Seminario de Matemática Financiera



Documentos relacionados
Sistemas de impresión y tamaños mínimos Printing Systems and minimum sizes

Este proyecto tiene como finalidad la creación de una aplicación para la gestión y explotación de los teléfonos de los empleados de una gran compañía.

Matemáticas Muestra Cuadernillo de Examen

Diseño ergonómico o diseño centrado en el usuario?

Máster en Finanzas Cuantitativas

Volatilidad: Noviembre 2010 Futuros Frijol de Soya

MANUAL EASYCHAIR. A) Ingresar su nombre de usuario y password, si ya tiene una cuenta registrada Ó

Portfolio Management Theory

Título del Proyecto: Sistema Web de gestión de facturas electrónicas.

PROGRAMA. Operaciones de Banca y Bolsa SYLLABUS BANKING AND STOCK MARKET OPERATIONS

Programación lineal Optimización de procesos químicos DIQUIMA-ETSII

CENTRO DE FORMACIÓN DE DE BOLSAS Y Y MERCADOS ESPAÑOLES. MatLab. Introducción a la programación en Matlab para la medición de riesgos financieros

SISTEMA DE GESTIÓN Y ANÁLISIS DE PUBLICIDAD EN TELEVISIÓN

Creating your Single Sign-On Account for the PowerSchool Parent Portal

1. Sign in to the website, / Iniciar sesión en el sitio,

CAPÍTULO 1: INTRODUCCIÓN. El presente capítulo muestra una introducción al problema de Optimizar un Modelo de

Tesis de Maestría titulada

TOUCH MATH. Students will only use Touch Math on math facts that are not memorized.

Aula Banca Privada. La importancia de la diversificación

Técnicas de valor presente para calcular el valor en uso

Portfolio Management Theory

Tema 2. Espacios Vectoriales Introducción

iclef-2002 at Universities of Alicante and Jaen University of Alicante (Spain)

Qué viva la Gráfica de Cien!

MERCADOS FINANCIEROS: LOS FONDOS DE INVERSIÓN II

Portafolios Eficientes para agentes con perspectiva Pesos

LICENCIATURA EN ADMINISTRACIÓN Y DIRECCIÓN DE EMPRESAS ASIGNATURA GESTIÓN DE RIESGO FINANCIERO GUÍA DOCENTE

PROBLEMAS PARA LA CLASE DEL 20 DE FEBRERO DEL 2008

A VOLATILITY SMILE MODEL FOR PRICING COMMODITIES DERIVATIVES

Sheldon Natenberg TRADING VOLATILITY WITH OPTIONS INICIO 24 DE OCTUBRE DE Colombia, Bogotá. RiskMathics FINANCIAL INNOVATION

An explanation by Sr. Jordan

EXERCISES. product of one of them by the square of the other takes a maximum value.

Agustiniano Ciudad Salitre School Computer Science Support Guide Second grade First term

UNIVERSIDAD DE GUAYAQUIL FACULTAD DE ODONTOLOGÍA ESCUELA DE POSTGRADO Dr. José Apolo Pineda

Una Aplicación del Cálculo Matricial a un Problema de Ingeniería

Sistema basado en firma digital para enviar datos por Internet de forma segura mediante un navegador.

2) Se ha considerado únicamente la mano de obra, teniéndose en cuenta las horas utilizadas en cada actividad por unidad de página.

Asesoramiento Patrimonial Independiente

Black-Scholes. 1 Introducción y objetivos

La Calidad como determinante de la demanda de servicios de atención médica primaria en México

DISEÑO DE UN SISTEMA AUTOMÁTICO DE INVERSIÓN EN BOLSA BASADO EN TÉCNICAS DE PREDICCIÓN DE SERIES TEMPORALES

LÍMITES Y CONTINUIDAD DE FUNCIONES

Objetivo: Beneficios del Curso: A quiénes se encuentra dirigido?

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

UNIT 2 DIVISIBILITY 1.- MULTIPLES AND FACTORS Concept of multiple Concept of factor

Universidad de Guadalajara

Teoría Clásica de Optimización de Carteras

Programación lineal. Optimización de procesos químicos

Cálculo Simbólico también es posible con GeoGebra

Sustainability- - Sustenibilidad

Restricciones sobre dominios finitos con Gprolog

Sistema!de!iluminación!de!un!longboard!

Movimiento a través de una. José San Martín

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

LAC Modificación DIRECT ALLOCATIONS TO ISPs DISTRIBUCIONES INICIALES A ISPs

LAC Modificación DIRECT ALLOCATIONS TO ISPs DISTRIBUCIONES DIRECTAS A ISPs

Subespacios vectoriales en R n

Análisis Técnico. Inicación en Bolsa

DEMOSTRACIÓN DE LA LEY DE SIGNOS DE LA MULTIPLICACION [1]

manual de servicio nissan murano z51

La solución de algunas EDO de Riccati

Tema 3. Medidas de tendencia central Introducción. Contenido


Puedes descargar los archivos de instalación de Windows SteadyState en el Centro de descarga Microsoft.

