiago Gómez Jorge Estudiante de Ingeniería Electrónica Universidad Nacional del Sur, Avda. Alem 1253, B8000CPB Bahía Blanca, Argentina thegrimreaper7@gmail.com

Más detalles

RESPUESTA COMPLETA DE UN CIRCUITO RLC EN SERIE EXCITADO CON UNA FUNCIÓN FORZANTE SENOIDAL

RESPUESTA COMPLETA DE UN CIRCUITO RLC EN SERIE EXCITADO CON UNA FUNCIÓN FORZANTE SENOIDAL RESPUESTA COMPLETA DE UN CIRCUITO RLC EN SERIE EXCITADO CON UNA FUNCIÓN FORZANTE SENOIDAL PROFESOR: LUIS RODOLFO DÁVILA MÁRQUEZ Departamento de Electricidad y Electrónica UNIVERSIDAD FRANCISCO DE PAULA

Más detalles

CIRCUITOS DE SEGUNDO ORDEN. Mg. Amancio R. Rojas Flores

CIRCUITOS DE SEGUNDO ORDEN. Mg. Amancio R. Rojas Flores CIRCUITOS DE SEGUNDO ORDEN Mg. Amancio R. Rojas Flores Un circuito de segundo orden se caracteriza por una ecuación diferencial de segundo orden. Consta de elementos R, L y C VALORES INICIALES Y FINALES

Más detalles

Circuitos dinámicos de segundo orden. Respuesta libre en el circuito RLC serie y respuesta estimulada en circuitos de segundo orden

Circuitos dinámicos de segundo orden. Respuesta libre en el circuito RLC serie y respuesta estimulada en circuitos de segundo orden ircuitos dinámicos de segundo orden. espuesta libre en el circuito serie y respuesta estimulada en circuitos de segundo orden Objetivos. Analizar la respuesta libre en el circuito serie, mediante la metodología

Más detalles

INSTITUTO TECNOLÓGICO DE ESTUDIOS SUPERIORES DE LOS CABOS. Comportamiento de un circuito RLC como circuito de segundo orden. Proto-Board.

INSTITUTO TECNOLÓGICO DE ESTUDIOS SUPERIORES DE LOS CABOS. Comportamiento de un circuito RLC como circuito de segundo orden. Proto-Board. SUPERIORES DE LOS CABOS RESPONSABLE: Dirección académica y de investigación HOJA: 1 de 6 Desarrollo de la Práctica Unidad de aprendizaje: Practica número: 10 Nombre de la practica: Comportamiento de un

Más detalles

Análisis de Sistemas Lineales. Sistemas Dinámicos y Control Facultad de Ingeniería Universidad Nacional de Colombia

Análisis de Sistemas Lineales. Sistemas Dinámicos y Control Facultad de Ingeniería Universidad Nacional de Colombia Análisis de Sistemas Lineales Sistemas Dinámicos y Control 2001772 Facultad de Ingeniería Universidad Nacional de Colombia Sistemas SISO (Single Input Single Output) Los sistemas de una sola entrada y

Más detalles

TEMA I. Teoría de Circuitos

TEMA I. Teoría de Circuitos TEMA I Teoría de Circuitos Electrónica II 2007 1 1 Teoría de Circuitos 1.1 Introducción. 1.2 Elementos básicos 1.3 Leyes de Kirchhoff. 1.4 Métodos de análisis: mallas y nodos. 1.5 Teoremas de circuitos:

Más detalles

MATE Dr. Pedro V squez UPRM. P. V squez (UPRM) Conferencia 1/ 26

MATE Dr. Pedro V squez UPRM. P. V squez (UPRM) Conferencia 1/ 26 Dr. Pedro V squez UPRM P. V squez (UPRM) Conferencia 1/ 26 Modelos lineales: PVI MATE 4009 Objetivo En esta secciûn se resolver n sistemas din micos lineales en el cual cada modelo matem tico es una EDL

