QUÍMICA ORGÁNICA I Facultad de CC.QQ. y Farmacia Primer Semestre Unidad 1.1

Documentos relacionados
UNIDAD 1 INTRODUCCIÓN A LA QUÍMICA ORGÁNICA

Tema III: Enlace químico y geometría molecular

Química. Hibridación de Orbitales Atómicos en el Carbono

enlacesquimicoos.blogspot.com laquimicadenacho.wikispaces.com

La Química Orgánica es la parte de la química que estudia los Compuestos de Carbono

ENLACE COVALENTE. Z = 1 Hidrógeno H: 1s 1 Z = 6 Carbono C: 1s 2 2s 2 2p 2 Z = 7 Nitrógeno N: 1s 2 2s 2 2p 3 Z = 8 Oxígeno O: 1s 2 2s 2 2p 4 H H H 2

Química Orgánica I. Clase 2.

Química Orgánica y Biológica Apunte

Enlace químico II: geometría molecular e hibridación de orbitales atómicos

ENLACE QUÍMICO COVALENTE IÓNICO METÁLICO

UNIDAD 2A: ESTRUCTURA DE LOS COMPUESTOS ORGÁNICOS

Tema 13. Tema 7: El Enlace Químico (III): moléculas poliatómicas. 7.1 Geometría molecular: teoría RPECV

Tema 16. Tema 16 (I) Enlace químico. Tipos de enlace químico El enlace iónico El enlace iónico

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2007 QUÍMICA TEMA 3: ENLACES QUÍMICOS

II º MEDIO 2016

Moléculas Poliatómicas

GEOMETRÍA MOLECULAR Y TEORÍA DE ENLACE

Lección 1: GENERALIDADES

Qué tiene de particular el átomo de carbono?

Hibridación del Carbono sp, sp 2, sp 3

ENLACE QUÍMICO UNIDADES ESTRUCTURALES DE LAS SUSTANCIAS IONES ÁTOMOS MOLÉCULAS ENLACE IÓNICO ENLACE METÁLICO ENLACE COVALENTE ENLACE COVALENTE

ESTRUCTURA DE LA MATERIA QCA 01 ANDALUCÍA. 1.- Defina: a) Energía de ionización. b) Afinidad electrónica. c) Electronegatividad.

Orbital: región espacio disponible encuentra e-. Isótopos: át = #p+ y #n Principio incertidumbre Heisenberg: localización e-. Orbitales degenerados:

Curso 0 de Química PROGRAMA UNIDAD ESTRUCTURA DE LA MATERIA 1.2. ENLACE QUÍMICO

Enlace químico II: geometría molecular e hibridación de orbitales atómicos

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2015 QUÍMICA TEMA 3: ENLACES QUÍMICOS

14. Enlace y Geometría Molecular

TEORÍA DE ENLACE DE VALENCIA (TEV) Heitler y London 1927 Pauling

Resonancia. No siempre existe una única estructura de Lewis que pueda explicar las propiedades de una molécula o ión.

ESTRUCTURA DE LA MATERIA QCA 07 ANDALUCÍA

ENLACE QUÍMICO. Hidrógeno. Carbono. Agua. Etileno. Acetileno

Las especies químicas (átomos, moléculas, iones..) se unen para formar otras especies químicas con menor contenido energético, es decir más estables.

A elegir 2 (1 punto cada una)

TEMA 3. Grupos funcionales con enlaces múltiples.

Grupos funcionales Series homólogas

Unidad 1 (Parte IV, (cont.) )

Regla del octeto. Gilbert Newton Lewis

ENLACE QUÍMICO (2) Dr. Hugo Cerecetto. Prof. Titular de Química

ENLACE QUIMICO. Química General 2009

QUÍMICA ORGÁNICA I (1345) CUADERNO ELECTRÓNICO DE APUNTES

QUÍMICA DEL CARBONO 1. El enlace de carbono. 2. Grupos funcionales. 3. Isomería.

Teoría cuántica del enlace

energía de enlace distancia de enlace

Tema 7 CO 2. PCl 5. Los enlaces múltiples se tratan como los sencillos en RPECV 1 enlace doble 1 enlace simple 109,5º.