Edgar Quiñones. HHRR: Common Sense Does Not Mean Business. Objective

Puede pagar facturas y gastos periódicos como el alquiler, el gas, la electricidad, el agua y el teléfono y también otros gastos del hogar.

Certificación en España según normas UNE-EN-ISO 9000 y 14000

Ecuaciones de primer grado con dos incógnitas

Diagnosis y Crítica del modelo -Ajuste de distribuciones con Statgraphics-

Opciones reales. Dr. Guillermo López Dumrauf. Buenos Aires, 4 de septiembre de dumrauf@fibertel.com.ar

Curso de Preparación para la Certificación FRM

6 th Grade Spring Break Math Activities Instructions (Spanish)

PROGRAMACIÓN LINEAL Introducción Inecuaciones lineales con 2 variables

Aproximación local. Plano tangente. Derivadas parciales.

Determine if this function achieves a maximum in A. Does it achieve a minimum?

Introducción al programa WinQSB

Material realizado por J. David Moreno y María Gutiérrez Universidad Carlos III de Madrid

MATEMÁTICAS ESO EVALUACIÓN: CRITERIOS E INSTRUMENTOS CURSO Colegio B. V. María (Irlandesas) Castilleja de la Cuesta (Sevilla) Página 1 de 7

Creando Cuentas Nuevas para Padres / Alumnos en el

Circuitos Básicos con OAs

Finanzas de Empresas Turísticas

Propiedades del Mineral en Molinos SAG y AG Ahorrando tiempo y dinero con MetSMART: Probando y Simulando la Dureza del Mineral

Monografías de Juan Mascareñas sobre Finanzas Corporativas ISSN: Introducción al VaR

Ciclo de vida y Metodologías para el desarrollo de SW Definición de la metodología

Área Académica: Escuela Superior Huejutla. Profesor: L.A. Ismael Bautista Hernández

Los cambios del borrador ISO 14001:2015

Pablo Fernández. IESE. Valoración de opciones por simulación 1 VALORACIÓN DE OPCIONES POR SIMULACIÓN Pablo Fernández IESE

Diseño de un directorio Web de diseñadores gráficos, ilustradores y fotógrafos.

Introduccion a la teoria del arbitraje

Integrales y ejemplos de aplicación

Análisis de medidas conjuntas (conjoint analysis)

RECORDATORIO / REMINDER VERSIÓN EN ESPAÑOL E INGLÉS / SPANISH AND ENGLISH VERSION

Pregunta 1 Suponga que una muestra de 35 observaciones es obtenida de una población con media y varianza. Entonces la se calcula como.

DUAL IMMERSION PROGRAM INFORMATION PRESCHOOL PRESENTATION SEPTEMBER 10, :30 P.M.

Trading & Investment In Banking

Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Finanzas de Empresas Turísticas

Bases de datos. 1. Introducción

Covarianza y coeficiente de correlación

Transcripción:

Seminario de Matemática Financiera Instituto MEFF-RiskLab Volumen 3. Años 2000 y 2001 Director: Santiago Carrillo Menéndez

c 2003 Santiago Carrillo Menéndez y otros Preparación de la edición: Pablo Fernández Gallardo Maquetación: Aula Documental de Investigación. Martín de los Heros, 66. 28008. Madrid Edita: Instituto MEFF Imprime: JUMA ISBN: 84-688-2450-X Depósito Legal M-29207-2003 Printed in Spain - Impreso en España Este libro no podrá ser reproducido total o parcialmente, ni transmitirse por procedimientos electrónicos, mecánicos, magnéticos o por sistemas de almacenamiento y recuperación informáticos o cualquier otro método, ni su préstamo, alquiler o cualquier otra forma de cesión de uso del ejemplar, sin el permiso previo, por escrito, del titular o titulares del copyright.

Prólogo Un año más, Instituto MEFF y RiskLab Madrid tenemos la satisfacción de presentar este libro que recoge las diversas intervenciones que han tenido lugar a lo largo de los años 2000 y 2001 en el Seminario de Matemática Financiera que organizamos conjuntamente. La gran acogida de este seminario es una muestra más de la necesaria colaboración entre el mundo académico y la industria financiera y, desde Instituto MEFF, nos sentimos muy satisfechos de contribuir en la creación de un punto de encuentro entre ambas comunidades que sirva como vía de comunicación de conocimientos e inquietudes. La importancia del mundo universitario, no sólo como lugar de formación de los futuros profesionales sino también como centro de investigación que colabora con la industria en la aportación de soluciones a las necesidades de los mercados, es especialmente evidente en el mundo de los productos derivados. En este campo la colaboración ha sido muy fructífera logrando, por un lado ampliar la gama de productos disponibles para la comunidad financiera y por otro, aportar la seguridad que proporcionan los sistemas de valoración rigurosos y eficientes. Así pues, este Seminario tiene por objetivo contribuir a fortalecer los lazos entre ambos mundos y pretende no sólo ser una fuente de divulgación del conocimiento financiero, sino también constituirse como un foro permanente de discusión entre académicos y profesionales del sector. No quisiera finalizar este prólogo sin antes agradecer a Santiago Carrillo, director del seminario, su esfuerzo y dedicación, a los ponentes del mundo académico y profesional que desinteresadamente colaboran en esta actividad, a todo el personal de Instituto MEFF que la hace posible y por supuesto, a los alumnos que un mes tras otro nos animan con su asistencia a seguir trabajando en este interesante proyecto. Beatriz Alejandro Directora del Instituto MEFF v

