long_wave.swf Science animations - Oscilloscope.swf

Documentos relacionados
Armonía moderna aplicada a la guitarra Autor: ra nama

1. Sonido + ruido + silencio + ritmo = MÚSICA

CONOCIMIENTOS PRELIMINARES

CUALIDADES DEL SONIDO

INTERVALOS y ALTERACIONES

SINTESIS INFORMATICA MUSICAL DISTINGUIR: "sonido real" de uno digital o análogo sonidos, naturales humanos tecnologícos.

UNIVERSIDAD DE LOS ANDES FACULTAD DE ARQUITECTURA Y DISEÑO ESCUELA DE ARQUITECTURA

Módulo 4: Sonido. Origen del sonido. El sonido es una onda producida por las vibraciones de la materia. Diapasón. tambor. Cuerda de guitarra

3. Afinación del piano. Introducción al sistema temperado

PRINCIPIOS BASICOS DE AUDIO COMO ESCUCHA EL SER HUMANO

La Escala. Los textos con letra cursiva son información complementaria.

Estudios de las cualidades del sonido

Ilustración: Wikipedia

Intensidad y sonoridad

FÍSICA Y QUÍMICA Cuaderno de ejercicios ONDAS

1. Principios de acústica

RESOLUCIÓN DE LAS ACTIVIDADES DE FINAL DE UNIDAD PROPUESTAS EN EL LIBRO DEL ALUMNO

LENGUAJE MUSICAL Curso básico

Definiciones. Ruido: Sonido no deseado, desagradable o molesto

Fundamentos de acústica

Asignatura: Apunte 03 Apéndice A. Alumno:.

CURSO PRACTICO DE MUSICA J. GILBERTO VELASQUEZ ULTIMA REVISION: JUNIO 2015

LA MATERIA PRIMA DE LA MÚSICA:

Síntesis de Escalas Musicales. Fundamentos Físicos de la Informática, 2006

El mundo de las escalas

Lenguaje musical. Serie armónica. La serie armónica es la sucesión de armónicos que se producen al vibrar una cuerda o una columna de aire.

LA MÚSICA Y EL ANÁLISIS DE FOURIER

Guitarra. Escalas y acordes. Lección de introducción Autor: Víctor Manuel Domínguez Treviño

TEMA I.12. Ondas Estacionarias en una Cuerda. Dr. Juan Pablo Torres-Papaqui

Conceptos musicales. El tono musical

MÚSICA Y MATEMÁTICAS. UN ESPACIO PARA LA INTERDISCIPLINARIEDAD.

Estudio del sonido: Cualidades físicas

Las ondas sonoras viajan a través de cualquier medio material con una rapidez que depende de las propiedades del medio Las ondas sonoras se dividen

Apuntes de Guitarra. Por Lluc Brell

INSTITUTO DE BELLAS ARTES DEL ESTADO DE BAJA CALIFORNIA TALLER LIBRE DE MÚSICA LECTURA. Primera posición PRIMERA CUERDA (G)

El sonido: Una onda mecánica longitudinal Cómo se produce el sonido? Velocidad de propagación Propiedades del sonido Efecto Doppler Viene o va?

LA CLAVE DE FA EN CUARTA

Curso de Música - básico

1º Enseñanzas Elementales

Semana 13 Ondas sonoras

La 7 notas naturales Existen 7 notas llamadas notas naturales, estas son: do, re, mi, fa, sol, la, si En un teclado estas son las teclas blancas.

UNIDAD I FUNDAMENTOS DEL SONIDO

Definición de sonido. Para que se produzca un sonido es necesaria la existencia de: - Un emisor o cuerpo vibrante.

Clase Nº 3 PSU Ciencias: Física. Ondas II -Sonido. Profesor: Cristian Orcaistegui. Coordinadora: Daniela Cáceres

Lección Nº 2 Contenido:

ANEXO 1. Nombre: Folio:

ONDAS Medio Isótropo: Medio físico homogéneo: Observaciones:

Experiencia P42: Ondas de sonido Sensor de sonido, salida de potencia

Acústica musical. Escuela Universitaria de Música eme, Leonardo Fiorelli Martín Rocamora. Curso dirigido a docentes de IPA

EL SONIDO 2. EL OIDO 1. EL SONIDO Y SUS CUALIDADES. El oído percibe los sonidos a través de la audición, se compone de 3 partes:

1.- Qué es una onda?

Altura. Los ejemplos de percepción se complementan con los documentos de PureData GeneradorArmonico1.2.pd y GeneradorInarmonico1.1.pd.