CÁTEDRA DE QUÍMICA GENERAL E INORGÁNICA GUIA DE ESTUDIO Nº 3 ENLACE QUÍMICO

Teoría cuántica del enlace

Estructura de la Materia

Tema 1 Introducción. Universidad San Pablo CEU 1

Nombre: Curso: Fecha:

Química General. Moléculas y Compuestos

Evaluación unidad 3 Enlace covalente

Universidad Central de Venezuela Facultad de Medicina Escuela de Bioanálisis QUÍMICA ORGÁNICA I. Código Carácter Créditos

Los compuestos del Carbono

clubdelquimico.blogspot.com

Regla del octeto Gilbert Newton Lewis

QUÍMICA - 2º BACHILLERATO ENLACE QUÍMICO RESUMEN CONCEPTO DE ENLACE QUÍMICO

Tema 9. Química Orgánica

Geometría molecular: Teoría de Repulsión de los Pares de Electrones de la Capa de Valencia (RPECV) Terminología:

Colegio Nacional de Educación Profesional Técnica 3.1 QUIMICA ORGANICA Y GRUPOS FUNCIONALES

Enlace Químico I: Conceptos Básicos

TEMA 5 EL ENLACE QUÍMICO. COVALENTE

Título del diagrama COMPUESTOS INORGANICOS ORGANICOS. Sintetizados por los seres vivos. Tienen "Fuerza vital"

Estructuras de Lewis y la regla del octeto

Teoría del Enlace de Valencia (TEV)

TEMA 3 ENLACE QUÍMICO (PARTE 2)

Modelos de enlace. Estructuras de Lewis. Geometría molecular. Modelos que explican la formación del enlace covalente

SEGUNDO DE BACHILLERATO QUÍMICA. Simple C-C sp 3. Doble C=C sp 2. Triple C C

El Átomo de Bohr. Descripción mecánico-cuántica de los electrones alrededor del núcleo: orbitales atómicos

Tema 1: Estructura atómica y enlace químico.

TEMA 3.2 El Enlace Covalente

PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2018 QUÍMICA TEMA 3: ENLACES QUÍMICOS

Geometría Molecular y Orbitales Atómicos Híbridos

TEMA 2. EL ENLACE QUÍMICO. NOCIONES SOBRE EL ENLACE CONVALENTE Y LAS MOLÉCULAS COVALENTES QUÍMICA 2º BACHILLERATO.

18/10/2010 TEMA 2. CONTENIDO. Continuación Tema 2. Prof(a): María Angélica Sánchez Palacios

ENLACE QUÍMICO. Hidrógeno. Carbono. Agua. Etileno. Acetileno

Modelo de enlace iónico: Modelo electrostático simple

Contenidos. Características del carbono Tipos de hibridación y enlace Formulación y nomenclatura de compuestos orgánicos

ESTRUCTURA DE LA MATERIA QCA 05 ANDALUCÍA

Tema 2. Enlaces y estructuras

Medicina Veterinaria. Parte I

ENLACE QUIMICO. Teoría de enlace de valencia Hibridación de orbitales y enlaces múltiples

Entre moléculas. Enlace por Puente de Hidrógeno. Fuerzas de Van der Waals

Enlace químico. Enlace químico. El enlace iónico. El enlace covalente. Fuerza de interacción que mantiene ligados a los átomos en las moléculas.

Unidad I Carbono: Base de las sustancias orgánicas

20.-/ a) Cu: Metálico ; BCl 3 : Covalente ; H 2 O: Covalente ; CsF: Iónico b) BCl 3 : Triangular plana y APOLAR ; H 2 O: Angular y POLAR.

MÉTODO DEL ENLACE DE VALENCIA

GUÍA N 1: Enlace Químico y Grupos Funcionales

Tema 3. Enlaces químicos

Enlace Covalente: Contenidos

ESTRUCTURAS DE RESONANCIA

UNIVERSIDAD CENTRAL DEL ECUADOR FACULTAD DE CIENCIAS QUIMICAS QUÍMICA ORGÁNICA III ACIDOS CARBOXILICOS

CICLO 6 QUÍMICA. Química orgánica. tiempo se conocen dos formas alotrópicas

QUÍMICA DEL CARBONO 1. El carbono. 2. Grupos funcionales. 3. Isomería. 4. Compuestos orgánicos.