Índice A modo de introducción........................... ix Portfolio optimization for alternative investments.......... 1 Ian Buckley, Gustavo Comezaña, Ben Djerroud, Luis Seco Valoración de derivados financieros mediante diferencias finitas.. 15 José María Pesquero Fernández Aplicación de la teoría de opciones a la evaluación del riesgo de crédito: relación entre probabilidad de impago y rating mediante un probit ordenado.............................. 37 Teresa Corzo Santamaría Non-gaussian multivariate simulations in mark-to-future calculations....................................... 51 Olivier Croissant, Gustavo Comezaña, Marcos Escobar Pablo Fernández, Nicolás Hernández, Luis Ángel Seco Las Matemáticas en las Finanzas..................... 65 Dídac Artés A dynamical model for stock market indices.............. 81 Jaume Masoliver, Miquel Montero and Josep M. Porrà Risk management with drawdown functions.............. 95 Alexei Chekhlov, Stanislav Uryasev, Michael Zabarankin Local volatility changes in the Black-Scholes model......... 113 Hans-Peter Bermin and Arturo Kohatsu-Higa Correlaciones y cópulas en finanzas.................... 135 Juan Carlos García Céspedes Introduction to the empirical analysis of swap spreads....... 159 David Méndez-Vives vii

Testing the optimality of immunization strategies with transaction costs....................................... 175 Eliseo Navarro and Juan M. Nave Embedded options and integrated asset-liability management for life insurance.................................. 203 Gabriele F. Susinno Métodos de valoración de opciones americanas: el enfoque leastsquares Monte Carlo............................ 219 Manuel Moreno y Javier F. Navas Modelos de volatilidad del futuro sobre el bono nocional a10años..................................... 239 RicardoGimenoNogués y Eduardo Morales Martínez Aplicación a índices de bolsa de modelos de raíz unitaria estocástica.................................... 259 Román Mínguez Salido y Eduardo Morales Martínez An analytic approach to credit risk of loan portfolios of Spanish banks....................................... 287 Juan Carlos G. Céspedes, Ángel Mencía, Mercedes Morris viii

A modo de introducción Este tercer volumen del Seminario de Matemática Financiera recoge dieciséis de las dieciocho contribuciones al mismo, correspondientes a los años 2000 y 2001. Una vez más toca destacar, como uno de los méritos de este seminario, la diversidad de temas tratados, así como la colaboración de académicos y profesionales de las instituciones financieras en la buena marcha del mismo. La conferencia de Dídac Artés ( Las Matemáticas en las Finanzas ) bien podría servir de introducción general a todos estos volúmenes del Seminario de Matemática Financiera. Se han abordado los aspectos numéricos subyacentes en la valoración de algunos derivados en las conferencias (ahora artículos) de Manuel Moreno y Javier Fernández Navas ( Métodos de valoración de opciones americanas: el enfoque least-squares Monte Carlo ) y de José María Pesquero Fernández ( Valoración de derivados financieros mediante diferencias finitas ). Varios de los conferenciantes han centrado su atención en el riesgo de crédito: Teresa Corzo Santamaría ( Aplicación de la teoría de opciones a la evaluación del riesgo de crédito: relación entre probabilidad de impago y rating mediante un probit ordenado ) y Juan Carlos García Céspedes, Ángel Mencía y Mercedes Morris ( An analytic approach to credit risk of loan portfolios of Spanish banks ). Dos de los trabajos aquí recogidos abordan el delicado tema de las simulaciones multivariantes no gaussianas, de vital importancia si se quiere agregar riesgos de manera consistente: Non-gaussian multivariate simulations in mark-to-future calculations (Olivier Croissant, Gustavo Comezaña, Marcos Escobar, Pablo Fernández, Nicolás Hernández, Luis Ángel Seco) y Correlaciones y cópulas en finanzas (Juan Carlos García Céspedes). Prueba de la diversidad de la problemática abordada en el seminario son los trabajos siguientes, que abordan problemas de indudable interés teórico y práctico: A dynamical model for stock market indices (Jaume Masoliver, Miquel Montero y Josep M. Porrà), Risk management with drawdown functions (Alexei Chekhlov, Stanislav Uryasev y Michael Zabarankin), Local volatility changes in the Black-Scholes model (Hans-Peter Bermin y Arturo Kohatsu-Higa), Introduction to the empirical analysis of swap spreads (David Méndez-Vives), Testing the optimality of immunization strategies with transaction costs (Eliseo Navarro y Juan M. Nave), Modelos de volatilidad del futuro sobre el bono nocional a 10 años (Ricardo Gimeno Nogués y Eduardo Morales Martínez) y Aplicación a índices de bolsa de modelos de raíz unitaria estocástica (Román Mínguez Salido y Eduardo Morales Martínez). Por primera vez en el Seminario de Matemática Financiera, se abordan temas relacionados con la gestión alternativa, tan de moda hoy en día, en el trabajo de Ian ix

