Determinantes. = a 11a 22 a 12 a 21 = ( 3) ( 5) ( 4) 7 = 15 ( 28) = = 43

Documentos relacionados
Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Matemáticas 2.º Bachillerato. Ejemplo:

Tema 2: Determinantes

Tema 4: Matrices y Determinantes. Algunas Notas sobre Matrices y Determinantes. Álgebra Lineal. Curso

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

Determinantes. Concepto de determinante A cada matriz cuadrada A se le asigna un número denominado determinante de A, denotado por A o por det (A).

Sistemas de Ecuaciones Lineales y Matrices

Determinantes. Determinante de orden uno. a 11 = a 11 5 = 5

Matrices y determinantes

EJERCICIOS DETERMINANTES. 1º/ Calcula el siguiente determinante:

MATRICES. Una matriz es un conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Tema 1: Matrices y Determinantes

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

Estos apuntes se han sacado de la página de internet de vitutor con pequeñas modificaciones.

DETERMINANTES Profesor: Fernando Ureña Portero

Conjuntos y matrices. Sistemas de ecuaciones lineales

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

Se llama adjunto de un elemento de una matriz A, al número resultante de multiplicar por el determinante de la matriz complementaria

DETERMINANTES UNIDAD 3. Página 76

Capítulo 1 DETERMINANTES

4.1. Determinante de una matriz cuadrada de orden 2. , entonces el determinante de A es a 21 a 22 a 11 a 12 = a 11a 22 a 12 a 21

Lo rojo sería la diagonal principal.

Matrices, Determinantes y Sistemas Lineales.

Matrices 1. Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

de la forma ), i =1,..., m, j =1,..., n, o simplemente por (a i j ).

1 ÁLGEBRA DE MATRICES

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar.

Matemáticas. D e t e r m i n a n t e s

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Se denomina matriz a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Determinantes. Primera definición. Consecuencias inmediatas de la definición

Matrices. Concepto de matriz Se denomina matriz a todo conjunto de números o expresiones ordenados en filas y columnas.

El determinante de una matriz se escribe como. Para una matriz, el valor se calcula como:

MENORES, COFACTORES Y DETERMINANTES

Matriz sobre K = R o C de dimensión m n

DOCENTE: JESÚS E. BARRIOS P.

Matrices. José Vicente Romero Bauset. ETSIT-curso 2009/2010. José Vicente Romero Bauset Tema 1.- Matrices. 1

Determinante de una matriz

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales dependientes de un parámetro

Menor, cofactor y comatriz

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =

3. ÁLGEBRA LINEAL // 3.1. SISTEMAS DE

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

Matemá'cas generales

Matrices, determinantes, sistemas de ecuaciones lineales.

Tema 1: MATRICES. OPERACIONES CON MATRICES

Clase 8 Matrices Álgebra Lineal

!MATRICES INVERTIBLES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

Tema I. Matrices y determinantes

Sistemas de ecuaciones lineales

Dos matrices son iguales cuando tienen la misma dimensión y los elementos que ocupan el mismo lugar en ambas son iguales

Sistema de Ecuaciones Lineales Matrices y Determinantes (3ª Parte)

BLOQUE DE ÁLGEBRA: TEMA 1: MATRICES.

Capítulo 1: Diagonalización de matrices

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ).

Sistemas de Ecuaciones Lineales

Matrices y determinantes. Sistemas de ecuaciones lineales

Matrices y Determinantes

CAPÍTULO 3: DETERMINANTES Y SISTEMAS DE ECUACIONES

SISTEMAS DE ECUACIONES LINEALES. Método de reducción o de Gauss. 1º DE BACHILLERATO DPTO DE MATEMÁTICAS COLEGIO MARAVILLAS AUTORA: Teresa González.

Tema 5: Sistemas de ecuaciones lineales.

Matriz A = Se denomina MATRIZ a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas.

Lección 5.1: Matrices y determinantes. Primeros conceptos. Objetivos de esta lección

UNIDAD 7: MATRICES Y DETERMINANTES

Denotamos a los elementos de la matriz A, de orden m x n, por su localización en la matriz de la

Matrices y Determinantes

Matrices y Determinantes.