Más detalles

UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4

UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR DEPARTAMENTO DE CIENCIAS ÁREA DE MATEMATICA CATEDRA MATEMATICA 4 APLICACIONES DE LAS MATEMATICAS A LOS CIRCUITOS ELECTRICOS (RC, RL, RLC) Profesor: Cristian Castillo

Más detalles

5.3 Circuitos eléctricos

5.3 Circuitos eléctricos 5.3 Circuitos eléctricos 39 7. Un cuerpo de masa kg está unido a un resorte de constante k D 6 N/m. Determine la posición y la velocidad de la masa en todo tiempo, si sobre ésta se aplica una fuerza de

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2016

PRUEBA ESPECÍFICA PRUEBA 2016 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES PRUEBA ESPECÍFICA PRUEBA 2016 PRUEBA SOLUCIONARIO PROBAK 25 URTETIK Contesta 4 de los 5 ejercicios propuestos (Cada pregunta tiene un valor de 2,5 puntos, de los

Más detalles

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Mecánica Boletín n o 2 (Aplicaciones).

AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Mecánica Boletín n o 2 (Aplicaciones). AMPLIACIÓN DE MATEMÁTICAS Ingeniería Técnica Industrial. Especialidad en Mecánica Boletín n o 2 (Aplicaciones). 1. Experimentalmente se oserva que un ojeto de 3 kg de masa, alarga 153mm cierto muelle.

Más detalles

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio ema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 005/006 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

5 Estabilidad de soluciones de equilibrio

5 Estabilidad de soluciones de equilibrio Prácticas de Ecuaciones Diferenciales G. Aguilar, N. Boal, C. Clavero, F. Gaspar Estabilidad de soluciones de equilibrio Objetivos: Clasificar y analizar los puntos de equilibrio que aparecen en los sistemas

Más detalles

Ecuación del resorte

Ecuación del resorte Ecuación del resorte Movimiento oscilatorio libre no amortiguado Un peso de lb se coloca en el extremo inferior de un resorte helicoidal que está suspendido del techo. El peso se encuentra en reposo en

Más detalles

Ayudantía 2 Física General III (FIS130) Movimiento Armónico Amortiguado y Forzado Ayudante: Nicolás Corte Díaz

Ayudantía 2 Física General III (FIS130) Movimiento Armónico Amortiguado y Forzado Ayudante: Nicolás Corte Díaz Pregunta 1 Ayudantía 2 Física General III (FIS130) Movimiento Armónico Amortiguado y Forzado Ayudante: Nicolás Corte Díaz El oscilador amortiguado masa-resorte de la figura tiene masa m = 10[Kg] y K =

Más detalles

5 Aplicaciones de ED de segundo orden

5 Aplicaciones de ED de segundo orden APÍTULO 5 Aplicaciones de ED de segundo orden 5.3.3 ircuito de corriente continua V I L onsideremos ahora un circuito formado por un resistor, un capacitor y un inductor L conectados en serie con una fuente

Más detalles

MATE Dr. Pedro V squez UPRM. P. V squez (UPRM) Conferencia 1/ 26

MATE Dr. Pedro V squez UPRM. P. V squez (UPRM) Conferencia 1/ 26 Dr. Pedro V squez UPRM P. V squez (UPRM) Conferencia 1/ 26 Modelos lineales: PVI MATE 4009 Objetivo En esta secciûn se resolver n sistemas din micos lineales en el cual cada modelo matem tico es una EDL

Más detalles

Ecuaciones diferenciales de orden superior

Ecuaciones diferenciales de orden superior Práctica 2 Ecuaciones diferenciales de orden superior 2.1. Introducción Una ED de orden n es una ecuación de la forma o escrito en forma normal g(x, y, y,...,y (n) ) = 0 (2.1) y (n) = f(x, y, y,...,y (n

Más detalles

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma:

» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: 1.3. Oscilador armónico amortiguado 1» Ecuación del movimiento libre de un grado de libertad amortiguado: ED lineal de 2º orden homogénea cuya solución es de la forma: Si introducimos esta solución en

