QUÉ ES UN NÚMERO DECIMAL?
|
|
- Antonia Gutiérrez Quintana
- hace 5 años
- Vistas:
Transcripción
1 QUÉ ES UN NÚMERO DECIMAL? Un número decimal representa un número que no es entero, es decir, los números decimales se utilizan para representar a los números que se encuentran entre un número entero y otro. Todo número decimal está compuesto por una parte entera y una parte decimal, separadas por una coma,. Los números decimales son posicionales, es decir que el valor de cada número depende de la posición que cada uno ocupe (repasar tema sistemas de numeración posicional). Veamos, con el siguiente ejemplo, como se leen los números decimales:
2 COMPARACION DE NUMEROS DECIMALES Para comparar números decimales el procedimiento es sencillo. Se comienza de izquierda a derecha comparando primero la parte entera en el caso de que estas sean iguales, se prosigue comparando los décimos. Si los décimos de ambos números decimales son iguales, se continúa comparando los centésimos y así continuamos hasta que encontremos cuál de los dos números es el mayor. Ejemplo: Determinar cuál de las siguientes expresiones decimales es mayor colocando los símbolos > y <. a) Comparar 23,487 y 2,993 Al comparar ambos números comenzamos, de izquierda a derecha, con los enteros. Como 23 es más grande que 2, entonces el primer número (23,487) es mayor que el segundo (2,993) y lo indicamos con >. 23,487 > 2,993 Se lee: Veintitrés enteros y cuatrocientos ochenta y siete milésimos es mayor que dos enteros y novecientos noventa y tres milésimos. b) Comparar 4,25 y 4,251 Para comparar estas expresiones vamos a completar con ceros el primer número (4,25 4,250). De esta forma ambos números tienen la misma longitud y es más sencillo compararlos cifra a cifra. Podemos darnos cuenta de que tanto la parte entera como los primeros dos números después de la coma (de izquierda a derecha) son iguales para ambas expresiones decimales, pero el número que ocupa la posición de los milésimos es distinta. Entonces, como 1 (correspondiente a 4,251) es mayor que 0 (perteneciente a 4,250), escribimos:
3 4,250 < 4,251 Se lee: Cuatro enteros y veinticinco centésimos es menor que cuatro enteros y doscientos cincuenta y un milésimos. CLASIFICACIÓN DE NÚMEROS DECIMALES Los números decimales pueden ser finitos, lo cual quiere decir que encontramos una cantidad de números, que podemos contar, después de la coma. 0,45 2,078 12, , , Como vemos, estos números tienen una cantidad de decimales que no podemos contar (los puntos suspensivos indican que la serie de números continúa). APROXIMACIÓN DE NÚMEROS DECIMALES REDONDEO Y TRUNCAMIENTO Muchas veces para no trabajar con números tan extensos, como en el caso de los números decimales infinitos o números con muchos decimales, recurrimos a la aproximación. Aproximar un número quiere decir que vamos a buscar un número con menos decimales que el primero, que represente más o menos la misma cantidad. Para aproximar tenemos dos caminos: Truncamiento: Este camino es el más sencillo. Por ejemplo, si tenemos que aproximar un número a los décimos simplemente debemos eliminar el número que ocupa el lugar de los centésimos y todos los que se encuentren a la derecha de éste. Si en cambio debemos aproximar a los centésimos, entonces eliminamos el número que ocupa el lugar de los milésimos y todos los números que se encuentran a su derecha, y así sucesivamente. Ejemplos: 1. Aproximar el número 4,273 a los décimos, es decir, al primer lugar después de la coma. 4,273 El número que ocupa el lugar del centésimo es el 7, por lo tanto eliminamos este número y todos los que se encuentran a su derecha, eliminando también el 3. El resultado de aproximar 4,273 por truncamiento es: 4,2 2. Aproximar el número 23,58823 a los centésimos, es decir, al segundo lugar después de la coma. 23,58823 El número que ocupa el lugar del milésimo es el 8, por lo tanto eliminamos este número y todos los que se encuentran a su derecha, eliminando también el 2 y el 3. El resultado de aproximar 23,58823 por truncamiento es: 23,58