Es una tabla bidimensional de números consistente en cantidades abstractas que pueden sumarse y multiplicarse.

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa

ÁLGEBRA LINEAL I Algunas soluciones a la Práctica 3

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.

MATRICES. Entonces, A y B son matrices cuadradas de orden 3 y 2 respectivamente.

A1.- Determina a y b sabiendo que el sistema de ecuaciones. x + 3y +z = 1 -x + y +2z = -1 ax + by + z = 4 tiene, al menos, dos soluciones distintas.

2 - Matrices y Determinantes

ARITMÉTICA Y ÁLGEBRA

Si A es una matriz cuadrada n x n, tal que A 2 = A, e I es la matriz unidad ( n x n ), qué matriz es B 2, si B = 2ª - I?

Sistem as de ecuaciones lineales

APUNTES DE ÁLGEBRA LINEAL TEMA 2. SISTEMAS DE ECUACIONES LINEALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

Sistemas de ecuaciones lineales

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

Tema 1. Álgebra lineal. Matrices

Algebra lineal y conjuntos convexos

Det(A)=a 11 a 22 a 33 + a 21 a 32 a 13 + a 31 a 12 a 23 (a 13 a 22 a 31 + a 23 a 32 a 11 + a 33 a 12 a 21 )

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

Sistemas de Ecuaciones Lineales SISTEMAS DE ECUACIONES LINEALES DEFINICIONES, TIPOS DE SISTEMAS Y DISTINTAS FORMAS DE EXPRESARLOS

Sistemas de dos ecuaciones lineales de primer grado con dos incógnitas

Universidad Nacional de Ingeniería Facultad de Ciencias. Física Computacional CC063. Algebra Lineal. Prof: J. Solano 2012-I

Determinantes. Profesores Omar Darío Saldarriaga Ortíz. Hernán Giraldo

MATRICES. M(n) ó M nxn A =

1 0 4/ 5 13/

MATRICES DETERMINANTES

MATEMATICA GRADO 9 II PERIODO PROF. LIC. ESP. BLANCA NIEVES CASTILLO R. CORREO: cel

TEMA 1: MATRICES. Una matriz de orden mxn es un conjunto de m n números reales dispuestos en m filas y n columnas ...

Espacios Vectoriales. AMD Grado en Ingeniería Informática. AMD Grado en Ingeniería Informática (UM) Espacios Vectoriales 1 / 21

Lección 1. Algoritmos y conceptos básicos.

Transcripción:

Determinante de una matriz cuadrada Toda matriz cuadrada A lleva asociado un número, llamado determinante de A, y que denotaremos mediante el símbolo. Este número, entre otras cosas, permite saber cuándo una matriz cuadrada tiene inversa y, caso de que ésta exista, también se utiliza para su cálculo utilizando otro método alternativo al método de Gauss, método que ya se vio en un artículo dedicado a las matrices. Determinante de una matriz cuadrada de orden Dada una matriz cuadrada de orden, a A 11 a 1 a 1 a el determinante de la matriz A viene dado por a 11 a 1 a 1 a a 11a a 1 a 1 Por ejemplo, el determinante de la matriz 3 4 A 7 5 es 3 4 3 5 4 7 15 8 15 + 8 43 7 5 Determinante de una matriz cuadrada de orden 3 Dada una matriz cuadrada de orden 3, A a 11 a 1 a 13 a 1 a a 3 a 31 a 3 a 33 el determinante de A viene dado por la fórmula siguiente: a 11 a 1 a 13 a 1 a a 3 a 11 a a 3 + a 1 a 3 a 31 + a 13 a 1 a 3 a 13 a a 31 + a 1 a 1 a 33 + a 11 a 3 a 3 a 31 a 3 a 33 1