Más detalles

Taller No. 11: Ecuaciones Lineales de Segundo Orden El Oscilador Masa-Resorte Forzado

Taller No. 11: Ecuaciones Lineales de Segundo Orden El Oscilador Masa-Resorte Forzado Taller No. 11: Ecuaciones Lineales de Segundo Orden El Oscilador Masa-Resorte Forzado Objetivo Reforzar los temas que fundamentan el conocimiento de las ecuaciones diferenciales de segundo orden en el

Más detalles

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V

UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE V UNIVERSIDAD DE SAN CARLOS DE GUATEMALA FACULTAD DE INGENIERÍA DEPARTAMENTO DE MATEMÁTICA CLAVE-114-5-V-2-00-2013 CURSO: Matemática Intermedia III SEMESTRE: Segundo CÓDIGO DEL CURSO: 114 TIPO DE EXAMEN:

Más detalles

2 + ( ) + ( ) = ( ) (1.242) de otra forma se le llama no lineal. La solución deestetipodeecuacionesestádadopor: = (1.

2 + ( ) + ( ) = ( ) (1.242) de otra forma se le llama no lineal. La solución deestetipodeecuacionesestádadopor: = (1. 1.3. Ecuaciones diferenciales de 2do orden 1.3.1. Ecuaciones lineales homogéneas Una ED de segundo orden se le llama lineal si se escribe como: + ( ) + ( ) = ( ) (1.242) 2 de otra forma se le llama no

Más detalles

CARRERA INGENIERÍA MECÁNICA AUTOMOTRIZ ASIGNATURA: FÍSICA APLICADA. Profesor: Dr Idalberto Tamayo Ávila.

CARRERA INGENIERÍA MECÁNICA AUTOMOTRIZ ASIGNATURA: FÍSICA APLICADA. Profesor: Dr Idalberto Tamayo Ávila. CARRERA INGENIERÍA MECÁNICA AUTOMOTRIZ ASIGNATURA: FÍSICA APLICADA Profesor: Dr Idalberto Tamayo Ávila. RESUMEN DEL TEMA 1: CENTRO DE MASAS Y MOMENTOS DE INERCIA Cómo determinar las coordenadas de la posición

Más detalles

Aplicaciones de ED de segundo orden

Aplicaciones de ED de segundo orden CAPÍTULO 5 Aplicaciones de ED de segundo orden 5.3. Circuito RC de corriente continua R V I C En esta figura se muestra un circuito RC de corriente continua, el cual está formado por una malla simple con

Más detalles

Amortiguado. March 23, 2017

Amortiguado. March 23, 2017 Amortiguado March 23, 2017 In [1]: import numpy as np import matplotlib.pyplot as plt %matplotlib inline In [2]: # constantes generales g= 9.81 # [m/s^2] 0.1 Péndulo ideal A efectos de presentar código

Más detalles

V cos(wt) = V + V. = L. Sustituyendo, se obtiene la ecuación del dt circuito RL: di L + Ri = Vmcos(wt) dt

V cos(wt) = V + V. = L. Sustituyendo, se obtiene la ecuación del dt circuito RL: di L + Ri = Vmcos(wt) dt ircuitos y en estado estable ircuito Supongamos un circuito como el mostrado en la figura. Suponga que se desea calcular la corriente i(t) que circula por el circuito. De acuerdo con la ey de Kirchoff

Más detalles

sen(ωt + ϕ) donde la amplitud de corriente en función de la amplitud del voltaje es: = +

sen(ωt + ϕ) donde la amplitud de corriente en función de la amplitud del voltaje es: = + UNIVERSIDAD LIBRE FACULTAD DE INGENIERÌA DEPARTAMENTO DE CIENCIAS BÁSICAS TEMA: FRECUENCIA DE RESONANANCIA EN RLC 1. OBJETIVOS - Observar la variación de la amplitud de la corriente en un circuito RLC

Más detalles

CIRCUITOS DE SEGUNDO ORDEN. Mg. Amancio R. Rojas Flores

CIRCUITOS DE SEGUNDO ORDEN. Mg. Amancio R. Rojas Flores IRUITOS DE SEGUNDO ORDEN Mg. Amancio R. Rojas Flores Un circuito de segundo orden se caracteriza por una ecuación diferencial de segundo orden. onsta de elementos R, y 1.- INTRODUION En este capítulo se

Más detalles

= b, donde b es la dt constante de amortiguamiento del sistema.