Tema 3. CUESTIONES SOBRE ENLACE QUÍMICO

Introducción a la Química Orgánica SEMANA 15 Licda. Lilian Judith Guzmán Melgar

Química del Carbono, Curso /05/2014. Tema 9. Química del Carbono. El carbono: Z=6 A=12. C =1s 2 2s 2 p 2

Transcripción:

QUÍMICA ORGÁNICA I Facultad de CC.QQ. y Farmacia Primer Semestre 2016 Unidad 1.1

1.1.2.- Estructura de los átomos: un repaso de Química General I

MODELO MECANOCUÁNTICO DE ÁTOMO Cubierta electrónica Núcleo ORBITALES Carácter ondulatorio de los electrones Principio de Incertidumbre de Heisenberg Caracterizados por números cuánticos: n : número cuántico principal l : número cuántico secundario m: número cuántico magnético

NIVELES Y SUBNIVELES EN LA CUBIERTA ELECTRÓNICA

FORMA DE LOS ORBITALES ATOMICOS ORBITALES 1s y 2s ORBITAL s

ORBITALES 2p

ORBITALES 3 d

ENERGÍA DE LOS ORBITALES Regla cuántica de (n+l): Entre dos orbitales tendrá menor energía aquél en el que la suma de los números cuánticos n y l sea menor. Si el resultado fuese el mismo para ambos, tendrá menor energía aquél de menor número cuántico principal n

EN QUÉ ORDEN SE LLENAN LOS ORBITALES? Principio de construcción (Aufbau): En su estado fundamental la distribución electrónica de un elemento se construye a partir del inmediato anterior, adicionándole un electrón de modo que le confiera la máxima estabilidad (menor energía)

CUÁNTOS ELECTRONES CABEN EN UN ORBITAL? Principio de exclusión de Pauli (1925): En un determinado sistema cuántico (átomo o molécula) no pueden existir dos electrones con los cuatro números cuánticos idénticos Por tanto, en un orbital sólo caben dos electrones que compartirían tres números cuánticos y se diferenciarían en el número cuántico de spin (s)

CÓMO SE LLENAN LOS GRUPOS DE ORBITALES DE IGUAL ENERGÍA? Regla de la máxima multiplicidad de Hund: Cuando una serie de orbitales de igual energía (p, d, f) se están llenando con electrones, éstos permanecerán desapareados mientras sea posible, manteniendo los espines paralelos

CAPA DE VALENCIA

CAPA DE VALENCIA DE LOS 18 PRIMEROS ELEMENTOS

Grupos del Sistema Periódico

PROPIEDADES PERIÓDICAS: RADIO ATÓMICOS

PROPIEDADES PERIÓDICAS: ELECTRONEGATIVIDAD

Enlace químico y moléculas

ENLACE IÓNICO ENLACE COVALENTE IÓNICO COVALENTE COVALENTE POLAR

ENLACE IÓNICO ENLACE COVALENTE NO POLAR POLAR

TIPO DE ENLACE Y ELECTRONEGATIDAD

TEORÍAS QUE EXPLICAN LA FORMACIÓN DEL ENLACE COVALENTE Y LA GEOMETRÍA MOLECULAR TEORÍA OCTETO ELECTRÓNICO Lewis Compartición de electrones GEOMETRÍA Método de repulsión de electrones de la capa de valencia ENLACE-VALENCIA Heitler-London Solapamiento de O.A. Hibridación de O.A ORBITAL MOLECULAR Mulliken-Hund Formación de O.M. Orbitales moleculares

TEORÍA DE LEWIS Átomos Los átomos forman moléculas porque compartiendo electrones alcanzan el octeto electrónico Moléculas Diatómicas

En el establecimiento de las estructuras de Lewis es muy importante tener en cuenta tres aspectos 1.- Asignar cargas formales a los átomos 2.- Valorar la existencia de formas resonantes 3.- Hay átomos que no cumplen la regla del octeto

Cargas formales Para determinar cargas formales sobre los átomos: Carga Formal = Número e Capa valencia - Número e Desapareados + Mitad e compartidos

Ejercicio: Usar el concepto de carga formal para determinar la estructura de Lewis más estable para a) CO 2 b) N 2 O a) Diferentes estructuras de Lewis que satisfacen la regla del octeto Para cada una de ellas se puede calcular la carga formal de cada átomo: La carga formal se minimiza cuando el átomo de carbono se coloca en el centro y establece dobles enlaces con los átomos de oxígeno

b) Para el N 2 O las posibles estructuras de Lewis con cargas formales son las siguientes: Se comprueba que las estructuras a) y d) son igual de buenas en cuanto a las cargas formales, sin embargo, habrá que convenir que la más importante (contribuye más al híbrido de resonancia) es la d) porque en ella la carga negativa está situada sobre el átomo de oxígeno, elemento más electronegativo que el nitrógeno.