4 Redondeo: Para redondear un número, procedemos de la siguiente manera: Por ejemplo, si tenemos que aproximar un número a los décimos, entonces debemos fijarnos en el número que ocupa el lugar de los centésimos. Si el número que ocupa el lugar de los centésimos es menor que 5, entonces se deja el número como está y se eliminan las cifras que ocupan el lugar de los centésimos, así como todos los números que se encuentran a su derecha. Si en cambio el número que ocupa el lugar de los centésimos es mayor o igual que 5, entonces a la cifra anterior (es decir a los décimos) le sumamos 1 y luego eliminamos todos los números que se encuentren a su derecha. De esta misma forma debemos proceder si queremos redondear en cualquier otra posición decimal, es decir que, si deseamos redondear a los centésimos, por ejemplo, entonces nos debemos fijar en el número que se encuentra en el lugar del milésimo y así sucesivamente. SUMA Y RESTA DE NÚMEROS DECIMALES Como ustedes saben, cuando sumamos o restamos números naturales, debemos sumar o restar las unidades con las unidades, las decenas con las decenas, las centenas con las centenas y así sucesivamente. De la misma forma se opera con los números decimales, se suman o se restan los décimos con los décimos, los centésimos con los centésimos, etc. Ubicando un número decimal debajo del otro alineando una coma debajo de otra. Ejemplos: a) Realizar la siguiente suma: , ,5 Antes de comenzar con la suma vamos a buscar que todos los números tengan la misma longitud decimal completando con ceros después de la coma. Como podemos ver el número que tiene una mayor cantidad de decimales es 0,112 entonces completamos los números restantes de la siguiente manera:
5 En la primera fila encontramos al número entero (12) recuerden que todo número entero tiene la coma, a su derecha. Es por este motivo que generalmente no se escribe. Una vez que completamos los número podemos, entonces, alinearlos uno debajo del otro (respetando la posición de la coma) para sumarlos. Ejemplo: Realizar la siguiente resta: 124, , 3501 En este caso ambos números tienen la misma longitud decimal, por lo tanto no hace falta completar con ceros. Como es debido al número más grande 124,0251 (minuendo) le restamos el más pequeño 45, 3501 (sustraendo). De esta forma, vamos a alinear una vez más un número debajo del otro respetando la posición de las comas.
6 MULTIPLICACIÓN DE NÚMEROS DECIMALES MULTIPLICACIÓN DE UN NÚMERO DECIMAL POR UN NÚMERO NATURAL Este caso es muy sencillo, simplemente debemos multiplicar los números como si se tratara de dos números naturales. Contando previamente cuantos lugares encontramos después de la coma (para el número decimal); colocamos la coma, en el resultado final, en el mismo lugar. DIVISIÓN CON NÚMEROS DECIMALES DIVISIÓN DE UN NÚMERO DECIMAL POR UN NÚMERO ENTERO Realizar este tipo de divisiones es muy sencillo. Comenzamos dividiendo la parte entera del dividendo y luego colocamos la coma en el cociente para continuar dividiendo la parte decimal. Como 5 es mayor que 4, tomamos los primeros dos números para efectuar la división. Estamos dividiendo la parte entera. Buscamos un número que, multiplicado por 5, de 47 o cerca de 47. El número buscado es el 9, ya que 9 x 5 = 45. Luego restamos.
7 Al bajar el 6 (en el dividendo)colocamos la coma en el cociente. Dividimos ahora la parte decimal del número. Buscamos un número que multiplicado por 5, de 26 o cerca de 26. El número buscado es el 5, ya que 5 x 5 = 25. Luego restamos. Al efectuar la resta: obtenemos como resultado resto 1. Como ya colocamos la coma en el cociente, podemos continuar con la división (buscando llegar, en aso de ser posible, al resto 0) agregando un 0 en el dividendo. Bajamos el 0 y continuamos con la división. Finalmente buscamos un número que, multiplicado por 5, nos de 10. El número buscado es 2. Obtenemos resto 0, por lo tanto la división concluye.