= b, donde b es la dt constante de amortiguamiento del sistema. Moviiento oscilatorio: Un sistea asa-resorte está copuesto por una asa, sujeta al extreo libre de un resorte horizontal. Es conveniente introducir un sistea coordenado, de tal fora que se coloca el origen

Más detalles

Desempeño. Respuesta en el tiempo: transiente y estado estacionario. Sistema de control.

Desempeño. Respuesta en el tiempo: transiente y estado estacionario. Sistema de control. . Respuesta en el tiempo: transiente y estado estacionario. Sistema de control. Elizabeth Villota Curso: Ingeniería de Control (MT221) Facultad de Ingeniería Mecánica UNI-FIM 1 Herramientas del control

Más detalles

En su forma más simple, un sistema mecánico de traslación consiste de una masa, un resorte y un amortiguador, tal como lo ilustra la figura 1.

En su forma más simple, un sistema mecánico de traslación consiste de una masa, un resorte y un amortiguador, tal como lo ilustra la figura 1. ANALOGÍA ENTRE UN SISTEMA MECÁNICO DE TRASLACIÓN Y UN SISTEMA ELÉCTRICO. Tomado del texto de Circuitos III del Profesor Norman Mercado. 1. INTRODUCCIÓN. Tradicionalmente, las analogías entre los sistemas

Más detalles

EC1081 LABORATORIO DE CIRCUITOS ELÉCTRICOS PRELABORATORIO Nº 5 CIRCUITOS RC, RL Y RLC CONCEPTOS FUNDAMENTALES DE FILTROS

EC1081 LABORATORIO DE CIRCUITOS ELÉCTRICOS PRELABORATORIO Nº 5 CIRCUITOS RC, RL Y RLC CONCEPTOS FUNDAMENTALES DE FILTROS EC1081 LABORATORIO DE CIRCUITOS ELÉCTRICOS PRELABORATORIO Nº 5 CIRCUITOS RC, RL Y RLC CONCEPTOS FUNDAMENTALES DE FILTROS Se llama filtro a un circuito que permite que solo una parte de las señales de entrada

Más detalles

W. Bolton, Año 2001 Ingeniería de Control. Cap. 2

W. Bolton, Año 2001 Ingeniería de Control. Cap. 2 UNIVERSIDAD NACIONAL DEL SANTA ESCUELA DE INGENIERIA EN ENERGIA MODULO SEMANA 7 CURSO: CONTROL AUTOMATICO PROFESOR: MSC. CESAR LOPEZ AGUILAR INGENIERO EN ENERGIA-INGENIERO MECANICO ELECT 1. DEFINICION

Más detalles

Las raíces del polinomio característico P (λ) = λ 2 + 4λ + 3 son

Las raíces del polinomio característico P (λ) = λ 2 + 4λ + 3 son Tiempo total: 2 horas 4 minutos Problema 1 [2 puntos]. Colgamos una masa m de un muelle vertical cuya constante de Hooke es λ. El medio ofrece una resistencia igual a µ veces la velocidad instantánea.