Buckley, Gustavo Comezaña, Ben Djerroud y Luis Ángel Seco ( Portfolio optimization for alternative investments ), y con los seguros en el de Gabriele Susinno ( Embedded options and integrated asset-liability management for life insurance ). Dos contribuciones se han quedado fuera de este volumen: la del profesor José Manuel Campa (en aquel momento, profesor visitante en el CEMFI): El uso de futuros en instrumentos de inversión (enero de 2000), había sido publicada previamente (ver el Journal of International Money and Finance, volumen 17). Por razones ajenas a nuestra voluntad, no hemos podido publicar la de Mario Petrucci: La formulación de Black-Scholes con procesos de jump diffusion (marzo de 2001). El texto de ambas conferencias sigue a disposición de los interesados en la página web del RiskLab: www.risklab-madrid.uam.es/es/seminarios/meff-uam/seminarios.html. Quiero terminar estas líneas agradeciendo a todos los ponentes y a todos los participantes del Seminario de Matemática Financiera su interés: ellos son quienes hacen posible que esta aventura iniciada en el año 1997 por el Instituto MEFF y el RiskLab tenga tan buena salud cuando está a punto de cumplir los siete años de vida. Santiago Carrillo Menéndez Director del RiskLab-Madrid x

Portfolio optimization for alternative investments Ian Buckley, Gustavo Comezaña, Ben Djerroud and Luis Ángel Seco1 Abstract: A tractable and practical generalization to Markowitz meanvariance style portfolio theory is presented in which portfolios of hedge funds and commodity trading advisors (CTAs) can be handled successfully. Making the assumption that their returns have the finite Gaussian mixture distribution and using the probability of outperforming a target return as the objective function, these assets are optimized in the static setting by solving a non-linear programming problem to find portfolio weights. 1. Introduction In this article, Markowitz mean-variance portfolio theory [20], the foundation for single-period investment theory, is generalized to describe portfolios of assets whose returns are described by the (finite) Gaussian mixture (GM) (alternatively mixture of normals) distribution. Whilst the assets in the universe could be of the conventional variety, such as equities or bonds, our primary goal is to develop a framework which lends itself to the management of portfolios of hedge funds or even for optimally combining the recommendations from a group of commodity trading advisors (CTAs). That is to say, we seek an approach suitable for finding an optimal fund of funds. Because of the infinite variety of hedge fund and CTA strategies and the speed at which a given fund s composition can be changed, the alternative assets that we describe are not expected to behave like conventional assets such as individual equities, bonds or even long-only funds such as index tracker funds and exchange traded funds (ETFs). Indeed we need to be prepared for their prices to be less predictable, more volatile and to have more exotic distributions. The new approach is ideal for an industrial setting, providing considerable additional flexibility over and above a standard Markowitz approach, with only a modest increase in complexity. 1 Ian Buckley es investigador en el Center for Qualitative Finance (Imperial College) y miembro visitante del Risklab Toronto. Gustavo Comezaña es miembro del Risklab Toronto y director de Investigación y Desarrollo de la firma de gestión financiera Sigma Analysis and Management. Ben Djerroud es analista de Sigma Analysis and Management. Luis Ángel Seco es profesor del Departamento de Matemáticas de la Universidad de Toronto, director del Risklab Toronto y presidente de Sigma Analysis and Management. Esta charla fue impartida por el último autor (Luis Ángel Seco) en la sesión del Seminario Instituto MEFF-RiskLab de enero de 2000.