SISTEMAS DE NUMERACIÓN. Sistema de numeración decimal: 5 10 2 2 10 1 8 10 0 =528 8 10 3 2 10 2 4 10 1 5 10 0 9 10 1 7 10 2 =8245,97
SISTEMAS DE NUMERACIÓN Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. La norma principal en un sistema de numeración posicional es que un mismo símbolo
Lección 4: Suma y resta de números racionales
GUÍA DE MATEMÁTICAS II Lección : Suma y resta de números racionales En esta lección recordaremos cómo sumar y restar números racionales. Como los racionales pueden estar representados como fracción o decimal,
Materia: Informática. Nota de Clases Sistemas de Numeración
Nota de Clases Sistemas de Numeración Conversión Entre Sistemas de Numeración 1. EL SISTEMA DE NUMERACIÓN 1.1. DEFINICIÓN DE UN SISTEMA DE NUMERACIÓN Un sistema de numeración es un conjunto finito de símbolos
Sistemas de numeración
Sistemas de numeración Un sistema de numeración es un conjunto de símbolos y reglas que permiten representar datos numéricos. Los sistemas de numeración actuales son sistemas posicionales, que se caracterizan
TEMA 4. Sistema Sexagesimal. Sistema Octal (base 8): sistema de numeración que utiliza los dígitos 0, 1, 2, 3, 4, 5,
TEMA 4 Sistema Sexagesimal 4.0.- Sistemas de numeración Son métodos (conjunto de símbolos y reglas) ideados por el hombre para contar elementos de un conjunto o agrupación de cosas. Se clasifican en sistemas
NÚMEROS RACIONALES Y DECIMALES
NÚMEROS RACIONALES Y DECIMALES Unidad didáctica. Números racionales y decimales CONTENIDOS Fracciones Fracciones equivalentes Amplificar fracciones Simplificar fracciones Representación en la recta numérica.
Natural por decimal Decimal por natural Decimal por decimal 2764 x 2,9 24876. 89,26 x 24 35704 2142,24
1.- SUMA Y RESTA DE NÚMEROS DECIMALES Para sumar o restar números con decimales se suman o restan siempre unidades del mismo orden. 342,51 + 8,1 + 9.627,329 350 18,436 342,51 8,1 9.629,329 9.979,939 350,000
Cifras significativas e incertidumbre en las mediciones
Unidades de medición Cifras significativas e incertidumbre en las mediciones Todas las mediciones constan de una unidad que nos indica lo que fue medido y un número que indica cuántas de esas unidades
Ecuaciones de primer grado con dos incógnitas
Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad
DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO
I. SISTEMAS NUMÉRICOS DESARROLLO DE HABILIDADES DEL PENSAMIENTO LÓGICO LIC. LEYDY ROXANA ZEPEDA RUIZ SEPTIEMBRE DICIEMBRE 2011 Ocosingo, Chis. 1.1Sistemas numéricos. Los números son los mismos en todos
SISTEMAS DE NUMERACIÓN. Sistema decimal
SISTEMAS DE NUMERACIÓN Sistema decimal Desde antiguo el Hombre ha ideado sistemas para numerar objetos, algunos sistemas primitivos han llegado hasta nuestros días, tal es el caso de los "números romanos",
Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)
Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.
Qué son los monomios?
Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes
SISTEMAS DE NUMERACIÓN (11001, 011) 1.2 1.2 0.2 0.2 1.2 0.2 1.2 1.2 = + + + + + + + = 1 1 4 8 (32,12)
SISTEMAS DE NUMERACIÓN 1. Expresa en base decimal los siguientes números: (10011) ; ( 11001,011 ) 4 (10011) = 1. + 0. + 0. + 1. + 1. = 16 + + 1 = 19 (11001, 011) 1. 1. 0. 0. 1. 0. 1. 1. 4 1 = + + + + +
Seminario ESTALMAT Valladolid 2010. Fernando Tejada Presa
Seminario ESTALMAT Valladolid 2010 Fernando Tejada Presa ÁBACO Y ESTRATEGIAS DE CÁLCULO En esta charla vamos a ver una de las actividades que venimos realizando con los alumnos de la sede de León desde
La Lección de Hoy es Distancia entre dos puntos. El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1
La Lección de Hoy es Distancia entre dos puntos El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1 La formula de la distancia dada a dos pares es: d= (x 2 -x 1 ) 2 + (y 2 -y 1 ) 2 De
Divisibilidad y números primos
Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos
Los sistemas de numeración se clasifican en: posicionales y no posicionales.