Resonancia. No siempre existe una única estructura de Lewis que pueda explicar las propiedades de una molécula o ión. A cada una de ellas se le denomina forma resonante y al conjunto híbrido de resonancia

En el caso del ion CO 3 2, se podrían formar tres estructuras de Lewis en las que el doble enlace se forma con cada uno de los átomos de oxigeno, siendo las tres válidas. Cada una de estas formas contribuye por igual al la estructura del ion CO 3 2, siendo la verdadera estructura una mezcla de las tres.

Condiciones para escribir formas resonantes: 1. Para pasar de una forma resonante a otra solamente puedo mover electrones, nunca átomos. 2. Todas las estructuras resonantes que yo escriba deben ser estructuras de Lewis válidas. 3. Las estructuras resonantes deben poseer el mismo número de electrones desapareados. 4. Las estructuras resonantes más importantes son las de menor energía potencial.

Ejercicio: Escribir las formas resonantes del nitrometano y DMAP Nitrometano (N,N-dimetilamino)piridina DMAP

Cuál de todas las estructuras resonantes se parece más al compuesto real? 1. Aquella en la que todos los átomos tienen el octeto completo. 2. Aquellas en las que no existe separación de cargas es más importante que la que en la que existe separación de carga. O O R R OH OH 3. Cuando en dos formas resonantes existe separación de carga es más estable aquella que tiene las cargas más alejadas.

4. Las estructuras de resonancia que lleven carga negativa sobre un átomo electronegativo contribuye más que cuando esa carga va sobre otro átomo. H 2 C CH O H 2 C CH O 5. Si hay dos formas resonantes iguales la resonancia será más importante. Cuando una forma resonante es muchísimo más estable que las demás la resonancia no existe y la molécula real se parece mucho a esta forma. Cuando todas las formas resonantes son importantes, entonces la molécula real sí es un híbrido de todas las formas resonantes. H 2 C CH CH 2 H 2 C CH CH 2

Ejercicio: Se sabe que en el nitrometano los oxígenos distan por igual (1.2 Å) del nitrógeno. Cómo puede explicarse este hecho? La molécula de nitrometano es un híbrido de resonancia de dos especies idénticas. El enlace N-O ni es simple ni doble, tiene un carácter intermedio en ambos extremos.

En el ion acetato sucede algo análogo (dc-o=1.26 Å). Las estructuras electrónicas reales del nitrometano y del ion acetato son estructuras compuestas, promedio de las dos estructuras de Lewis respectivas (formas resonantes), y se dice que la molécula es un híbrido de resonancia.

Hay incumplimientos de la regla del octeto Elementos del tercer periodo como el fósforo se rodean de 10 electrones Los átomos con número impar de electrones suelen incumplir la regla

Ejercicio: Construir la estructura de Lewis del ión sulfito

Ejercicio: Construir la estructura de Lewis del dióxido de carbono

Ejercicio: Construir la estructura de Lewis del dióxido de azufre

Ejercicio: Construir la estructura de Lewis del ión sulfato

Ejercicio: Construir la estructura de Lewis del trifluoruro de boro

Las diferentes estructuras de Lewis de los átomos principales de las moléculas orgánicas, dependiendo de la estructura en la que estén involucrados, son:

GEOMETRÍA MOLECULAR: MÉTODO DE REPULSIÓN DE LOS PARES DE ELECTRONES DE LA CAPA DE VALENCIA Los pares de electrones se disponen en torno al átomo central de modo que se minimicen las repulsiones eléctricas entre ellos Cuatro pares de e rodeando el átomo de nitrógeno. Se dirigen hacia los vértices de un tetraedro (Geometría electrónica) Como sólo se enlazan 3 de los 4 pares electrónicos, la forma de la molécula será piramidal (un tetraedro con el par de electrones sin aparear en uno de los vértices) (Geometría molecular)

Dos pares de e enlazados: Molécula lineal Tres pares de e enlazados: Molécula trigonal plana Cuatro pares de e: Molécula tetraédrica Molécula tetraédrica Cuatro enlazados Molécula piramidal Tres enlazados Molécula angular Dos enlazados Enlazado- Enlazado < No enlazado- < Enlazado No enlazado- No enlazado Repulsión entre pares de electrones