2 Ian Buckley, Gustavo Comezaña, Ben Djerroud and Luis Ángel Seco The assumption that asset returns have the multivariate Gaussian distribution is a reasonable first approximation to reality and gives rise to tractable theories. Many theories forming the foundations of mathematical finance adopt this conjecture, including Black-Scholes-Merton option pricing theory, Markowitz portfolio theory, and the CAPM and APT equity pricing models. However, it is well-known that for assets, both in the conventional sense of equities and bonds, but also in a broader sense, for example in the form of country or sector-based equity or bond indices, and even more so for alternative investments such as hedge funds and CTAs, the situation is more complex. The purpose of the generalization described in this paper is to address two well-known limitations with the assumption that asset returns obey the multivariate Gaussian distribution with constant parameters over time: The skewed (asymmetric around the mean) and leptokurtotic (more kurtotic or fat-tailed than a Gaussian distribution) nature of marginal probability density functions (pdfs) The asymmetric correlation (or correlation breakdown) phenomenon, which describes the tendency for the correlations between asset returns to be dependent on the prevailing direction of the market. Typically correlations are larger in a bear market than a bull market. The first point refers to the univariate distributions for returns that are observed if assets are considered one at a time. The second point describes effects that can only be observed when the returns to multiple assets are investigated together. One way to capture the dependence structure of multiple random variables in a risk management setting is by using copulas [8], [10], [13], [16], [19]. Copulas describe that part of the shape of the pdf that cannot be described by the marginal distributions. A (finite) Gaussian mixture distribution, as described in this paper, can be used to approximate a general multivariate distribution, as equivalently expressed either as a pdf or decomposed into a series of univariate marginal distributions and a copula. In fact, strictly the term asymmetric correlation describes a proposed explanation for a phenomenon, rather than the underlying, fundamental phenomenon itself. The latter is simply that the iso-probability contours of the multivariate pdf for asset returns are less symmetric than the ellipsoidal contours of the multivariate normal distribution. Apart from those distributions with pdfs with ellipsoidal iso-probability surfaces, such as the Gaussian and multivariate t, for all other multivariate distributions the correlation matrix does not provide an adequate summary of the dependence structure of the constituent risks. Considering multiple regimes within which the ordinary constant parameter Gaussian assumptions prevail successfully gives rise to a model that reflects reality better than a standard Gaussian model, without having to depart too radically from it. However, it is certainly not the only way to construct a model with non-ellipsoidal iso-probability contours. Indeed alternative assumptions to achieve the same ends may render the concept of correlation redundant and statements about its evolution over time, meaningless.

Portfolio optimization for alternative investments 3 Apart from the distributional assumptions, the second fundamental difference between the novel approach described in this paper (the GM approach) andthe Markowitz mean-variance approach, is that we adopt a different objective function. This is essential in order to get different optimal portfolio weights. When we refer to the GM approach, the use of an alternative objective will be implicit. A drawback of using a more exotic objective than the variance is that the resultant optimization problem is not a linear-quadratic program (LQP), as it is when variance is the chosen risk measure. However, the nonlinear optimization problem with multiple local extrema that replaces it can be solved reliably and quickly with commonly available routines, at least with a moderate number of assets (i.e. less than ten). The plan for the paper is as follows. Evidence of covariance regimes over time is given in Section 2, including a summary of existing results from the literature for conventional assets and original results for alternative investments. We are introduced to the GM distribution in Section 3 in which we find definitions of GM distributed random variables, estimation issues, and some identities concerning moments and linear combinations of GM variables. In Section 4 we take the probability of shortfall objective, assume GM distributed asset returns and consider a theory based on these ingredients. Key theoretical and numerical results are described. Section 5 contains our conclusions. 2. Evidence of covariance regimes During the aftermath of the 1987 market crash, a deficiency in the risk models based on the multivariate normal distribution received increased attention: a simultaneous downward movement in all the markets of the world was a more frequent occurrence than the models predicted when calibrated using asset returns observed during tranquil periods. Diversifying amongst different assets or markets was less effective at reducing risk than many participants had hitherto believed. Important investigations of the contagion phenomenon include [9], [3], [18]. In common with their conventional asset counterparts, alternative assets exhibit the correlation breakdown phenomenon. As evidence we present Figure 1, which shows the correlation matrices between hedge fund returns in tranquil and distressed regimes. During tranquil periods correlations are small, whereas during periods of market distress, the asset returns become highly correlated, with off-diagonal correlation values close to one. We note in passing that because finding portfolio weights in a mean-variance setting is tantamount to inverting the covariance matrix, then errors in the optimal portfolio weights will be most sensitive to errors in the covariance matrix when the latter is closest to being singular (having a determinant close to zero). The covariance matrix will be more singular in the distressed regime than in the tranquil regime.

