Sistemas de ecuaciones lineales
|
|
- José Jiménez López
- hace 6 años
- Vistas:
Transcripción
1 Sistemas de ecuaciones lineales
2 Índice general 1. Sistemas de ecuaciones lineales 2 2. Método de sustitución 5 3. Método de igualación 9 4. Método de eliminación Conclusión 16
3 1 Sistemas de ecuaciones lineales En este documento estudiaremos sistemas de ecuaciones lineales 2 2, es decir, de dos ecuaciones y dos incógnitas. Estos sistemas tienen la siguiente forma: Sistema de ecuaciones lineales 2 a 11 x + a 12 y = b 1 a 21 x + a 22 y = b 2 El problema a resolver es encontrar el valor de las incógnitas x,y tales que las dos ecuaciones sean verdaderas. En un sistema de ecuaciones lineales siempre tenemos solo uno de los tres casos siguientes: 1. El sistema tiene una única solución. 2. El sistema no tiene solución. 3. El sistema tiene más de una solución (infinidad de soluciones). Los métodos para resolver un sistema de ecuaciones lineales se verán a continuación, sin embargo, todos ellos nos deben de dar la misma solución.
4 Antes de revisar los métodos podemos mencionar un criterio que nos permitirá saber si el sistema tiene ó no, una única solución: El sistema Solución única a 11 x + a 12 y = b 1 a 21 x + a 22 y = b 2 tiene una única solución si y sólo si a 11 a 22 a 12 a 21 0 Si a 11 a 22 a 12 a 21 = 0, y 1. a 11,a 12,b 1 son múltiplos de a 21,a 22,b 2, respectivamente. Entonces el sistema tiene una infinidad de soluciones. 2. a 11,a 12 son múltiplos de a 21,a 22 respectivamente, pero b 1 no lo es de b 2. Entonces el sistema no tiene solución. 3 Ejemplos: Ejemplo 1 Consideremos el sistema 2x + 3y = 1 3x y = 1 como (2)( 1) (3)(3) = 2 9 = 11 0, entonces el sistema tiene una única solución. Ejemplo 2 Consideremos el sistema 3x + 4y = 4 6x 2y = 2 como (3)( 2) (6)(4) = 6 24 = 30 0, entonces el sistema tiene una única solución. Ejemplo 3 Consideremos el sistema 2x + y = 6 4x + 2y = 1
5 como (2)(2) (4)(1) = 4 4 = 0, entonces el sistema NO tiene una única solución, pero como 4x+2y es el doble de 2x+y, pero 1 no es el doble de 6, el sistema NO tiene solución. Ejemplo 4 Consideremos el sistema 3x 3y = 2 x y = 5 como (3)( 1) ( 3)(1) = = 0, entonces el sistema no tiene una única solución. Y como la primera ecuación es el triple de la segunda, pero 2 no es el triple de 5. Tenemos que el sistema no tiene solución. Ejemplo 5 Consideremos el sistema 1 2 x y = x + y = 1 como ( 1 2 )(1) (1 3 )(3 ) = 0, entonces el sistema NO tiene una única solución. Y 2 como la segunda ecuación es el triple de la primera, incluyendo la constante, por lo tanto el sistema tiene una cantidad infinita de soluciones. 4
6 2 Método de sustitución El método de sustitución trabaja de la siguiente manera: 1. De la primera ecuación se despeja una incógnita, digamos x. 2. Se sustituye la incógnita despejada en la segunda ecuación. 3. Se reduce la segunda ecuación, y se encuentra el valor de y. 4. Finalmente se sustituye el valor de y, en la ecuación del paso 1, y se encuentra x. Es posible cambiar de incógnita. 5 Ejemplos: Resolver el sistema Ejemplo 2.1 x + y = 1 x y = 1 Paso 1 Despejamos de la primera ecuación a x, entonces x = 1 y. Paso 2 Sustituimos a x = 1 y, en la segunda ecuación: x y = 1 (1 y) y = 1
7 Paso 3 Reducimos la ecuación anterior: (1 y) y = 1 1 2y = = 2y 0 = 2y de donde y = 0. Paso 4 Ahora, sustituimos el valor de y = 0, en la ecuación del paso 1, x = 1 y. Entonces x = 1 (0) = 1. Paso 5 Por tanto la solución del sistema es: x = 1 y = 0 Ejemplo Resolver el sistema 2x + y = 3 3x + 2y = 2 Paso 1 Despejamos de la primera ecuación a x, entonces x = 3 y 2. Paso 2 Sustituimos a x = 3 y, en la segunda ecuación: 2 3x + 2y = 2 3( 3 y 2 ) + 2y = 2
8 Paso 3 Reducimos la ecuación anterior: 3( 3 y 2 ) + 2y = y + 2y = y = y = y = 5 2 y = 5 de donde y = 5. Paso 4 Ahora, sustituimos el valor de y = 5, en la ecuación del paso 1, x = 3 y 2. Entonces x = 3 ( 5) = = 4. Paso 5 Por lo tanto la solución del sistema es: x = 4 y = 5 7 Resolver el sistema Ejemplo 2.3 x y = 1 2x 3y = 5 Paso 1 Despejamos de la primera ecuación a x, entonces x = y 1. Paso 2 Sustituimos a x = y 1, en la segunda ecuación: 2x 3y = 5 2(y 1) 3y = 5
9 Paso 3 Reducimos la ecuación anterior: 2(y 1) 3y = 5 2y 2 3y = 5 y = y = 7 de donde y = 7. Paso 4 Ahora, sustituimos el valor de y = 7, en la ecuación del paso 1, x = y 1. Entonces x = ( 7) 1 = 8. Paso 5 Por lo tanto la solución del sistema es: x = 8 y = 7 8
10 3 Método de igualación El método de igualación trabaja de la siguiente manera: 1. Despejamos de ambas ecuaciones una incógnita, digamos x. 2. Igualamos ambos despejes. 3. Despejamos, entonces a y de la ecuación obtenida del paso anterior. 4. Obtenemos a x, al sustituir y, en cualquier ecuación obtenida del paso 1. 9 Ejemplos: Resolver el sistema Ejemplo 3.1 x + y = 1 x y = 1 Paso 1 Despejamos de ambas ecuaciones a x, entonces: x = 1 y x = 1 + y Paso 2 Igualamos ambas ecuaciones del paso anterior: 1 y = 1 + y.