Más detalles

Electrotecnia General (Prf. Dr. José Andrés Sancho Llerandi) Tema 12 REGÍMENES TRANSITORIOS I

Electrotecnia General (Prf. Dr. José Andrés Sancho Llerandi) Tema 12 REGÍMENES TRANSITORIOS I TEMA 12 REGÍMENES TRANSITORIOS I 12.1. DESCARGA DE UN CONDENSADOR. La ecuación general que define la descarga en un condensador en un circuito R, L y C, constituye un caso particular de sistemas de descarga

Más detalles

MODELADO CON ECUACIONES DIFERENCIALES PROBLEMAS RESUELTOS

MODELADO CON ECUACIONES DIFERENCIALES PROBLEMAS RESUELTOS UNIVERSIDAD DE ORIENTE NÚCLEO DE BOLÍVAR UNIDAD DE ESTUDIOS BÁSICOS DEPARTAMENTO DE CIENCIAS ASIGNATURA: MATEMÁTICAS IV Prof. José Gregorio Páez Veracierta Última actualización: 30-09-007 MODELADO CON

Más detalles

Guia 3. Circuitos de primer y segundo orden

Guia 3. Circuitos de primer y segundo orden Guia 3. Circuitos de primer y segundo orden 1. PSfrag Calcular replacements y graficar la respuesta v C (t) para t > 0 de la figura 1, si estuvo conectado a la fuente por un tiempo suficientemente grande

Más detalles

mv m2 R 2 m qb TqB qb El periodo es independiente dela rapidez

mv m2 R 2 m qb TqB qb El periodo es independiente dela rapidez ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL FACULTAD DE CIENCIAS NATURALES Y MATEMÁTICAS DEPARTAMENTO DE FÍSICA TERCERA EALUACION DE FÍSICA C SEPTIEMBRE 9 DEL 03 COMPROMISO DE HONOR Yo,.. al firmar este compromiso,

Más detalles

PRÁCTICA NÚMERO 5. ESTUDIO DE UN CIRCUITO RLC OSCILATORIO AMORTIGUADO.

PRÁCTICA NÚMERO 5. ESTUDIO DE UN CIRCUITO RLC OSCILATORIO AMORTIGUADO. PRÁCTICA NÚMERO 5. ESTUDIO DE UN CIRCUITO RLC OSCILATORIO AMORTIGUADO. 5.1. Análisis Teórico del Circuito. En esta práctica estamos formalmente ante el mismo circuito que en la práctica anterior, y que

Más detalles

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS

CÁTEDRA DE FÍSICA I OSCILACIONES - PROBLEMAS RESUELTOS CÁTEDRA DE FÍSICA I Ing. Civil, Ing. Electromecánica, Ing. Eléctrica, Ing. Mecánica OSCILACIONES - PROBLEMAS RESUELTOS PROBLEMA Nº 1 Un cuerpo oscila con movimiento armónico simple a lo largo del eje x.

Más detalles

TEMA 1 Métodos Matemáticos en Física L3. Oscilaciones en sistemas discretos

TEMA 1 Métodos Matemáticos en Física L3. Oscilaciones en sistemas discretos En parte Según Cap.1 Libro Levanuyk+Cano Antes de tratar aplicación de método Fourier para sistemas continuos http://www.youtube.com/watch?feature=endscreen&nr=1&v=no7zppqtzeg => Consideramos sistemas

Más detalles

Guia 4. Transformada de Laplace

Guia 4. Transformada de Laplace Guia 4. Transformada de Laplace 1. Encontrar la transformada de Laplace de la función f(t) = e αt [Asen(ωt)+Bcos(ωt)]. 2. Encontrar la transformada de Laplace de g(t) = d2 f(t) 2 si L[f(t)] = F(s). 3.

Más detalles

Inducción Magnética BIBLIOGRAFÍA

Inducción Magnética BIBLIOGRAFÍA nducción Magnética Fisica Tema V 8.1 nductancia Mutua 8. Autoinducción 8.3 Ejemplos de autoinducción 8.4 Corrientes inducidas 8.5 Circuitos 8.6 Energía del campo magnético 8.7 Circuito C. Oscilaciones

Más detalles

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES FÍSICA II. PRÁCTICAS DE LABORATORIO Electromagnetismo

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES FÍSICA II. PRÁCTICAS DE LABORATORIO Electromagnetismo ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES FÍSICA II PRÁCTICAS DE LABORATORIO Electromagnetismo ESCUELA TÉCNICA SUPERIOR DE INGENIEROS NAVALES PRÁCTICA 3 CIRCUITO LCR Jesús GÓMEZ GOÑI ÍNDICE CIRCUITO