4 Ian Buckley, Gustavo Comezaña, Ben Djerroud and Luis Ángel Seco Figure 1: Bar charts to show typical values of correlations between the returns of a group of eight hedge funds during tranquil (left) and distressed (right) periods. 3. Gaussian mixture distribution The Gaussian mixture distribution is selected from the range of parametric alternatives to the normal distribution for its tractability: calculations using it often closely resemble those using the normal distribution. Whilst there are many univariate parametric probability distributions, (e.g. hyperbolic, t, generalized beta, α-stable) the list for multivariate distributions is shorter (e.g. t, α-stable). The GM distribution has been used before in the field of finance, mostly in its univariate guise for the estimation of Value at Risk (VaR). [15] develop a model for estimating VaR in which the user is free to choose any probability distribution for the daily changes in each market variable and employ the univariate mixture of normals distribution as an example. In the same field, [24] assumes probability distributions for each of the parameters describing the mixture of normals and uses a Bayesian updating scheme; and [22] uses a quasi-bayesian maximum likelihood estimation procedure. The current RiskMetrics TM methodology uses GM with a mixture of two normal distributions. More recently GM models have been used [17] to model futures markets and for portfolio risk management and by [11] for credit risk. [23] develops an efficient analytical Monte Carlo method for generating changes in asset prices using a multivariate mixture of normal distributions with arbitrary covariance matrix. [5] describe computational tools for the calculation of VaR and other more sophisticated risk measures such as shortfall, Max-VaR, conditional VaR and conditional risk measures that aim to take account of the heteroskedastic structure of time series.

Portfolio optimization for alternative investments 5 This paper describes the static, single period setting only, in which distributions of random variables are sufficient to specify the model. In this setting the key idea is that we build an exotic distribution by mixing simple ones, namely copies of the normal distribution. Our only assumption is that over an interval of time, the returns to the assets in the universe are described by the multivariate GM distribution. It is unnecessary to make further assumptions about the nature of the asset price evolution during this interval. However, we do maintain an interest in the dynamic case, i.e. the multiple period discrete or continuous time setting, because we wish to motivate the use of the GM distribution and we prefer to construct static models that extend naturally to the dynamic case. There is a growing body of work in which exotic (asset return) stochastic processes have been constructed by mixing simpler ones. Processes for asset returns may be constructed from unconditional or conditional distributions. As an example of the latter case, by mixing autoregressive processes such as ARCH and GARCH, processes can be constructed that can account for both the heteroscedastic and leptokurtic nature of financial time series. See [21] and [12]. GM distributions can arise naturally as the level of certain stochastic processes at a point in time, conditional on the level at an earlier time e.g. Markov (regime) switching models and jump processes. Regime switching models describe processes in which parameters of a continuous diffusion process may change discontinuously according to the realized stochastic path through an associated Markov chain. We conclude that GM distributions are better motivated and less contrived than first impressions might suggest. Recent applications of regime switching asset return processes include: in the field of Merton-style option pricing theory, [7], and in portfolio management [4] (CAPM ) and [2], [1] (international diversification). Mixture distributions have the appeal that by adding together a sufficient number of component distributions, any multivariate distribution may be approximated to arbitrary accuracy. With an infinite number of contributions, any distribution can be reconstructed exactly. As far as estimation is concerned, a disadvantage of using the GM distribution is that the log-likelihood function does not have a global minimum. A resolution to this problem explored in [14] is to use a modified log likelihood function. Because of the use of the GM distribution and other mixture distributions in image processing, clustering, and unsupervised learning a host of estimation techniques have been developed to address this problem [6]. When using the GM distribution to model asset returns, [23] employs the EM algorithm. 3.1. Definitions Definition 3.1.1 A (scalar) random variable Z has the univariate GM distribution if its probability density function f Z (z) is of the form n n (3.1.1) f Z (z) = w i f Xi (z) = w i φ( z µ i ) σ i i=1 i=1

6 Ian Buckley, Gustavo Comezaña, Ben Djerroud and Luis Ángel Seco where the random variables X i are normally distributed with normal probability density functions φ Xi (x) = φ( z µ i σ i ), φ(z) is the standard normal probability density function and the weights w i sum to one. The random variables X i have means µ i and variances σi 2. The finite sum is over the desired number of normal components to combine, n. Remark 3.1.2 The cumulative distribution function is trivially: (3.1.2) F Z (z) = n i=1 w i Φ( z µ i σ i ) where Φ(z) is the standard normal cumulative density function. We will made use of this observation in Section 4.1 when we define the PoS objective. Similarly, Definition 3.1.3 A vector random variable Z has the multivariate GM distribution if its probability density function f Z (z ) is of the form (3.1.3) f Z (z )= n w i f X (i)(z )= i=1 n w i φ µ (i),v (i)(z ) where the (vector) random variables X (i) are multivariate normally distributed with probability density functions φ µ (i),v (i)(z ), and the weights w i sum to one. The vector random variable X (i) has mean µ (i) and variance-covariance matrix V (i). E.g. if we take the ath and bth components of X (i), their covariance is the element (a, b) of V (i) ; i.e. Cov(X a (i),x (i) (i) b )=V ab.alsoe[x(i) a ]=µ (i) a. Remark 3.1.4 Note that by definition Cov(X a (i),x (j) b )=0for i j. Remark 3.1.5 In the numerical experiments described later, the mixture distribution contains two normal components, describing asset returns under tranquil and distressed conditions. We shall refer to the weights w i as regime weights. 3.2. Moments The mean of a random variable with the mixture distribution is simply expressed as a linear combination of the means of the component normal distributions. Proposition 3.2.1 The expectation of a function f of a random variable with the GM distribution can be expressed in terms of the expectations of functions of the component normally distributed variables: (3.2.1) E[f(Z )] = i=1 n w i E[f(X (i) )] i=1