Por ejemplo, el determinante de la matriz viene dado por A 1 5 3 4 1 1 1 1 5 3 4 1 1 1 1 4 + 1 1 + 3 5 1 5 4 1 + 3 + 1 1 1 8 + 15 0 + 1 + 1 5 7 5 + 7 Como esta fórmula es bastante engorrosa y complicada de aprender, propondremos una regla mnemotécnica para su uso. Se recurre a la estrategia siguiente. Copiamos la matriz y debajo la primera y segunda filas. Los términos positivos corresponden a la diagonal principal y a las otras dos que van por debajo. Los términos negativos son los que corresponden a la diagonal secundaria y a las otras dos que van por debajo. Como se puede ver en la figura anterior, a la izquierda se encuentran los términos positivos y a la derecha los términos negativos, con lo que 8 15 + 0 + 1 + 1 5 7 5 + 7 Esta regla se conoce con el nombre de regla de Sarrus. Menor complementario. Matriz adjunta de una matriz cuadrada Para el cálculo de la inversa de una matriz cuadrada utilizando determinantes necesitamos introducir los conceptos de adjunto de un elemento de una matriz cuadrada, y de matriz adjunta de una matriz cuadrada.

Menor complementario y adjunto de un elemento de una matriz cuadrada Dada una matriz cuadrada A de orden n, el menor complementario del elemento a ij de la matriz A, es el determinante de la matriz cuadrada de orden n 1 que se obtiene al suprimir la fila i y la columna j en la matriz A. Se representa por ij. Se llama adjunto A ij del elemento a ij, al número dado por la fórmula A ij 1 i+j ij Por ejemplo, si consideramos la matriz A del ejemplo visto anteriormente, el menor complementario del elemento a 1 3, es el determinante de la matriz cuadrada de orden que resulta de suprimir la fila y la columna 1: 1 5 5 1 3 4 1 5 1 4 5 9 1 1 1 El adjunto del mismo elemento a 1 3 es, por tanto: A 1 1 +1 1 1 3 9 1 9 9 Calculemos como ejemplo los ocho adjuntos restantes de la matriz A: A 11 1 1+1 11 1 4 1 1 8 1 1 7 7 1 A 1 1 1+ 1 1 3 3 1 1 6 1 1 5 5 1 A 13 1 1+3 13 1 4 3 4 1 3 4 1 1 1 1 1 A 1 + 1 4 1 5 1 5 1 7 7 1 A 3 1 +3 3 1 5 1 1 1 1 1 1 1 1 A 31 1 3+1 31 1 4 5 1 0 1 4 1 A 3 1 3+ 3 1 5 1 5 1 1 15 1 16 16 3 1 3

A 33 1 3+3 33 1 6 1 1 4 6 1 3 4 Matriz adjunta de una matriz cuadrada La matriz adjunta de una matriz cuadrada A, que denotaremos por A d, es la formada por los adjuntos de la matriz A: A d A 11 A 1 A 13 A 1 A A 3 A 31 A 3 A 33 Así, la matriz adjunta de la matriz A del ejemplo anterior, es 7 5 1 A d 9 7 1 16 Matriz inversa de una matriz cuadrada utilizando determinantes Un resultado muy importante sobre matrices cuadradas y determinantes es el siguiente Teorema Una matriz cuadrada A tiene inversa si, y solamente si, su determinante es distinto de cero. Simbólicamente: A M n, A 1 0 Cálculo de la matriz inversa utilizando determinantes Supongamos que una matriz cuadrada A tiene inversa. Es decir, según el teorema anterior, 0. Entonces la inversa de A, A 1, viene dada por la siguiente fórmula: A 1 1 A d t La matriz A d t es la traspuesta de la adjunta de A recuerda que la traspuesta de una matriz es otra matriz que se obtiene intercambiando las filas por las columnas. Calculemos como ejemplo la matriz inversa de la matriz que hemos venido utilizando para los ejemplos anteriores. A 1 1 A d t 1 7 5 1 9 7 1 16 t 1 7 9 5 7 16 1 1 9 11 7 5 7 8 1 1 1 En el caso de matrices cuadradas de orden la fórmula anterior es muy sencilla de recordar. Supongamos que tenemos una matriz cuadrada de orden a A 11 a 1 a 1 a 4

