ESTIMACIÓN. puntual y por intervalo



Documentos relacionados
Capítulo 7: Distribuciones muestrales

Pruebas de. Hipótesis

Tema 10. Estimación Puntual.

8. Estimación puntual

Inferencia Estadística

Estimación. Intervalos de Confianza para la Media y para las Proporciones

Tema 2: Estimación puntual

Universidad del CEMA Prof. José P Dapena Métodos Cuantitativos V - ESTIMACION PUNTUAL E INTERVALOS DE CONFIANZA. 5.1 Introducción

ANÁLISIS DE DATOS NO NUMERICOS

ESTIMACION DE INTERVALOS DE CONFIANZA

Tema 1: Test de Distribuciones de Probabilidad

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde

T.3 ESTIMACIÓN PUNTUAL

Clase 8: Distribuciones Muestrales

Tema 3: Variables aleatorias y vectores aleatorios bidimensionales

Covarianza y coeficiente de correlación

Tests de hipótesis estadísticas

Tema 12: Contrastes Paramétricos

TEMA 7: Análisis de la Capacidad del Proceso

Problemas de Probabilidad resueltos.

Estimación de una probabilidad

Determinación de primas de acuerdo al Apetito de riesgo de la Compañía por medio de simulaciones

Inferencia Estadística

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

PROBABILIDADES Y ESTADÍSTICA (C) Práctica 2

Unidad 6. Distribuciones de probabilidad continua, muestreo y distribución de muestras

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA

Intervalo para la media (caso general)

Tema 5: Estimación puntual y por intervalos

Tema 2 - Introducción

T.1 CONVERGENCIA Y TEOREMAS LÍMITE

x y 8000 x + y a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

ANÁLISIS DE VARIANZA EMPLEANDO EXCEL y WINSTATS

Muestreo estadístico. Relación 2 Curso

Experimentos con un solo factor: El análisis de varianza. Jhon Jairo Padilla Aguilar, PhD.

Explicación de la tarea 3 Felipe Guerra

Grado en Finanzas y Contabilidad

ACCIONES Y OTROS TÍTULOS DE INVERSIÓN

Curso Práctico de Bioestadística Con Herramientas De Excel

REPASO CONCEPTOS BÁSICOS DE ESTADÍSTICA. DISTRIBUCIÓN NORMAL.

Definición Se llama suceso aleatorio a cualquier subconjunto del espacio muestral.

Inferencia Estadística

1.1. Introducción y conceptos básicos

Ejercicio de estadística para 3º de la ESO

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS

Aproximación local. Plano tangente. Derivadas parciales.

ESTADÍSTICA APLICADA A LA INVESTIGACIÓN EN SALUD Medidas de Tendencia Central y Dispersión

Unidad 9. Estimación

Tema 1 con soluciones de los ejercicios. María Araceli Garín

INFERENCIA ESTADÍSTICA. ESTIMACIÓN DE LA MEDIA

Lecturas previas Cuando llegue a su primera sesión de laboratorio debe haber estudiado el contenido de la lectura que aparece a continuación.

Matrices equivalentes. El método de Gauss

ESTADÍSTICA SEMANA 4

Indicaciones específicas para los análisis estadísticos.

Tema 3. Comparaciones de dos poblaciones

Lección 24: Lenguaje algebraico y sustituciones

1 Ejemplo de análisis descriptivo de un conjunto de datos

Test de hipótesis. Si H0 es cierta el estadístico. sigue una distribución t de Student con n grados de libertad: s n

MEDIDAS DE DISPERSIÓN EMPLEANDO EXCEL

1. MEDIDAS DE TENDENCIA CENTRAL

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

Diagnosis y Crítica del modelo -Ajuste de distribuciones con Statgraphics-

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

LA MEDIDA Y SUS ERRORES

LÍMITES Y CONTINUIDAD DE FUNCIONES

Descomposición factorial de polinomios

2.2 Transformada de Laplace y Transformada Definiciones Transformada de Laplace

Física de los Procesos Biológicos Curso 2005/6

Apuntes de Matemática Discreta 9. Funciones

Tema 1. Inferencia estadística para una población

Clase 4: Probabilidades de un evento

1.4.- D E S I G U A L D A D E S

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1

Medidas de tendencia Central

Tema 5. Variables aleatorias discretas

4 Pruebas y análisis del software

Cálculos con el programa R

ESTIMACION POR INTERVALOS

Tema 5: Introducción a la inferencia estadística

Inversión. Inversión. Arbitraje. Descuento. Tema 5

7.- PRUEBA DE HIPOTESIS

APLICACIONES DE INFERENCIA

PRUEBA DE KOLMOGOROV SMIRNOV (Contraste sobre la forma de la distribución) F(X) es la función de distribución que hipotetizamos.