Portfolio optimization for alternative investments 7 Remark 3.2.2 In particular, (3.2.2) E[Z ]= n w i µ (i) i=1 N.B. This is a potential source of confusion given that it is not true in general that Z = n i=1 w ix (i). The variance depends not only on the variances of the components, but also on the differences between the means of the components. Proposition 3.2.3 The variance of a random variable with the (univariate) GM distribution can be expressed in terms of the expectations and variances of the component normally distributed variables: (3.2.3) Var[Z a ]= = n i=1 n i=1 w i Var[X (i) a ]+ w i (σ (i) a ) 2 + n,n i,j<i n,n i,j<i w i w j (E[X a (i) ] E[X a (j) ]) 2 w i w j (µ (i) a µ (j) a ) 2 Remark 3.2.4 If we permit the variance and expectation operators to thread over the components of the vector arguments f(x ) a := f(x a ), this can be written in alternative vector form as (3.2.4) Var[Z ]= = n w i Var[X (i) ]+ i=1 n w i σ (i)2 + i=1 n,n i,j<i n,n i,j<i w i w j (E[X (i) ] E[X (j) ]) 2 w i w j (µ (i) µ (j) ) 2 The variance result, above is a special case of the following result for the covariance: Proposition 3.2.5 The covariance between two elements of a vector random variable with the (multivariate) GM distribution can be expressed in terms of the expectations of functions of the component normally distributed variables: (3.2.5) Cov[Z a,z b ]= = n i=1 n,n w i Cov[X a (i),x (i) b ]+ i,j<i n i=1 w i w j (E[X (i) a w i V (i) ab n,n + i,j<i ] E[X(j) a ])(E[X(i) b ] E[X(j) b ]) w i w j (µ (i) a µ(j) a )(µ(i) b µ (j) b )

8 Ian Buckley, Gustavo Comezaña, Ben Djerroud and Luis Ángel Seco Remark 3.2.6 In matrix notation, where W ab := Cov[Z a,z b ], (3.2.6) W = n w i V (i) + i=1 where indicates matrix transpose. n,n i,j<i w i w j (µ (i) µ (j) ).(µ (i) µ (j) ) 3.3. Linear combinations of random variables with the GM distribution Proposition 3.3.1 Linear combinations of random variables with the (multivariate) GM distribution will themselves have a (univariate) mixture of normals distribution. In particular, the (scalar) random variable Y = m a=1 θ az a where the m-vector random variable Z has the multivariate GM distribution and θ is an m-vector of real coefficients, has probability density function (3.3.1) f Y (y) = where µ i = µ i.θ and σ 2 i = θ.v i.θ. Similar identities may be found in [23]. n w i φ µi, σ i 2(y) i=1 3.4. Visualizing the GM distribution In Figure 2, in four contour plots of pdfs, we see how two bivariate Gaussian distributions (top row) can be added to yield a GM distribution (bottom, left). Note the potential for highly non-elliptic iso-probability contours when the GM distribution is used. For comparison a bivariate normal with the same sample means, variances and covariances is included (bottom, right). If the GM distribution given were used to describe the returns to two assets, the lobe pointing down and to the left of the figure would describe the propensity of the two assets to decline sharply together (the asymmetric correlation phenomenon). The Gaussian distribution, with its elliptic contours, is clearly unable to capture this feature. These examples illustrate the two asset case. With three assets the contours for the Gaussian distribution are three-dimensional ellipsoids (rather than ellipses in two dimensions), and for the GM distribution the contours are complicated lobed surfaces embedded in a three-dimensional space.

Portfolio optimization for alternative investments 9 Figure 2: Contour plots of probability density functions. The top row contains two bivariate Gaussian distributions - potentially for the tranquil (left) and distressed (right) regimes. The bottom row illustrates the composite Gaussian mixture distribution obtained by mixing the two distributions from the top row (left) and a bivariate normal distribution with the same means and variance-covariance matrix as the composite (right). 4. Portfolio optimization In our framework, the n Gaussian contributions to the GM distribution are associated with n regimes. In all the numerical examples, we take n =2,andcallthetworegimes the tranquil and distressed regimes. 4.1. Probability of shortfall as a risk measure. When variance is used as the optimization objective, the efficient frontier is independent of the distribution for the asset returns. Therefore, to achieve non-trivial results in the GM setting, we adopt alternative, non-quadratic objective functions. One with the advantage of being intuitive for practitioners is the probability of shortfall below a target return (PoS). When returns have a normal distribution, maximizing the PoS is equivalent to maximizing the out-performance Sharpe ratio (ratio of difference between realized return and target return in the numerator to volatility in the denominator). Therefore adopting the GM approach will not represent a significant departure from current practice for many investors.