Entonces es fácil darse cuenta de que la matriz adjunta de A y la traspuesta de la adjunta de A, son las matrices Por tanto: A d Por ejemplo, dada la matriz a a 1 a 1 a 11 A 1 1, a a 1 a 1 a 11 A A d t 3 1 4 a a 1 a 1 a 11 a a 1 a 1 a 11 tenemos que su determinante es 3 8 3 8 + 3 11 1 4 Por tanto, la inversa de A será la matriz A 1 a a 1 a 1 a 11 411 3 11 11 1 11 Propiedades de los determinantes En la enumeración de estas propiedades daremos por hecho que nos referimos siempre a una matriz cuadrada de cualquier orden. 1. El determinante de una matriz es igual que el de su traspuesta: A t.. Si una matriz tiene una fila o una columna de ceros, su determinante es cero. 3. Si se intercambian dos filas o dos columnas de una matriz, su determinante cambia de signo. 4. Si una matriz tiene dos filas o dos columnas iguales, su determinante es cero. 5. Si multiplicamos por el mismo número todos los elementos de una fila o de una columna de una matriz, su determinante queda multiplicado por ese número. Consecuentemente, el determinante de una matriz cuadra A de orden n multiplicada por un número real λ es igual a λ n veces el determinante de A, es decir, λa λ n 5

6. Si una matriz tiene dos filas o dos columnas proporcionales, su determinante es cero. 7. Si denotamos por c 1,..., c i,..., c n a las n columnas de una matriz cuadrada de orden n, tenemos: c 1,..., c i + c i,..., c n c 1,..., c i,..., c n + c 1,..., c i,..., c n Esta descomposición es válida cualesquiera sean la fila o la columna en la que se encuentren los sumandos. 8. Si a una fila o una columna de una matriz le sumamos una combinación lineal de las demás filas o columnas, su determinante no varía. 9. Si una matriz tiene una fila o una columna que es combinación lineal de las demás filas o columnas, entonces su determinante es cero. Y, recíprocamente, si un determinante es cero, es porque una fila o una columna es combinación de las demás. 10. El determinante del producto de dos matrices es igual al producto de sus determinantes: A B B. 11. El determinante de una matriz triangular es igual al producto de los elementos situados en la diagonal principal. En particular I 1, donde I es la matriz identidad de orden n. Cálculo de un determinante desarrollando por los elementos de una fila o de una columna Sea A a ij M n. El determinante de la matriz A se puede calcular usando la siguiente fórmula: a i1 A i1 + a i A i + + a in A in si desarrollamos por los elementos de la fila i-ésima, o bien a 1j A 1j + a j A j + + a nj A nj si desarrollamos por los elementos de la columna j-ésima. Usando el desarrollo de por los elementos de una fila o de una columna podemos calcular un determinante de orden superior a tres. Veamos un ejemplo de cálculo de un determinante de orden 4. 1 3 1 4 5 0 1 A 1 6 0 31 + 6 A 3 + 0 A 33 + A 34 3 3 1 6

1 3 1 1 4 5 0 + 6 3 1 3 1 5 0 3 1 1 3 4 5 3 3 1 6 + 6 3 9 6 18 18 30 Donde se ha desarrollado por los elementos de la tercera fila. Se deja al lector el cálculo de los determinantes de orden tres que aparecen el desarrollo anterior. Usando las propiedades de los determinantes y el desarrollo por los elementos de una fila o de una columna se pueden calcular algunos determinantes con cierta facilidad. Veamos un ejemplo. Supongamos que queremos resolver la ecuación x 1 3x x x + 1 x x + 1 0 x 1 3x 3x Si en el determinante le restamos a la segunda fila la primera y a la tercera también la primera nos queda un determinante más sencillo. Posteriormente desarrollamos por lo elementos de la tercera fila. x 1 3x x x 1 3x x x 1 3x x + 1 x x + 1 x x + 3 x x 1 3x 3x 0 0 x x x 4x + x 6x x 4x 4x 8x x + 1 Por tanto la ecuación inicial es equivalente a 8x x + 1 0, cuyas soluciones son claramente x 0 y x 1. Como se podrá observar para calcular un determinante a veces conviene "hacer ceros. en alguna fila o columna, usando la propiedad 8 y desarrollar posteriormente por la fila o por la columna elegida. 7