Estadística 2º curso del Grado en Ciencias de la Actividad Física y el Deporte. ---o0o--- Introducción a la Inferencia Estadística

El concepto de integral con aplicaciones sencillas

Clase 5: Variables Aleatorias y Distribuciones de Probabilidad

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA

Alvaro J. Riascos Villegas Universidad de los Andes y Quantil. Marzo 14 de 2012

Asignatura: Econometría. Conceptos MUY Básicos de Estadística

Análisis de los datos

Media vs mediana vs moda Cual medida de tendencia central es mas adecuada? MEDIA conveniencias:

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b

Métodos generales de generación de variables aleatorias

PRUEBAS DE HIPÓTESIS

Aumentando x 10 mis posibilidades de ganar. Las griegas

Clase 2: Estadística

Medidas de tendencia central o de posición: situación de los valores alrededor

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos

CAPITULO 4 JUSTIFICACION DEL ESTUDIO. En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de

Selectividad Septiembre 2009 SEPTIEMBRE Opción A

Transcripción:

ESTIMACIÓN puntual y por intervalo ( )

Podemos conocer el comportamiento del ser humano?

Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio y sustituirla en lo que sería nuestra verdad desconocida Esto, por supuesto, implica que la información que obtenemos de nuestras observaciones debe ser representativa del particular aspecto de la población.

Es importante notar que no siempre coincide la información que hemos observado con la información real de la población. Sin embargo, es una buena aproximación y la podemos utilizar para la estimación de las características propias de dicha población. x µ x

Podemos entonces dar una medida de dicha incertidumbre: " = # $ ˆ # solo me equivoco el 5% de las veces (Esta medida nos ayudará a crear estimadores por intervalo para medias y proporciones muestrales)

La distribución de la muestra y de las estadísticas juega un papel crítico en la inferencia estadística porque la bondad de los estimadores se mide en base a la media y varianza de éstas. Muestra Estadística Estimador Distribución

Las muestras son tomadas para Estimar parámetros y para Probar Hipótesis acerca de los parámetros Un parámetro es una medida numérica de algún aspecto de la población Cuando no tenemos la información sobre toda la población es necesario estimar el valor del parámetro en base a la información de la muestra sobre dicho aspecto de interés y tenemos lo que se llama estadística

Supongamos que tomamos una muestra de una población y obtenemos la media muestral. Si tomamos otra muestra obtendremos otro valor de la media muestral, y así sucesivamente. Todas estas medias serán variables aleatorias que tienen asociada una función de densidad. Lo mismo sucede con las varianzas muestrales que cambian su valor de muestra a muestra y con las proporciones muestrales.

Pero el promedio de todas las medias muestrales posibles con o sin reemplazo (cada una del mismo tamaño n) es igual a la media poblacional µ. La fluctuación en el número que representa a estas medias muestrales se ve en un histograma de todos los posibles valores de éstas. Estas fluctuaciones son menores que las fluctuaciones de los valores en la población. Estas variaciones entre las medias muestrales se conoce como error estándar de la media y se obtiene como " X = " n

Se puede observar que si el tamaño de la muestra aumenta, el error estándar disminuye. Qué distribución sigue la media muestral? Teorema Central del Límite Consideremos muestras aleatorias de una población con media µ y varianza σ 2, conforme el tamaño de la muestra crece, la distribución de las medias muestrales es aproximadamente NORMAL, sin importar la forma de la distribución de la población.

DISTRIBUCIÓN DE LA MEDIA MUESTRAL X Recordemos que la media muestral X obtenida de una muestra aleatoria de tamaño n de una población con media µ y varianza σ 2, tiene una distribución normal con media µ y varianza σ 2 / n

Vamos a poder medir qué tanto se desvía la media muestral de la media poblacional a través del valor Z, de la siguiente manera Z = X " µ = X " µ # # X n = ( X " µ ) n # Es fácil ver que la Z, que es una estadarización de la media muestral, sigue una distribución N(0,1)

0.5 0.4 Density 0.3 0.2 0.1 0.0-3 -2-1 0 1 2 3 4 C1

Con frecuencia estamos interesados en determinar si la media de una población es diferente de la media de otra poblacion. Si la Población 1 tiene una media µ 1 y una desviación estándar σ 1 y la Población 2 tiene una media µ 2 y una desviación estándar σ 2, nos gustaría determinar si µ 1= µ 2 o si una es mayor que la otra (µ 1> µ 2 ó µ 1< µ 2 )

para lo cual nos basamos en la evidencia que tenemos al considerar dos muestras aleatorias, una de cada una de las poblaciones y observar la diferencia de las medias muestrales X1 " X 2. Como X1 y X 2 son variables aleatorias normalmente distribuidas, entonces X1 " X 2 es una variable aleatoria distribuida normalmente con media µ 1 µ 2 " 1 2 y con varianza. 2 n 1 + " 2 n 2

En muchas ocasiones no conocemos la probabilidad de éxito en un experimento binomial y tiene que ser estimado de la muestra. Como p es la probabilidad de éxitos en cualquier prueba, en una población finita, p mide la proporción de éxitos en esa población.