Más detalles

Solución por coeficientes indeterminados

Solución por coeficientes indeterminados 1.4.3. Ecuaciones no homogéneas En esta sección se parte de la una ecuación diferencial lineal no homogénea + ( 0 + ( = ( (1.342 donde ( 6= 0. Donde la solución general de la ec. (1.342 es la suma de la

Más detalles

Tema 9: Movimiento oscilatorio*

Tema 9: Movimiento oscilatorio* ema 9: Movimiento oscilatorio* Física I Grado en Ingeniería Electrónica, Robótica y Mecatrónica (GIERM) Primer Curso *Prof.Dr. Joaquín Bernal Méndez/Prof.Dra. Ana M. Marco Ramírez Física I. Grado en Ingeniería

Más detalles

Figura 1. Circuito RLC

Figura 1. Circuito RLC APLIAIÓN: EL IRUITO RL. Al comienzo del tema de las E.D.O lineales de segundo orden hemos visto como estas ecuaciones sirven para modelizar distintos sitemas físicos. En concreto el circuito RL. Figura

Más detalles

Acústica y vibraciones mecánicas

Acústica y vibraciones mecánicas Sistemas de un grado de libertar libre Ecuación de movimiento de un sistema masa-resorte Considerando el sistema de la figura y por la aplicación dela segunda ley de Newton o principio de conservación

Más detalles

INDICE Capitulo 1. Variables del Circuito Eléctrico Capitulo 2. Elementos del Circuito Capitulo 3. Circuitos Resistivos

INDICE Capitulo 1. Variables del Circuito Eléctrico Capitulo 2. Elementos del Circuito Capitulo 3. Circuitos Resistivos INDICE Capitulo 1. Variables del Circuito Eléctrico 1 1.1. Albores de la ciencia eléctrica 2 1.2. Circuitos eléctricos y flujo de corriente 10 1.3. Sistemas de unidades 16 1.4. Voltaje 18 1.5. Potencia

Más detalles

Temas Presentes en la siguiente guía: GUIA DE ECUACIONES DIFERENCIALES 2da PARTE. Con más de 250 ejercicios.

Temas Presentes en la siguiente guía: GUIA DE ECUACIONES DIFERENCIALES 2da PARTE. Con más de 250 ejercicios. Temas Presentes en la siguiente guía: GUIA DE ECUACIONES DIFERENCIALES 2da PARTE. Con más de 250 ejercicios. (1) Algunos Tipos de Sustituciones. (2) Reducción de Ordenes (3) Sistema de Ecuaciones Diferenciales.

Más detalles

CÁLCULO III. Apuntes

CÁLCULO III. Apuntes CÁLCULO III. Apuntes Grado en Ingeniería en Tecnologías Industriales Tema 2 Arturo de Pablo Elena Romera Open Course Ware, UC3M http://ocw.uc3m.es/matematicas 2 ECUACIONES LINEALES DE ORDEN SUPERIOR Presentamos

Más detalles

4.- ANALISIS DE SISTEMAS EN TIEMPO CONTINUO

4.- ANALISIS DE SISTEMAS EN TIEMPO CONTINUO ANALISIS DE SISTEMAS EN TIEMPO CONTINUO Dinámica de Sistemas 4. 4.- ANALISIS DE SISTEMAS EN TIEMPO CONTINUO 4..- Efecto de los polos en el comportamiento del sistema. 4..- Estabilidad. 4.3.- Análisis de

Más detalles

7.1 Transferencia de Potencia en un Convertidor de Energía de las Olas

7.1 Transferencia de Potencia en un Convertidor de Energía de las Olas 7. CONTROL DEL CONVERTIDOR DE ENERGÍA DE LAS OLAS OSCILANTE Antes de abordar el tópico de control en los convertidores de energía de las olas estudiaremos los estados que definen la transferencia de potencia