SISTEMAS NUMERICOS Un sistema numérico es un conjunto de números que se relacionan para expresar la relación existente entre la cantidad y la unidad. Debido a que un número es un símbolo, podemos encontrar
Bloques multibase. Alumno: Fecha
Los bloques multibase se utilizan para facilitar la comprensión de la estructura del sistema de numeración decimal y las operaciones fundamentales. Se emplean, principalmente, en los procesos iniciales
Los números racionales
Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones
GUIA DE MATERIAL BASICO PARA TRABAJAR CON DECIMALES.
GUIA DE MATERIAL BASICO PARA TRABAJAR CON DECIMALES. D E C I M A L E S MARÍA LUCÍA BRIONES PODADERA PROFESORA DE MATEMÁTICAS UNIVERSIDAD DE CHILE. 38 Si tenemos el número 4,762135 la ubicación de cada
Operaciones con polinomios
Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)
SISTEMAS DE NUMERACIÓN. www.portalelectrozona.com
SISTEMA DECIMAL El sistema decimal, como su nombre indica, tiene diez cifras o dígitos distintos, que son 4 5 Por lo tanto, diremos que la BASE del sistema de numeración DECIMAL es (base ). 6 7 8 9 Pongamos
SUMA Y RESTA DE FRACCIONES
SUMA Y RESTA DE FRACCIONES CONCEPTOS IMPORTANTES FRACCIÓN: Es la simbología que se utiliza para indicar que un todo será dividido en varias partes (se fraccionará). Toda fracción tiene dos partes básicas:
El sistema decimal, es aquél en el que se combinan 10 cifras (o dígitos) del 0 al 9 para indicar una cantidad específica.
5.2 SISTEMAS DE NUMERACIÓN. DECIMAL El sistema decimal, es aquél en el que se combinan 10 cifras (o dígitos) del 0 al 9 para indicar una cantidad específica. La base de un sistema indica el número de caracteres
LA MULTIPLICACIÓN Y SUS PROPIEDADES
LA MULTIPLICACIÓN Y SUS PROPIEDADES Observa la siguiente multiplicación: 7 x 4 = 28 7: es el sumando que se repite y recibe el nombre de multiplicando. 4: es el número de veces que se repite el sumando
Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte
Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte En esta unidad vamos a estudiar los números racionales, esto es, los que se pueden expresar en
Matrices equivalentes. El método de Gauss
Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar
Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones
Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces
Polinomios y fracciones algebraicas
UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,
by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true
by Tim Tran: https://picasaweb.google.com/lh/photo/sdo00o8wa-czfov3nd0eoa?full-exif=true I. FUNDAMENTOS 3. Representación de la información Introducción a la Informática Curso de Acceso a la Universidad
EXPRESIONES ALGEBRAICAS. POLINOMIOS
EXPRESIONES ALGEBRAICAS. POLINOMIOS 1. EXPRESIONES ALGEBRAICAS. Estas expresiones del área son expresiones algebraicas, ya que además de números aparecen letras. Son también expresiones algebraicas: bac,
UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES
UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES 1. SISTEMA DE NUMERACIÓN DECIMAL.. LECTURA, ESCRITURA, DESCOMPOSICIÓN Y ORDENACIÓN DE NÚMEROS NATURALES. 3. SUMA DE NÚMEROS NATURALES. PROPIEDADES. 4. RESTA DE
SISTEMAS NUMÉRICOS (SISTEMAS DE NUMERACIÓN)
SISTEMAS NUMÉRICOS (SISTEMAS DE NUMERACIÓN) INTRODUCCIÓN Desde hace mucho tiempo, el hombre en su vida diaria se expresa, comunica, almacena información, la manipula, etc. mediante letras y números. Para
UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS
UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables
EJERCICIOS DEL TEMA 1
EJERCICIOS DEL TEMA 1 Introducción a los ordenadores 1) Averigua y escribe el código ASCII correspondiente, tanto en decimal como en binario, a las letras de tu nombre y apellidos. Distinguir entre mayúsculas/minúsculas,
Matemáticas para la Computación
Matemáticas para la Computación José Alfredo Jiménez Murillo 2da Edición Inicio Índice Capítulo 1. Sistemas numéricos. Capítulo 2. Métodos de conteo. Capítulo 3. Conjuntos. Capítulo 4. Lógica Matemática.
Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Aritmética binaria
Oliverio J. Santana Jaria 3. Aritmética tica binaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Para Los La en conocer muchos aritmética comprender otros binaria tipos
ESTRATEGIAS DE CÁLCULO MENTAL
ESTRATEGIAS DE CÁLCULO MENTAL El cálculo mental consiste en realizar cálculos matemáticos utilizando sólo el cerebro sin ayudas de otros instrumentos como calculadoras o incluso lápiz y papel. Las operaciones
SITEMA BINARIO, OCTAL Y HEXADECIMAL: OPERACIONES
Unidad Aritmética Lógica La Unidad Aritmético Lógica, en la CPU del procesador, es capaz de realizar operaciones aritméticas, con datos numéricos expresados en el sistema binario. Naturalmente, esas operaciones
Los polinomios. Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x
Los polinomios Los polinomios Un polinomio es una expresión algebraica con una única letra, llamada variable. Ejemplo: 9x 6 3x 4 + x 6 polinomio de variable x Elementos de un polinomio Los términos: cada
SISTEMAS DE NUMERACIÓN
SISTEMAS DE NUMERACIÓN DECIMAL, BINARIO Y HEXADECIMAL EDICIÓN: 091105 DEPARTAMENTO DE TECNOLOGÍA I.E.S. PABLO GARGALLO SISTEMAS DE NUMERACIÓN Un sistema de numeración es un conjunto de símbolos y reglas
Sistemas de ecuaciones lineales
Sistemas de ecuaciones lineales Índice general 1. Sistemas de ecuaciones lineales 2 2. Método de sustitución 5 3. Método de igualación 9 4. Método de eliminación 13 5. Conclusión 16 1 Sistemas de ecuaciones
DESIGUALDADES E INECUACIONES
DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia
Los números racionales son todos aquellos números de la forma a con a y b números enteros y b
Números racionales NÚMEROS RACIONALES Los números racionales son todos aquellos números de la forma a con a y b números enteros y b b distinto de cero. El conjunto de los números racionales se representa
Por ejemplo convertir el número 131 en binario se realiza lo siguiente: Ahora para convertir de un binario a decimal se hace lo siguiente:
Como convertir números binarios a decimales y viceversa El sistema binario es un sistema de numeración en el que los números se representan utilizando 0 y 1. Es el que se utiliza en los ordenadores, pues
Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina
Datos del autor Nombres y apellido: Germán Andrés Paz Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Correo electrónico: germanpaz_ar@hotmail.com =========0========= Introducción
Cualquier número de cualquier base se puede representar mediante la siguiente ecuación polinómica:
SISTEMAS DE NUMERACIÓN Los números se pueden representar en distintos sistemas de numeración que se diferencian entre si por su base. Así el sistema de numeración decimal es de base 10, el binario de base
EJERCICIOS SOBRE : NÚMEROS ENTEROS
1.- Magnitudes Absolutas y Relativas: Se denomina magnitud a todo lo que se puede medir cuantitativamente. Ejemplo: peso de un cuerpo, longitud de una cuerda, capacidad de un recipiente, el tiempo que
Biblioteca Virtual Ejercicios Resueltos
EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar
UNIDAD 2 Configuración y operación de un sistema de cómputo Representación de datos Conceptos El concepto de bit (abreviatura de binary digit) es fundamental para el almacenamiento de datos Puede representarse
Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3
1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite
LOS NÚMEROS NATURALES
LOS NÚMEROS NATURALES NUESTRO SISTEMA DE NUMERACIÓN (Características) 5 5º de E. Primaria Es decimal porque diez unidades de un orden forman una unidad del orden inmediato superior. 10 U = 1 D 10 D = 1C