Cinco pares de e enlazados: Molécula bipiramidal triangular Seis pares de e enlazados: Molécula bipiramidal cuadrada

En cuanto a la geometría molecular, los enlaces múltiples son iguales que los simples

TEORÍA DEL ENLACE-VALENCIA. HIBRIDACIÓN Los enlaces covalentes se producen por solapamiento de orbitales atómicos semiocupados de distintos átomos Orbital 1s semiocupado de un átomo de H Orbital 1s semiocupado de un átomo de H Molécula de hidrógeno

Tipos de enlace covalente según el solapamiento Enlace tipo sigma σ: solapamiento frontal Enlace tipo pi π: solapamiento lateral

HIBRIDACIÓN: Geometría molecular HIBRIDACIÓN sp 3 METANO Todos los enlaces C-H del metano son idénticos El carbono sólo podría formar dos enlaces C-H

sp 3 4 enlaces sencillos. Ejemplo: metano 3 enlaces sencillos + 1 par e sin compartir. Ej: NH 3 2 enlaces sencillos + 2 par e sin compartir. Ej: H 2 O

Un carbono unido a cuatro átomos siempre tendrá hibridación sp 3 y una estructura tetraédrica. Así son los alcanos, haluros de alquilo, alcoholes, éteres y aminas, entre otros. Un carbono unido a menos de cuatro átomos también puede tener hibridación sp 3 pero la estructura variará dependiendo del número de sustituyentes: Estructura Tipo de compuesto Carbaniones Carbenos Geometría Piramidal Angular Los carbaniones y carbenos son especies altamente reactivas (intermediarios de reacción) y en general tienen un tiempo de vida muy corto.

HIBRIDACIÓN sp 2 ETENO Hibridación sp 2 sp 2 2p z

sp 2 1 enlace doble y 3 sencillos. Ejemplo: eteno

Un carbono unido a tres átomos, que mantiene un doble enlace con uno de ellos, siempre tendrá hibridación sp 2 y una geometría trigonal plana. Así son compuestos estables tales como olefinas, hidrocarburos aromáticos, aldehídos, cetonas y ácidos carboxílcos y derivados, entre otros. Existen otras situaciones donde un átomo de carbono unido a tres átomos también posee hibridación sp 2 : Estructura Tipo de compuesto Carbocatión (ion carbonio) Radical Geometría Trigonal plana Trigonal plana Carbocationes y radicales son especies altamente reactivas (intermediarios de reacción) y en general tienen un tiempo de vida muy corto.

HIBRIDACIÓN sp 2 BENCENO C 6 H 6 Kekule Problema: El benceno es mucho más estable que lo que cabría esperar de la estructura propuesta por Kekule La hidrogenación del benceno libera mucha menos energía que la esperable

Hibridación sp 2 sp 2 2p z Estabilidad debida a la deslocalización de los electrones del anillo (aromaticidad)

HIBRIDACIÓN sp2 GRUPO CARBONILO Átomo carbono: Hibridación sp 2 Átomo oxígeno: Hibridación sp 2

HIBRIDACIÓN sp ACETILENO (Dos regiones de densidad electrónica alrededor del C)

sp 2 enlaces sencillos. Ejemplo: BeF 2 2 enlaces dobles. Ejemplo: CO 2 1 enlace triple y 1 sencillo. Ejemplo: etino

Un carbono unido a dos átomos, que mantiene un triple enlace con uno de ellos, siempre tendrá una hibridación sp y una estructura lineal. Existen otras posibilidades: Estructura Tipo de compuesto Aleno Acetiluro Geometría Lineal Lineal Los alenos son compuestos estables. Los acetiluros son especies reactivas (intermediarios de reacción).

Electronegatividad del carbono en función de su hibridación El carbono tiene mayor electronegatividad a medida que aumenta el carácter s de la hibridación. Por tanto los carbonos del etano (sp 3 ) son menos electronegativos que los del eteno (sp 2 ) y éstos a su vez menos electronegativos que los del etino (sp). El cálculo de las densidades electrónicas en estos tres compuestos refleja claramente este hecho: (azul +, rojo -) Etano Eteno Etino Los hidrógenos tienen una coloración azul más acusada desde el etano al etino, prueba de su menor densidad electrónica como consecuencia de la electronegatividad creciente del carbono.