Así, si en una muestra de tamaño n de una población, X es el número de éxitos, estimamos la proporción de éxitos en esta muestra: Entonces X n ˆ p = X n tiene una distribución normal con media p y varianza p(1-p)/n siempre y cuando np(1-p)>5 (Rosner)

Muchos problemas están enfocados en determinar si la proporción de gente o cosas en una población que posee cierta característica es la misma que la proporción que posee dicha característica en otra población: p 1 = p 2, ó si es mayor: p 1 > p 2 ó menor: p 1 < p 2. Cuando desconocemos estas proporciones es necesario tomar una muestra de cada población y estimar dichas proporciones

Tomemos dos muestras de tamaño n 1 y n 2 de las dos poblaciones bajo estudio. Encontremos el número (X 1 ) de individuos en la muestra de la Población 1 que posee la característica de interés y el número (X 2 ) de individuos en la muestra de la Población 2 que poseen la misma característica, entonces las proporciones muestrales p ˆ 1 = X 1 n 1 y p ˆ 2 = X 2 n 2 serán los estimadores de p 1 y p 2 respectivamente

La distribución de la variable aleatoria es aproximadamente normal con media y varianza p ˆ p 1 ˆ 2 p 1 p 2 2 " p ˆ 1 # ˆ p 2 = p 1 (1# p 1 ) n 1 + p 2 (1# p 2 ) n 2 siempre y cuando n 1 p 1 (1- p 1 ) > 5, n 2 p 2 (1- p 2 ) > 5 (Rosner)

x z 2 i " 2 z w w 1 2 1 2 x, x, 2, 1 L x n Distribuciones de Muestreo

Algunas distribuciones que se derivan de la distribución normal Si Z ~ N(0,1) entonces Z 2 ~ " 1 2 Si n Z i i= 1 Z i ~ N(0,1) para i=1,...,n, entonces 2 ~ " 2 n

Z ~ N(0,1) 2 W ~ n Z W n ~ t n W 2 1 ~ n W 2 2 ~ m Si y y W 1 y W 2 son independientes, entonces W 1 n W 2 m ~ F n,m

Si nuestro interés es sobre la medida de variación, tendremos que hacer uso de la expresión donde S 2 es la varianza muestral. Esta estadística tiene una distribución (n "1)S 2 # 2 con n-1 grados de libertad 2 " n1

Distribución χ 2 Sesgo derecho Un solo parámetro (grados de libertad) f(x) 0.2 0.18 0.16 0.14 0.12 0.1 Modela entre otras cosas a espacios continuos entre eventos discretos 0.08 0.06 0.04 0.02 0 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52 55 58 61 64 67 70 73 76 79 82 85 88 91 94 97 100 x Modela la distribución de la varianza muestral

Cuando desconocemos la varianza poblacional, es preciso estimarla. La expresión Z = X " µ # n tiene que ser sustituida por T = X " µ s n Esta estadística tiene una distribución t con n-1 grados de libertad

Distribución t- Student 0.36 0.31 0.26 0.21 0.16 0.11 0.06 0.01-5.3-3.3-1.3-0.04 0.7 2.7 4.7-0.09 Simétrica con respecto al cero Un solo parámetro (grados de libertad) Tiene las colas más pesadas que la normal Cuando los grados de libertad aumentan converge a una normal estánadar

La comparación de dos varianzas poblacionales se realiza por medio del cociente de las mismas. La estadística de prueba que involucra este cociente incluye las varianzas muestrales de la siguiente manera: F = $ 2 (n 1 "1)S 1 ' & 2 ) % # 1 ( n 1 "1 $ 2 (n 2 "1)S 2 ' & 2 ) % # 2 ( n 2 "1 ( ) ( ) que tiene una distribución F con (n 1-1) y (n 2-1) grados de libertad

Distribución F Tiene una pareja de grados de libertad 0.09 0.08 Tiene sesgo derecho y toma solo valores positivos 0.07 0.06 Se usa para contrastar varianzas 0.05 0.04 0.03 0.02 0.01 0 1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Existen dos tipos principales de estimadores: Estimadores puntuales que consisten en un sólo valor o estadística muestral que se usa para estimar el verdadero valor del parámetro poblacional X = 1 n " X µ i S 2 = X n #( X " X) 2 n "1 p 2