RESUMEN. b) Onda: Perturvación de un medio elástico capaz de trasmitir energia a corta y larga distancia.

I - Enumerar las columnas de manera a que las calidades identifiquen la propiedad del sonido a que se relacionan :

A Y U N T A M I E N T O D E E L B U R G O D E E B R O

MOVIMIENTO ONDULATORIO

Ondas sonoras. FIS Griselda Garcia - 1er. Semestre / 23

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: LENGUAJE Y PRÁCTICA MUSICAL

Técnico Profesional FÍSICA

Introducción al sonido. Cómo y cuando se produce? Qué es el sonido? Altura / Frecuencia. Cómo se caracteriza? Tecnología del Audio y de la Música

2. Movimiento ondulatorio (I)

Ecolocalización. Fuente: heroesdelaciencia.blogia.com. Fuente: femm.org

ORGANIZACIÓN MUSICAL DE LA ALTURA DEL SONIDO.

Repaso de conceptos fundamentales

AFINACIÓN DE LA GUITARRA

Qué es el sonido? Todo lo que se mueve en este mundo hace que se produzca una vibración. Esto es lo que percibimos como SONIDO.

Programa. Intensivo. 1. Respecto del sonido audible por el ser humano, es correcto afirmar que

INTENSIDAD SONORA TEMA 3: MOVIMIENTO ONDULATORIO.

Capítulo: Presentación. Curso de Guitarra. Por William Moreno

3.4. Ondas sonoras simples: elementos y propiedades de las ondas sonoras

Guía Didáctica de Lenguaje Musical

Nociones físicas acerca del sonido

Practica: Medición del Nivel de Intensidad de Diferentes Ruidos

EL SONIDO. Generalidades de las ondas sonoras

Guía de Materia Características del sonido y fenómenos ondulatorios aplicados al sonido

Ejercicio V-I. La Progresión 1 está basada en el círculo de quintas. Ejemplo 1

Ondas. Vasili Kandinsky: Puntos, oleo, 110 x 91,8 cm, 1920

Problemas de Ondas. Para averiguar la fase inicial: Para t = 0 y x = 0, y (x,t) = A

LAS CUALIDADES DEL SONIDO

VIBRACIÓN Y ONDAS. Se denomina rayo a la línea perpendicular a los frentes de onda, como se muestra en la figura.

GUÍA PARA PIANO (Nivel 1)

La Naturaleza del Sonido

Musymáticas. Matemáticas para afinar instrumentos musicales. Noviembre 2010, pp Los problemas de afinar con el sistema temperado

ENSAYO DE PRUEBA SONIDO 4º MEDIO 2009 PROF.: EUGENIO CONTRERAS Z.

Armonía Elemental. Parte I Intervalos. Parte II Grados de la escala. Parte III Relativa Menor. Parte IV Substituciones

Tema 13.- La agógica, la dinámica y el matiz...pág. 54 Ficha nª 13A...Pág. 55 Ficha nª 13B...Pág. 56 Tema 14.- Signos de articulación y

Diagrama 1. do re mi fa sol la si DO

Por Carlos Pérez - Emrys. Por Carlos Pérez

UNIVERSIDADES PÚBLICAS DE LA COMUNIDAD DE MADRID MATERIA: LENGUAJE Y PRÁCTICA MUSICAL

INSTRUCCIONES GENERALES Y CALIFICACIÓN

COLEGIO MARYMOUNT. La Música Como Arte Imperfecto. Proyecto de grado. Asesor: Ana María Cárdenas. Alumna: Mariana Pineda Toro

Intervalos (Segunda Parte)

6.- Cuál es la velocidad de una onda transversal en una cuerda de 2 m de longitud y masa 0,06 kg sometida a una tensión de 500 N?

Capítulo 14. El sonido

Tema 6. Movimiento ondulatorio

Unidad III Sonido. Como las vibraciones se producen en la misma dirección en la que se propaga el sonido, se trata de una onda longitudinal.

A: Amplitud λ : Longitud de onda

Lenguaje musical Lo repasamos?

Se denomina Escala a una sucesión de sonidos ordenados según su altura.