Más detalles

Lección 1.- Ecuaciones Diferenciales de Primer Orden

Lección 1.- Ecuaciones Diferenciales de Primer Orden Métodos Matemáticos de la Ingeniería Química. 009 0. Lección.- Ecuaciones Diferenciales de Primer Orden - Sección.: al. - Sección.: c, a, 3, 5, 7, 9,, 4 y. - Sección.3: y 3. - Sección.4:, 3, 5 y 5. - Sección.5:,

Más detalles

Movimiento oscilatorio

Movimiento oscilatorio Movimiento oscilatorio Física I Grado en Ingeniería de Organización Industrial Primer Curso Joaquín Bernal Méndez Curso 013/014 Dpto.Física Aplicada III Universidad de Sevilla Índice Introducción: movimiento

Más detalles

Manual de Prácticas. Práctica número 10 Capacitor, resistor e inductor equivalentes

Manual de Prácticas. Práctica número 10 Capacitor, resistor e inductor equivalentes Práctica número 0 Capacitor, resistor e inductor equivalentes Tema Correspondiente: Circuitos eléctricos de corriente alterna Nombre del Profesor: Nombre completo del alumno Firma N de brigada: Fecha de

Más detalles

FG3-ACTIVIDADES André Oliva, BSc

FG3-ACTIVIDADES André Oliva, BSc GANDREOLIVA FG3-ACTIVIDADES André Oliva, BSc Universidad de Costa Rica www.gandreoliva.org CC-BY-NC-SA 2016 André Oliva Esta obra cuenta con una licencia Creative Commons Attribution- Non Commercial-Share

Más detalles

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO.

ACADEMIA CENTRO DE APOYO AL ESTUDIO MOVIMIENTO VIBRATORIO. MOVIMIENTO VIBRATORIO. Movimiento vibratorio armónico simple 1. Explica como varía la energía mecánica de un oscilador lineal si: a) Se duplica la amplitud. b) Se duplica la frecuencia. c) Se duplica la

Más detalles

Licenciatura en Química PROGRAMA DE ESTUDIO. Obligatoria José Gilberto Torres Torres, Carlos Ernesto Programa elaborado por:

Licenciatura en Química PROGRAMA DE ESTUDIO. Obligatoria José Gilberto Torres Torres, Carlos Ernesto Programa elaborado por: PROGRAMA DE ESTUDIO Ecuaciones Diferenciales Aplicadas Programa Educativo: Área de Formación: Licenciatura en Química General Horas teóricas: 2 Horas prácticas: 2 Total de horas: 4 Total de créditos: 6

Más detalles

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR

Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Física General 1 Proyecto PMME - Curso 2008 Instituto de Física Facultad de Ingeniería UdelaR Autores Introducción C O N S E R V A C I Ó N D E L M O M E N T O A N G U L A R Juan Andrés Diana, Fernando

Más detalles

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR

ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA ELECTRÓNICA Y TELECOMUNICACIONES ECUACIONES DIFERENCIALES DE ORDEN SUPERIOR Solución analítica de ED de orden superior con fenómeno resonante. Adrian Montoya

Más detalles

Tema 1: movimiento oscilatorio

Tema 1: movimiento oscilatorio Tema 1: movimiento oscilatorio Oscilaciones y Ondas Fundamentos físicos de la ingeniería Ingeniería Industrial Primer Curso Curso 9/1 1 Índice Introducción: movimiento oscilatorio Representación matemática

Más detalles

[1] Se tiene la siguiente gráfica: La respuesta corresponde al siguiente sistema:

[1] Se tiene la siguiente gráfica: La respuesta corresponde al siguiente sistema: [1] Se tiene la siguiente gráfica: La respuesta corresponde al siguiente sistema: Si la entrada corresponde a escalón unitario, determinar: En base a la gráfica: a) Tiempo de establecimiento para un error

Más detalles

UNIVERSIDAD DE ALCALÁ Escuela Politécnica Superior Grado en Electrónica y Automática Industrial