10 Ian Buckley, Gustavo Comezaña, Ben Djerroud and Luis Ángel Seco Note that the PoS is not the same as the VaR: the former is the probability beyond a given point on the distribution (e.g. a target return of 18.2%), the latter is the point on the distribution such that the probability of being beyond that point is equal to a given value (e.g. 1% or 5%). In the GM setting of this paper the probability of shortfall objective is the probability that a univariate mixture of normals random variable, with regime means µ i = µ i.θ and regime variances σ i 2 = θ.v i.θ, exceeds the target return k. Fromthe expression for the univariate mixture of normals CDF Eqn. 3.1.2, above, it can be shown that: Proposition 4.1.1 The probability that the portfolio return falls short of the target k is: ( ) n µ (4.1.1) F k (θ) = w i Φ i.θ k θ.v i.θ i=1 4.2. Statement of optimization problems In each case µ T is the target portfolio expected return. Markowitz (4.2.1) min θ θ.v S.θ s.t. θ.1 =1 µ.θ µ T where V S is the sample variance-covariance matrix. This is calculated using the identity in Equation 3.2.5 or equivalently 3.2.6. Probability of shortfall (4.2.2) max θ ( ) n µ w i Φ i.θ k θ.v i.θ i=1 s.t. θ.1 =1 µ.θ µ T 4.3. Investment opportunity set Figure 3 shows the investment opportunity set (IOS) in the 3-asset case, overlaid on the contour plot for the PoS objective function, in tranquil and distressed regime out-performance Sharpe ratio space. The investment opportunity set is the set of all attainable points in a given space that may be reached by constructing portfolios of the assets in a given universe. Typically variance and return are taken as the space to explore, but any statistics may be used. The GM approach optimal portfolio is marked in the top righthand corner, on the efficient frontier.

Portfolio optimization for alternative investments 11 Figure 3: Scatter plot of portfolios in the investment opportunity set, overlaid on the contour plot of the probability of shortfall objective function. The axes are the out-performance Sharpe ratios in the tranquil (x) and distressed (y) regimes. The GM approach optimal portfolio is marked in the top righthand corner, on the efficient frontier. Typically, the portfolios that are optimal with respect to the mean-variance objectives in the tranquil and distressed regimes will be sub-optimal with respect to the probability of shortfall objective used in the GM approach. This is a three asset example. Compare this with Figure 4, which shows the IOSs for the tranquil and distressed regimes superimposed onto the same plot. The axes are the portfolio means and variances in the two regimes. Clearly the portfolio that maximizes the PoS objective, will be suboptimal with respect to the mean-variance efficient frontier in each of the component regimes. 5. Conclusions We are certain that the GM approach, namely the assumption of a multivariate finite Gaussian mixture distribution for asset returns used in conjunction with a probability of shortfall objective, will be useful for a whole range of portfolio management applications. It is only slightly harder to implement than standard Markowitz, with many features in common (e.g. we retain the use of covariance matrices). However, it is more flexible because of its ability to handle non-elliptic return distributions. Because it is intuitive, the technique is unlikely to face resistance from practitioners already familiar with mean-variance approaches. With two regimes, the objective function does not possess more than two maxima, so our numerical examples have been robust and quick to solve.

12 Ian Buckley, Gustavo Comezaña, Ben Djerroud and Luis Ángel Seco Figure 4: Investment opportunity sets for the tranquil and distressed regimes superimposed onto the same plot. The axes are the portfolio mean and variance. Typically the GM approach optimal portfolio will be sub-optimal with respect to both the tranquil and distressed mean-variance objectives. This is a three asset example. We have compared the GM and mean-variance approaches. The obvious questions to ask are whether the two approach give different optimal weights from one another, and if so, whether holding the GM weights will give improved performance using measures preferred by practitioners. The response to both questions is in the affirmative. The optimal weights are significantly different between the approaches. The optimal weights for the GM approach will by definition better serve an investor seeking to minimize the probability of shortfall in an environment with multiple regimes. Because the GM distribution is a better model for reality than the Gaussian distribution, we believe that the GM approach will do a better job for managing portfolios in the real world. Acknowledgment IB would like to thank Mr. Gerry Salkin and Prof. Nicos Christofides of the CQF, Imperial College for funding and his coauthors for their hospitality at RiskLab, Toronto. This project was partly funded by NSERC and MITACS, a canadian network of centers of excellence. References [1] Ang, A. and Bekaert, G.: How do regimes affect asset allocation?, April 2002. http://www.gsb.columbia.edu/faculty/aang/papers/inquire.pdf. [2] Ang, A. and Bekaert, G.: International asset allocation with regime shifts. On-line, April 2002.