PRUEBAS DE ACCESO AL 1 ER CURSO DE ENSEÑANZA PROFESIONAL FLAUTA PICO

Transcripción:

Qué es el sonido? -Es una vibración del aire (el medio propagador) que puede ser detectada por nuestros nervios auditivos (el receptor). Siempre necesita un medio material vibrante (el emisor) que empuje el aire circundante para producir el sonido. -En el aire en condiciones normales de temperatura y presión, el sonido se propaga a 340 m/s. soundwaveelephant4.swf 5-14 - Science animations - Sound waves in gas.swf 5-14 - Science of sound - Pulse of sound.swf TravelWaves.swf Características de un sonido puro : 1) Amplitud. Es el máximo desplazamiento de la vibración y determina la intensidad (el volumen) del sonido. 2) Frecuencia. Es el número de vibraciones por segundo de las moléculas del aire y en música determina la nota o el tono del sonido. Un sonido con menos de 20 vibraciones por segundo no es registrado por el oído humano (infrasonido). Tampoco lo es un sonido con más de 20.000 vibraciones por segundo (ultrasonido) long_wave.swf 5-14 - Science animations - Oscilloscope.swf

3) Longitud de onda. Es la mínima distancia entre dos partículas que tienen exactamente el mismo desplazamiento en un instante dado.

La longitud de onda y la frecuencia están relacionadas:

La intensidad sonora Intensidad = Energía incidente Tiempo. Área Umbral auditivo (oído medio) a la frecuencia de 1000 Hz: I 0 ~10-12 watts/m 2 Intensidad sonora en decibeles: db = 10 log 10 I I 0 140 db Umbral del dolor 130 db Avión despegando 120 db Motor de avión en marcha 110 db Grupo de rock 100 db Perforadora eléctrica 90 db Tráfico 80 db Tren 70 db Aspiradora 50/60 db Aglomeración de Gente 40 db Conversación 20 db Biblioteca 10 db Ruido del campo 0 db Umbral de la audición

La sensibilidad del oído humano para diferentes frecuencias 300 Hz 3000 Hz

La 4 Frecuencia = 440 vib/seg = 440 Hz (1/4)La 4

Si el La4 (440 Hz) del diapasón tiene el sonido escuchado, por qué el La4 de todos los instrumentos musicales no suena igual al diapasón? - Porque los sonidos de la naturaleza (y de los instrumentos musicales) no es puro. Es decir, está compuesto de una suma de sonidos puros con diferentes frecuencias. Las diferentes amplitudes de estos sonidos puros hace la diferencia entre los distintos instrumentos musicales. Proceso de síntesis de un sonido natural Do4 (264 Hz) Do5 (528 Hz) Do4+Do5 Sol5 (792 Hz)

Do4+Do5+Sol5 Do4+Do5+Sol5+Do6+Mi6 Do6 Do4 Do5 Sol5 Mi6 f 0 2f 0 3f 0 4f 0 5f0 f 0 = 264 Hz (Do3)

La misma nota (Mi4) ejecutada por un piano y por una guitarra. 0.5 0.4 mi3 piano Mi4 piano 0.5 Mi4 piano (detalle) mi3 piano (detalle) 0.3 0.4 0.2 0.1 0 0.3 0.2 0.1 0-0.1-0.1-0.2-0.2-0.3-0.3-0.4 0 2 4 6 8 10-0.4 0.712 0.72 0.74 0.76 0.78 0.8 segundos segundos mi3 guitarra 0.3 Mi4 guitarra 0.25 0.3 Mi4 mi3 guitarra (detalle) (detalle) 0.2 0.15 0.1 0.05 0-0.05-0.1-0.15 0.25 0.2 0.15 0.1 0.05 0-0.05-0.1-0.15-0.2 0 2 4 6 8 10-0.2 2.1 12.12 2.14 2.16 2.18 2.2 2.22 2.24 2.26 2.28 segundos segundos

El espectro o análisis de Fourier de un sonido Mi4 mi3 piano 2500 2000 1500 1000 500 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 600 Hz mi3 guitarra Mi4 guitarra 500 400 300 200 100 0 0 200 400 600 800 1000 1200 1400 1600 1800 2000 Hz

lobo

La importancia de conocer el análisis de Fourier de un sonido: 1) Permite filtrarlo, eliminando frecuencias indeseadas 2) Permite sintetizar sonido, hasta el límite de la tecnología 3) Permite el reconocimiento de voz Sonidos varios: 5-14 - Science of sound - Wave envelopes.swf El ruido perfecto 5 ruido blanco 450 Espectro del ruido blanco 4 400 3 2 1 0-1 -2 350 300 250 200 150-3 100-4 50-5 0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 segundos 0 0 500 1000 1500 2000 2500 3000 3500 4000 Hz

Los instrumentos musicales Las cuerdas Modo 1 Frecuencia f 0 Modo 2 Frecuencia 2f 0 Modos 1+2