UNIVERSIDAD DE ALCALÁ Escuela Politécnica Superior Grado en Electrónica y Automática Industrial 1.- El circuito de la figura se encuentra en las condiciones mostradas desde t = -. En t = 0 se conecta la fuente de tensión continua E, permaneciendo así indefinidamente. E= 12V ; R= 2 Ω ; L = 1 H a)

Más detalles

TERCERA EVALUACIÓN DE FÍSICA C FEBRERO 19 DE 2013 SOLUCIÓN

TERCERA EVALUACIÓN DE FÍSICA C FEBRERO 19 DE 2013 SOLUCIÓN TERCERA EVALUACIÓN DE FÍSICA C FEBRERO 19 DE 2013 SOLUCIÓN PREGUNTA 1 (10 puntos) Considere un foco el cual disipa una potencia de 60 W cuando se conecta a una batería de 120 V. El foco tiene un filamento

Más detalles

Oscilaciones amortiguadas.

Oscilaciones amortiguadas. PROBLEMAS DE OSCILACIONES. Oscilaciones amortiguadas. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons 3.0, BY-SA (Atribución-CompartirIgual) Problema 1 Un oscilador armónico amortiguado,

Más detalles

Programa de estudio ECUACIONES DIFERENCIALES

Programa de estudio ECUACIONES DIFERENCIALES 1.-Área académica Técnica 2.-Programa educativo Ingeniería Mecánica Eléctrica 3.-Dependencia académica Ingeniería Mecánica Eléctrica Región Xalapa, Veracruz, Cd. Mendoza, Poza Rica y Coatzacoalcos 6.-Área

Más detalles

Certamen 1 Fis130 (PAUTA) Física General III (FIS130) Movimiento Oscilatorio, Ondas Mecánicas y Sonido

Certamen 1 Fis130 (PAUTA) Física General III (FIS130) Movimiento Oscilatorio, Ondas Mecánicas y Sonido UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA Certamen 1 Fis130 (PAUTA) Física General III (FIS130) Movimiento Oscilatorio, Ondas Mecánicas y Sonido Pregunta 1 Considere un péndulo formada por una masa de,

Más detalles

Por tanto, la anterior ecuación puede reescribirse de la siguiente manera:

Por tanto, la anterior ecuación puede reescribirse de la siguiente manera: TUTORIAL ECUACIONES DIFERENCIALES Las ecuaciones diferenciales regulan muchos fenómenos físicos, como entenderéis perfectamente con este tutorial, resultando fundamental entender como ingeniero los métodos

Más detalles

Circuitos de Segundo Orden

Circuitos de Segundo Orden VII Objetivos: o Definir y analizar la respuesta natural de un circuito RL o Identificar y reconocer el tipo de respuesta del circuito RL a través de las raíces de la ecuación característica de la red

Más detalles

Tema 9: Movimiento oscilatorio

Tema 9: Movimiento oscilatorio Tema 9: Movimiento oscilatorio FISICA I, 1º, Grado en Ingeniería Civil Departamento de Física Aplicada III Escuela Técnica Superior de Ingeniería Universidad de Sevilla Índice Introducción Representación

Más detalles

CARRERA : Ing. MECÁNICA GUIA DE PROBLEMAS Nº12

CARRERA : Ing. MECÁNICA GUIA DE PROBLEMAS Nº12 ASIGNATURA : CARRERA : Ing. MECÁNICA GUIA DE PROBLEMAS Nº12 FACULTAD DE INGENIERÍA 2018 1 GUIAS DE PROBLEMAS Nº12 PROBLEMA Nº1 Un bloque de masa m está colocado en el punto medio de una viga de peso ligero

Más detalles

Taller No. 14: Circuitos Eléctricos

Taller No. 14: Circuitos Eléctricos Taller No. 14: Circuitos Eléctricos Objetivo Reforzar los temas que fundamentan el conocimiento de las ecuaciones diferenciales de segundo orden, en el caso específico de los circuitos eléctricos RLC.

Más detalles