Índice Introducción Números Polinomios Funciones y su Representación. Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones
Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Números 2 Polinomios 3 Funciones y su Representación
Las cuatro operaciones. En la. Escuela Básica. por. Francisco Rivero Mendoza
Las cuatro operaciones En la Escuela Básica por Francisco Rivero Mendoza 1 Conociendo los números Antes de pasar a estudiar los correspondientes algoritmos de la suma y la resta, es preciso desarrollar
Lección 9: Polinomios
LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios
Matrices Invertibles y Elementos de Álgebra Matricial
Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices
Módulo 9 Sistema matemático y operaciones binarias
Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional
Informática Bioingeniería
Informática Bioingeniería Representación Números Negativos En matemáticas, los números negativos en cualquier base se representan del modo habitual, precediéndolos con un signo. Sin embargo, en una computadora,
SISTEMAS NUMERICOS CAMILO ANDREY NEIRA IBAÑEZ UNINSANGIL INTRODUCTORIO A LA INGENIERIA LOGICA Y PROGRAMACION
SISTEMAS NUMERICOS CAMILO ANDREY NEIRA IBAÑEZ UNINSANGIL INTRODUCTORIO A LA INGENIERIA LOGICA Y PROGRAMACION CHIQUINQUIRA (BOYACA) 2015 1 CONTENIDO Pág. QUE ES UN SISTEMA BINARIO. 3 CORTA HISTORIA DE LOS
El Ábaco. Descripción. Para qué sirve?
El Ábaco El ábaco es un instrumento que sirve para facilitar al alumno el aprendizaje del concepto de sistema posicional de numeración (en cualquier base), cómo se forman las distintas unidades que lo
UNIDAD 3: ARITMÉTICA DEL COMPUTADOR
UNIDAD 3: ARITMÉTICA DEL COMPUTADOR Señor estudiante, es un gusto iniciar nuevamente con usted el desarrollo de esta tercera unidad. En esta ocasión, haremos una explicación más detallada de la representación
SISTEMAS NUMERICOS. Ing. Rudy Alberto Bravo
SISTEMAS NUMERICOS SISTEMAS NUMERICOS Si bien el sistema de numeración binario es el más importante de los sistemas digitales, hay otros que también lo son. El sistema decimal es importante porque se usa
MÉTODO DEL CAMBIO DE BASE PARA CÁLCULO MANUAL DE SUBREDES CON IP V4.0
MÉTODO DEL CAMBIO DE BASE PARA CÁLCULO MANUAL DE SUBREDES CON IP V4.0 José Antonio Guijarro Guijarro Profesor de Secundaria Especialidad de Informática Profesor Técnico de F.P. Especialidad de Sistemas
UNIDAD 1. LOS NÚMEROS ENTEROS.
UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar
Tema 2: Sistemas de representación numérica
2.1 Sistemas de Numeración Definiciones previas Comenzaremos por definir unos conceptos fundamentales. Existen 2 tipos de computadoras: Analógicas: actúan bajo el control de variables continuas, es decir,
Anterior Sistemas binarios: Aritmética binaria Siguiente ARITMÉTICA BINARIA. Operaciones elementales con números binarios
1 de 10 27/09/11 09:57 Anterior Sistemas binarios: Aritmética binaria Siguiente ARITMÉTICA BINARIA Operaciones elementales con números binarios Suma de números binarios Resta de números binarios Complemento
NÚMEROS NATURALES Y NÚMEROS ENTEROS
NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de
EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO
EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO 1º) Considérese un número estrictamente positivo del sistema de números máquina F(s+1, m, M, 10). Supongamos que tal número es: z = 0.d 1 d...d s 10 e Responde
POLINOMIOS. División. Regla de Ruffini.
POLINOMIOS. División. Regla de Ruffini. Recuerda: Un monomio en x es una expresión algebraica de la forma a x tal que a es un número real y n es un número natural. El real a se llama coeficiente y n se
El número de arriba de la fracción, el numerador, nos dice cuántas de las partes iguales están coloreadas.