Modo 3 Frecuencia 3f 0 Modos 1+2+3 Modo 4 Frecuencia 4f 0 Modos 1+2+3+4+5

Tambores y tamboriles

Tambores y tamboriles Modos de vibración de membranas

Modo 01 (frecuencia: f) Modo 02 (frecuencia: 2.3 f) Modo 03 (frecuencia: 3.6 f) modo 11 (frecuencia: 1.6 f) modo 12 (frecuencia: 2.9 f) modo 13 (frecuencia: 4.2 f)

modo 21 (frecuencia: 2.1 f) modo 22 (frecuencia: 3.5 f) modo 23 (frecuencia: 4.8 f)

Piano, Repique y Chico 0.6 tamboril piano (golpe en el centro) 250 Espectro del tamboril piano (golpe en el centro) 0.4 200 0.2 150 0-0.2 100-0.4 50 0 0.2 0.4 0.6 0 0.8 segundos 100 200 300 400 500 600 700 800 900 1000 Hz 0.8 tamboril repique (golpe en el centro) 180 Espectro del tamboril repique (golpe en el centro) 0.6 160 0.4 140 120 0.2 100 0 80-0.2 60 40-0.4 20-0.6 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 0.8200 400 600 800 1000 1200 segundos Hz

0.8 tamboril chico (golpe en el centro) 300 Espectro del tamboril chico (golpe en el centro) 0.6 250 0.4 200 0.2 150 0-0.2 100-0.4 50-0.6 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 00.8 1000.9 200 300 400 500 600 700 800 900 segundos Hz

La música La actual escala musical y la teoría de la armonía tienen sus más remotos orígenes en la teoría física de los modos normales de una cuerda vibrante con ambos extremos fijos. La armonía que es el estudio de cómo combinar sonidos (ya sean simultáneos o en sucesión) de forma que resulten agradables al oído. Pitágoras (aprox. 582-507 AC) observó que si dos sonidos de diferentes frecuencias se escuchan simultáneamente, el conjunto resulta tanto más agradable (consonancia) cuanto menores sean los números enteros mínimos que expresan la relación entre sus frecuencias. Esto significa que, dado un sonido de frecuencia f 0, la combinación más agradable con él es otro sonido de frecuencia f1 = 2 f0. También resultan agradables, aunque al parecer cada vez en menor medida, las combinaciones de la frecuencia f 0 con 3f 0, con 4f 0, con 5f 0 y con 6f 0. Ya no tanto con 7f 0. f 0 f 0 +2 f 0 f 0 +3 f 0 f 0 +4 f 0 f 0 +5 f 0 f 0 +6 f 0 f 0 +7 f 0

CONSTRUCCIÓN DE LA ESCALA PITAGÓRICA Cada nueva nota de la octava es el tercer armónico de la última nota reducida a la octava en construcción (por divisiones sucesivas entre 2). Los números entre paréntesis indican el orden de la construcción de la escala tónica 2da. 3ra. 4ta. 5ta. 6ta. 7ma. (1) 1 (7) 9/8 (12) 81/64 (17) 729/512 4/3 (4) 3/2 (9) 27/16 (14) 243/128 (2) 2 (6) 9/4 (11) 81/32 (16) 729/256 (3) 3 (8) 27/8 (13) 243/64 4 (5) 9/2 (10) 81/16 (15) 729/128 INTERVALOS RESULTANTES 2da./tónica 3ra./2da. 4ta./3ra. 5ta./4ta. 6ta./5ta. 7ma./6ta. 8va./7ma. 9/8 9/8 9/8256/243 256/243 9/8 9/8 9/8 256/243 int. mayor int. mayor int. menor int. mayor int. mayor int. mayor int. menor escala pitagórica estricta escala pitagórica modificada

Escala pitagórica Largo de la Frecuencia Cociente con nota anterior Nombre de la nota cuerda Tónica L f DO Segunda 8 9L 9 8 f 9/8=1.125 RE Tercera 64 81L 81 64 f 9/8=1.125 MI Cuarta 3 4L 4 3 f 256/243=1.053 FA Quinta 2 3L 3 2 f 9/8=1.125 SOL Sexta 16 27L 27 16 f 9/8=1.125 LA Séptima 128 243L 243128 f 9/8=1.125 SI Octava 1 2L 2f 256/243=1.053 DO

Escala diatónica (Zarlino 1588) Largo de la Frecuencia Cociente con nota anterior Nombre de la nota cuerda Tónica L f DO Segunda 8 9L 9 8 f 9 8 = 1125. RE Tercera 4 5L 5 4 f 10 9 1111. MI Cuarta 3 4L 4 3 f 16 15 1067. FA Quinta 2 3L 3 2 f 9 8 = 1125. SOL Sexta 3 5L 5 3 f 10 9 1111. LA Séptima 8 15L 15 8 f 9 8 = 1125. SI Octava 1 2L 2f 16 15 1067. DO Diferencias entre las escalas de Pitágoras y de Zarlino: mi la si La menor relación entre frecuencias de la escala diatónica es entre un tono menor y un semitono 10/9:16/15 = 25/24