HIBRIDACIÓN DE ORBITALES ATÓMICOS EN NITRÓGENO Y OXÍGENO sp 3 Nitrógeno Oxígeno Estructura Tipo Aminas Sales de amonio Alcoholes Éteres Alcóxidos Geometría Tetraédrica (Piramidal) Tetraédrica Tetraédrica (Angular) Tetraédrica Las aminas, sales de amonio, alcoholes y éteres son especies estables. Los alcóxidos son especies muy reactivas (intermediarios de reacción).

sp 2 Nitrógeno Oxígeno Estructura Tipo Iminas Sales de imonio Carbonilos Geometría Trigonal plana Trigonal plana Trigonal plana Los tres tipos de compuestos tienen en general estabilidad suficiente como para poder almacenarse sin problemas especiales. Los compuestos con grupos carbonilo son muy variados: pueden ser aldehídos, cetonas, ácidos carboxílicos, haluros de ácido, anhídridos, ésteres y amidas, entre otros.

sp. Nitrógeno Estructura Tipo Nitrilos Geometría Lineal Los nitrilos son compuestos estables

PARÁMETROS DE ENLACE Enlace Longitud típica (A) Momento dipolar (D) Energía de disociación (kcal/mol) C-H 1.07 0.40 99 X-H 1.01(N) 0.96(O) 1.31(N) 1.51(O) 93(N) 111(O) C-C 1.54 0 83 C=C 1.33 0 146 C C 1.20 0 200 C-N 1.47 0.22 73 C=N 1.30 1.90 147 C N 1.16 3.50 213 C-O 1.43 0.74 86 C=O 1.23 2.30 184 C-Cl 1.78 1.46 81 C-Br 1.93 1.38 68 C-I 2.14 1.19 51

TEORÍA DEL ORBITAL MOLECULAR La mezcla de n orbitales atómicos da lugar a n orbitales moleculares Ej.: Hidrógeno La combinación de dos orbitales atómicos 1s da lugar a un orbital molecular enlazante σ y a un orbital antienlazante σ*. Los dos electrones de la molécula ocupan el orbital molecular enlazante

Los orbitales moleculares tipo σ también se pueden formar por traslape frontal de orbitales p o de orbitales híbridos

Los orbitales moleculares tipo π se producen por traslape lateral de orbitales p

Formación de dos orbitales π por traslape lateral de orbitales p. Triple enlace carbono-carbono.

3.6.- Enlace covalente polar: Polaridad de los enlaces y las moléculas Un enlace covalente será polar si los átomos enlazados tienen cierta diferencia de electronegatividad

Cada enlace tiene un momento dipolar (magnitud vectorial que depende la diferencia de electronegatividad entre los átomos cuya dirección es la línea que une ambos átomos y cuyo sentido va del menos electronegativo al más electronegativo). Dipolo Menos electronegativo A B Más electronegativo Electronegatividades de algunos elementos H 2.2 Li 1.0 Be 1.6 B 2.0 C 2.6 N 3.0 O 3.4 F 4.0 Na 0.9 Mg 1.3 Al 1.6 Si 1.9 P 2.2 S 2.6 Cl 3.2 K 0.8 Br 3.0 I 2.7 Valores establecidos por L. Pauling y revisados por A. L. Allred (Journal of Inorganic and Nuclear Chemistry, 1961, 17, 215).

Enlace Momentos Dipolares de enlace Momento Dipolar, D Enlace Momento Dipolar, D H-F 1.7 C-F 1.4 H-Cl 1.1 C-O 0.7 H-Br 0.8 C-N 0.4 H-I 0.4 C=O 2.4 H-C 0.3 C=N 1.4 H-N 1.3 C N 3.6 H-O 1.5 La dirección del momento dipolar es hacia el átomo más electronegativo.

La polaridad de las moléculas depende de dos factores: a) La existencia de enlaces covalentes polares b) Una geometría que lo permita

Moléculas polares. Tienen no nulo: Moléculas con un sólo enlace covalente. Ej: HCl. Moléculas angulares, piramidales,... Ej: H2O, NH3 Moléculas apolares. Tienen nulo: Moléculas con enlaces apolares. Ej: H2, Cl2. Moléculas simétricas = 0. Ej: CH4, CO2.