Qué es una fracción? Una fracción es un número que indica parte de un entero o parte de un grupo. El siguiente círculo está dividido en partes iguales de las cuales partes están coloreadas. El número de
8 millares + 2 centenas + 4 decenas + 5 unidades + 9 décimos + 7 céntimos
COLEGIO HISPANO INGLÉS Rambla Santa Cruz, 94-38004 Santa Cruz de Tenerife +34 922 276 056 - Fax: +34 922 278 477 buzon@colegio-hispano-ingles.es TECNOLOGÍA 4º ESO Sistemas de numeración Un sistema de numeración
TEMA 4 FRACCIONES MATEMÁTICAS 1º ESO
TEMA 4 FRACCIONES Criterios De Evaluación de la Unidad 1 Utilizar de forma adecuada las fracciones para recibir y producir información en actividades relacionadas con la vida cotidiana. 2 Leer, escribir,
FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal.
FRACCIONES Las fracciones representan números (son números, mucho más exactos que los enteros o los decimales), Representa una o varias partes de la unidad. Una fracción tiene dos términos, numerador y
El Sistema de numeración Romano utiliza letras para escribir los números: I V X L C D M. uno cinco diez cincuenta cien quinientos mil
BLOQUE 1. NÚMEROS Y OPERACIONES CAPÍTULO 1.2. REPRESENTACIÓN ESCRITA DE LOS NÚMEROS La necesidad de comunicación entre los seres humanos ha llevado desde antiguo a la invención y uso de signos para contar,
UD 1. Representación de la información
UD 1. Representación de la información 1.1 INTRODUCCION... 1 1.2 SISTEMAS DE REPRESENTACIÓN... 2 1.2.1 El Sistema Decimal.... 2 1.2.2 Teorema Fundamental de la Numeración. (TFN)... 2 1.2.3 El Sistema Binario....
POTENCIAS Y RAICES. POTENCIA DE UN NÚMERO El cuadrado de un número es el resultado de multiplicar ese número por sí mismo.
POTENCIAS Y RAICES POTENCIA DE UN NÚMERO El cuadrado de un número es el resultado de multiplicar ese número por sí mismo. 3 2 3 x 3 9 5 2 5 x 5 25 El cubo de un número es el resultado de multiplicar el
2 Potencias y radicales
89 _ 09-008.qxd //08 09: Página Potencias y radicales INTRODUCCIÓN Los alumnos ya han trabajado con potencias de exponente positivo y han efectuado multiplicaciones y divisiones de potencias y potencias
1 1 0 1 x 1 0 1 1 1 1 0 1 + 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1
5.1.3 Multiplicación de números enteros. El algoritmo de la multiplicación tal y como se realizaría manualmente con operandos positivos de cuatro bits es el siguiente: 1 1 0 1 x 1 0 1 1 1 1 0 1 + 1 1 0
Ahora comencemos!... Las operaciones matemáticas fundamentales pueden realizarse de forma rápida y sencilla con Miicrosofftt Excell.
Necesitas organizar tus cuentas? O calcular tus notas? Miicrosofftt Excell te ayuda a hacerlo Lleva todas tus cuentas, notas, o lo que necesites, de forma automática, a través de las hojas de cálculo de
Tema 2: Fracciones y proporciones
Tema 2: Fracciones y proporciones Fracciones Números racionales Números decimales Razones y proporciones Porcentajes 1 2 Las fracciones: un objeto, varias interpretaciones (1) Parte de un todo (2) Un reparto
CAPITULO V. SIMULACION DEL SISTEMA 5.1 DISEÑO DEL MODELO
CAPITULO V. SIMULACION DEL SISTEMA 5.1 DISEÑO DEL MODELO En base a las variables mencionadas anteriormente se describirán las relaciones que existen entre cada una de ellas, y como se afectan. Dichas variables
EJERCICIOS SOBRE : DIVISIBILIDAD
1.- Múltiplo de un número. Un número es múltiplo de otro cuando lo contiene un número exacto de veces. De otra forma sería: un número es múltiplo de otro cuando la división del primero entre el segundo
Computación I Representación Interna Curso 2011
Computación I Representación Interna Curso 2011 Facultad de Ingeniería Universidad de la República Temario Representación de Números Enteros Representación de Punto Fijo Enteros sin signo Binarios puros
NÚMEROS Y OPERACIONES
NÚMEROS Y OPERACIONES NUESTRO SISTEMA DE NUMERACIÓN Para escribir un número usamos sólo diez cifras, que son: 0, 1, 2, 3, 4, 5, 6, 7, 8 y 9 El número 2 1 403.745 está formado por siete órdenes de unidades.