Estimadores por Intervalo que consiste en dos valores entre los cuales esperamos que se encuente el verdadero valor del parámetro " ˆ < " < " ˆ 1 2 donde ˆ y ˆ son función del estimador 1 2 puntual de θ

Algunas propiedades deseables de los estimadores son las siguientes: Que en promedio los estimadores sean igual al parámetro poblacional que estiman. Es decir, que el estimador sea Insesgado Que tenga varianza mas pequeña que otros estimadores. A esta propiedad se le llama eficiencia. Consistencia cuando la diferencia entre el estimador y el parámetro se hace mas pequeña conforme el tamaño de muestra crece.

Cuando tratamos de evaluar la bondad de un estimador, tratamos de poner alguna cota en el error de estimación que pudiera ocurrir. Este error de estimación es k (" ) # ˆ ˆ " #", y debe ser menor a donde k es un factor que especifica los límites de confianza en la distribución de (porcentiles de la Normal o de la t-student: z α/2 ó t α /2 ) ˆ Si " tiene una distribución Normal con media 2 y varianza ", entonces k toma el valor 1.96 # ˆ para un nivel de confianza (1 α) de 0.95 (ó 95%) ˆ "

La amplitud de un intervalo de confianza para la media poblacional depende de tres factores: - el nivel de confianza - la desviación estándar poblacional - el tamaño de muestra.

Propiedades que satisface un intervalo de confianza. 1. Mientras mayor sea el nivel de confianza (1-α), mayor será el valor de z α /2 y más amplio será el intervalo de confianza, manteniendo constantes la varianza y el tamaño de muestra. 2. Mientras mas pequeña sea la desviación estándar, el intervalo será mas angosto. 3. Conforme el tamaño de muestra se incrementa, la amplitud del intervalo de confianza será menor.

El valor α indica la proporción de veces que supondremos incorrectamente que el intervalo contiene el parámetro poblacional. La interpretación del intervalo de confianza para µ es como sigue: de una gran cantidad de intervalos que se construyan para el parámetro poblacional µ, 100(1 α)% contendrán a µ dentro de los límites encontrados.

(Intervalos de Confianza) µ...........

Intervalos de confianza del 95% para el parámetro de una exponencial con media β=1

Aclaremos que aunque no conozcamos el valor real de µ, éste es una cantidad fija y constante. Puede suceder que µ se encuentre entre y pero también puede suceder que NO se encuentre entre esos dos valores, y sería incorrecto asignar una probabilidad a cualquiera de estas posibilidades, aún cuando µ permanezca desconocida ˆ µ 1 ˆ µ 2

Así, un intervalo de confianza para µ del 100(1 α)% está dado por % ' X " Z # / 2 $n, X + Z # / 2 & cuando σ es conocida, pero si ésta es desconocida (casi siempre), se sustituye por su estimador puntual y el intervalo queda de la forma $ n ( * ) $ & X " t (# / 2),n"1 sn,x + t (# / 2),n"1 % s n ' ) ( si n es muy grande se puede aproximar la t por medio de la normal

Similarmente, un intervalo de confianza del 100(1 α)% para la proporción p de una población estará dado por $ & % ˆ p " Z # / 2 p ˆ (1" p ˆ ), p ˆ + Z # / 2 n p ˆ (1" p ˆ ) n ' ) ( donde ˆ p = X n Siempre y cuando cuando np > 5 y n(1-p) > 5

De manera similar podemos construir intervalos de confianza para la varianza poblacional Usaremos el hecho de que distribución χ 2 ν, (n "1)S 2 tiene una de donde es fácilmente verificable que el intervalo de confianza tiene la forma # 2 % (n "1)S 2 ', 2 & # (1"$ / 2),n"1 (n "1)S 2 2 # ($ / 2),n"1 ( * )

Tamaño de Muestra Si queremos que nuestro error de estimación sea a lo más ε, entonces % $ ( " = Z # / 2 ' * & n ) 2 # 2 n = Z " / 2 $ 2 Para un nivel de cofianza fijo, un tamaño de error pequeño incrementará el tamaño de muestra.

Aumento del tamaño de muestra para un nivel de confianza del 95%, y una varianza de 1, cuando el error de estimación disminuye.

Referencias: http://www.hrc.es/bioest/m_docente.html Zar, Jerrold H.- Biostatistical Analysis.- 4rd ed.- Prentice Hall, Inc Rosner, B.- Fundamentals of Biostatistics. 6 th Ed. Brooks/Cole Publishing Co., 2006