CO 2 BF 3 CH 4 H 2 O NH 3

REPRESENTACIÓN DE LAS MOLÉCULAS EN QUÍMICA ORGÁNICA

TIPOS DE FÓRMULAS Fórmula Molecular C 2 H 6 O C 4 H 10 Fórmula Empírica C 2 H 5 Formula Estructural H Desarrollada C H H H H C C H N H H H Semidesarrollada Formula de líneas, trazos, esqueleto o angular. Notación de cuñas -3D-

Grupo funcional o función química Se define como el átomo o el grupo de átomos presentes en una estructura carbonada que le da al compuesto sus propiedades químicas características. Los compuestos orgánicos se clasifican en familias, de acuerdo a su grupo funcional. En un compuesto orgánico puede haber más de un grupo funcional.

PRINCIPALES GRUPOS FUNCIONALES. Clase Grupo funcional Ejemplo alcanos ninguno CH 3 -CH 3 Etano alquenos CH 3 CH=CH 2 Propeno alquinos CH 3 -C C-CH 3 2-Butino haluros de alquilo -halógeno CH 3 -CH 2 -Br Bromuro de etilo

Clase Grupo funcional Ejemplo (homo) aromáticos Tolueno (hetero) aromáticos 3-Metilpiridina

Clase Grupo funcional Ejemplo alcoholes fenoles éteres -OH -O- CH 3 -CH 2 -OH Etanol Ph-OH Fenol CH 3 -CH 2 -O-CH 2 -CH 3 Dietiléter aldehídos Etanal cetonas Propanona

Clase Grupo funcional Ejemplo ácidos carboxílicos Ácido acético ésteres Acetato de etilo amidas Acetamida haluros de acilo anhídridos Cloruro de acetilo Anhídrido acético

Clase Grupo funcional Ejemplo nitrilos -C N CH 3 CN Acetonitrilo nitroderivados -NO 2 CH 3 NO 2 Nitrometano iminas tioles sulfuros -SH -S- Metilimina de la propanona CH 3 -CH 2 -SH Etiltiol (CH 3 ) 2 S Dimetilsulfuro sulfonas -SO 2 - ácidos sulfónicos -SO 2 -OH CH 3 SO 2 CH 3 Dimetilsulfona CH 3 CH 2 CH 2 SO 2 OH Ácido propanosulfónico

ISOMERÍA

QUE SON ISOMEROS? Dos especies químicas diferentes se dice que son isómeras cuando tienen la misma composición elemental y el mismo peso molecular Los isómeros no son superponibles y tienen el mismo número de átomos de cada tipo

TIPOS DE ISOMERIA ISOMEROS ESTRUCTURALES ESTEREOISOMEROS

TIPOS DE ISOMERÍA

ISOMERÍA ESTRUCTURAL Son isómeros que difieren entre sí en que sus átomos están unidos de diferente forma Isomería de cadena Isomería de posición Isomería de función - No todos los grupos están unidos a los mismos centros -Son moléculas muy diferentes tanto en sus propiedades físicas como químicas

ISOMERÍA DE CADENA Los isómeros de cadena difieren en la forma en que están unidos los átomos de carbono entre sí para formar una cadena Cuántos isómeros tiene el butano? Cuántos isómeros tiene el pentano?

ISOMERÍA DE POSICIÓN Los isómeros de posición difieren en el lugar o la posición que ocupan sus grupos en la estructura carbonada Hay dos isómeros estructurales con la fórmula molecular C 3 H 7 Br Del alcohol con fórmula molecular C 4 H 9 OH se obtienen: Dos isómeros de posición Dos isómeros de cadena

En los derivados del benceno se dan casos muy importantes de isomería de posición Fórmula molecular C 7 H 8 Cl

Número de isómeros constitucionales de alcanos CH 4 1 C 8 H 18 18 C 2 H 6 1 C 9 H 20 35 C 3 H 8 1 C 10 H 22 75 C 4 H 10 2 C 15 H 32 4,347 C 5 H 12 3 C 20 H 42 366,319 C 6 H 14 5 C 40 H 82 62,491,178,805,831 C 7 H 16 9

ISOMERÍA DE FUNCIÓN Los isómeros de función difieren en sus grupos funcionales - La forma en que están unidos los átomos da lugar a grupos funcionales distintos Fórmula molecular C 3 H 6 O Fórmula molecular C 3 H 6 O 2 2-propen-1-ol