La escala cromática Para enriquecer la armonía se vio la necesidad de agregar sonidos intermedios entre los tonos mayores, menores y los semitonos. Así surge la escala cromática, que define para cada nota de frecuencia f su sostenido (con frecuencia 25/24 f) y su bemol (con frecuencia 24/25 f). En esta escala se ve fácilmente que el sostenido de una nota no coincide con el bemol de la siguiente. Nota Frecuencia exacta frec.aprox DO (tonica) f f DO # 25 24 f 1.042 f RE b 9 8 f 24 25 = 27 25 f 1.080 f RE 9 8 f 1.125 f RE # 9 8 f 25 24 = 75 64 f 1.172 f MI b 5 4 f 24 25 = 6 5 f 1.200 f MI 5 4 f 1.250 f FA b 4 3 f 24 25 = 32 25 f 1.280 f MI # 5 4 f 25 24 = 125 96 f 1.302 f FA 4 3 f 1.333 f FA # 4 3 f 25 24 = 25 18 f 1.389 f SOL b 3 2 f 24 25 = 36 25 f 1.440 f SOL 3 2 f 1.500 f SOL # 3 2 f 25 24 = 25 16 f 1.563 f LA b 5 3 f 24 25 = 8 5 f 1.600 f LA 5 3 f 1.667 f LA # 5 3 f 25 24 = 125 72 f 1.736 f SI b 15 8 f 24 25 = 9 5 f 1.800 f SI 15 8 f 1.875 f DO b 2 f 24 25 = 48 25 f 1.920 f SI # 15 8 f 25 24 = 125 64 f 1.953 f DO 2f 2f

Escala temperada Nota Frecuencias exactas Frec aprox. Juan Sebastian Bach, después de numerosas discusiones con los matemáticos Rameau y D Alembert, introdujo en su famosa obra El clavecín bien temperado (1722-1744) una nueva escala musical, de forma de reducir a 12 las notas dentro de una octava (7 teclas blancas y 5 negras en el teclado). Esta se llamó escala temperada o equitemperada. DO f f DO # = RE b 12 2 f 1.060 f RE 2 12 2 6 = 2 f 1.123 f d i f 3 12 d i f 4 = f 4 12 3 d 2i f = 2 f 5 12 d 2i f 6 12 d 2 i f = 2 f 7 12 d 2i f 8 2 12 3 d i f = d i f 9 3 12 4 d 2i f = d 2i f 10 5 12 6 d i f = d i f 11 12 d 2i f RE # =MI b 2 2 MI FA FA # =SOL b 2 2 SOL SOL # =LA b 2 2 LA LA # =SI b 2 2 SI 1.189 f 1.260 f 1.335 f 1.414 f 1.498 f 1.590 f 1.682 f 1.782 f 1.888 f DO 2f 2f

Otras escalas musicales Audio Nombre Mapa de frecuencias Notas (esc. Diatónica) DO RE MI FA SOL LA SI DO Diatónica (occidental) Shree (India) Sorog (Bali) Hirajoshi (Japón)

Bibliografía Harvey E. White. Física Moderna. UTEHA. 1962 Carine Pascal, Nathalie Tomas. Musique et Mathematiques. Tesis de maestría en Matemática. Faculté des Sciences de Luminy, Université de la Méditerranée (1999-2000). Michael Beer. How do Mathematics and Music relate to each other? East Coast College of English, Brisbane. 1998 Ismael Núñez: La Física y la Música. Conversación. Revista de Reflexión y Experiencia Educativa Nro. 10, Abril de 2005, pp. 46-50. Stelio Haniotis, Ismael Núñez, La Física de la Música. Educación en Física (Revista de la Asociación de Profesores de Física del Uruguay). Vol. 6 Nro. 8. Setiembre de 2004. http://www.xtec.es/centres/a8019411/caixa/index_es.htm. http://www.freeplay.com/wmm.htm. http://acusticaweb.com/ http://www.glenbrook.k12.il.us/gbssci/phys/mmedia/waves/edl.html http://www.upscale.utoronto.ca/generalinterest/harrison/flash/ http://www.isvr.soton.ac.uk/spcg/tutorial/tutorial/tutorial_files/web-basicsnature.htm