TECNOLOGÍA 4º ESO. 20 2 Realizando la lectura como indica la flecha 0 10 2 obtenemos: 20 10) =10100 2) 0 5 2 1 2 2 0 1 Lectura
Ejercicio Nº1 : La electrónica digital trabaja con dos niveles de tensión 0 V ó 5 voltios, equivalentes a 0 y 1, es decir, ausencia de tensión y presencia de tensión. Al trabajar sólo con dos niveles de
Unidad de trabajo 2: INFORMÁTICA BÁSICA (primera parte)
Unidad de trabajo 2: INFORMÁTICA BÁSICA (primera parte) Unidad de trabajo 2: INFORMÁTICA BÁSICA... 1 1. Representación interna de datos.... 1 1.2. Sistemas de numeración.... 2 1.3. Aritmética binaria...
EDWIN KÄMMERER ORCASITA INGENIERO ELECTRÓNICO
Identifica los tipos de datos y funciones - Tipos de Datos: Excel soporta 5 tipos de datos, estos son: a) Numéricos: Están formados por cualquiera de los 10 dígitos (del 0 al 9) y pueden estar acompañados
Sistemas de Numeración
Sistemas de Numeración Objetivo: Conoce los sistemas de numeración diferentes al decimal Ser capaces de transformar una cifra de un sistema a otro 1 Introducción El sistema de numeración usado de forma
Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 El sistema de numeración binario
binariooliverio J. Santana Jaria 2. El sistema de numeración Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Todos Curso 2006 2007 En numeración estamos decimal, familiarizados ya que
Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009
Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán, de una lista de expresiones
1. MEDIDAS DE TENDENCIA CENTRAL
1. MEDIDAS DE TENDENCIA CENTRAL Lo importante en una tendencia central es calcular un valor central que actúe como resumen numérico para representar al conjunto de datos. Estos valores son las medidas
Sistema binario. Representación
Sistema binario El sistema binario, en matemáticas e informática, es un sistema de numeración en el que los números se representan utilizando solamente las cifras cero y uno ( y ). Es el que se utiliza
Matemáticas Propedéutico para Bachillerato. Introducción
Actividad. Fracciones simples. Introducción En las actividades anteriores vimos las operaciones básicas de suma, resta, multiplicación y división, así como la jerarquía de ellas entre números enteros,
LÍMITES Y CONTINUIDAD DE FUNCIONES
Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos
M E T R O L O G I A APUNTES DE PIE DE METRO.
1 M E T R O L O G I A APUNTES DE PIE DE METRO. 2 M E T R O L O G I A PIE DE METRO. Es un instrumento para medir longitudes que permite lecturas en milímetros y en fracciones de pulgada, a través de una
mcd y mcm Máximo Común Divisor y Mínimo Común múltiplo www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx
mcd y mcm Máximo Común Divisor y Mínimo Común múltiplo www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2008 Contenido 1. Divisores de un número entero 2 2. Máximo común divisor
REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS
REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS Si en una división de polinomios el divisor es de la forma (x - a) se puede aplicar la regla de Ruffini para obtener el cociente y el resto de la división.
Funciones polinomiales de grados 3 y 4
Funciones polinomiales de grados 3 y 4 Ahora vamos a estudiar los casos de funciones polinomiales de grados tres y cuatro. Vamos a empezar con sus gráficas y después vamos a estudiar algunos resultados
El primero puso: 12 El segundo puso: 12 + 3 = 15. Entre los dos primeros juntaron: 12 + 15 = 27. El tercero puso: 40 27 = 13.
Ejercicios de números naturales con soluciones 1 Tres amigos han juntado 40 para comprar un regalo a otro amigo. El primero puso 12 y el segundo, 3 más que el primero. Cuánto puso el tercero? El primero