11 Paso 3 Despejamos a y de la ecuación anterior: 1 y = 1 + y 0 = 2y de donde y = 0. Paso 4 Ahora, sustituimos el valor de y = 0, en cualquier ecuación del paso 1, x = 1 y. Entonces x = 1 (0) = 1. Paso 5 Por lo tanto la solución del sistema es: x = 1 y = 0 Resolver el sistema Ejemplo 3.2 2x + y = 3 3x + 2y = 2 10 Paso 1 Despejamos de ambas ecuaciones a x, entonces: x = 3 y 2 x = 2 2y 3 Paso 2 Igualamos ambas ecuaciones del paso anterior: 3 y 2 = 2 2y. 3
12 Paso 3 Despejamos a y de la ecuación anterior: 3 y = 2 2y 2 3 3(3 y) = 2(2 2y) 9 3y = 4 4y 9 4 = 4y + 3y 5 = y de donde y = 5. Paso 4 Ahora, sustituimos el valor de y = 5, en cualquier la ecuación del paso 1, x = 3 y 3 ( 5). Entonces x = = = 4. Paso 5 Por lo tanto la solución del sistema es: x = 4 y = 5 11 Resolver el sistema Ejemplo 3.3 x y = 1 2x 3y = 5 Paso 1 Despejamos de ambas ecuación a x, entonces: x = y 1 x = 5 + 3y 2 Paso 2 Igualamos ambas ecuaciones del paso anterior: y 1 = 5 + 3y 2
13 Paso 3 Despejamos a y de la ecuación anterior: y 1 = 5 + 3y 2 2y 2 = 5 + 3y 2 5 = 3y 2y 7 = y de donde y = 7. Paso 4 Ahora, sustituimos el valor de y = 7, en cualquier ecuación del paso 1, x = y 1. Entonces x = ( 7) 1 = 8. Paso 5 Por lo tanto la solución del sistema es: x = 8 y = 7 12
14 4 Método de eliminación El método de igualación trabaja de la siguiente manera: 1. Se observan las ecuaciones, si tenemos los mismos x, (y) en la primera que en la segunda con signo contrario, si no, entonces buscamos un número real tal que al multiplicar una ecuación por ese número r obtengamos los mismos x, (y) en ambas ecuaciones con signo contrario. 2. Observación: si multiplicamos una ecuación por un número real r, la solución del sistema no cambia. 3. Posteriormente sumamos ambas ecuaciones, y así reducimos nuestro sistema a una sola ecuación con x ó y. 4. Despejamos ese x ó y, y sustituimos en cualquier ecuación del sistema para obtener el y ó x restante. 13 Ejemplos: Resolver el sistema Ejemplo 4.1 x + y = 1 x y = 1
15 Paso 1 Obsérvese que tenemos en ambas ecuaciones a las mismas y con signo contrario, por lo tanto, si sumamos ambas ecuaciones tenemos: 2x = 2, por lo tanto x = 1. Paso 2 Sustituimos a x = 1, en cualquier ecuación del sistema: (1) + y = 1, entonces y = 0. Paso 3 Por lo tanto la solución del sistema es: x = 1 y = 0 Resolver el sistema Ejemplo 4.2 2x + y = 3 3x + 2y = 2 14 Paso 1 Obsérvese que tenemos en ambas ecuaciones a y, y 2y por lo tanto, si multiplicamos a la primera ecuación por 2, obtenemos: 4x 2y = 6 3x + 2y = 2 Paso 2 Sumando ambas ecuaciones del paso anterior obtenemos: x = 4, entonces x = 4. Paso 4 Ahora, sustituimos el valor de x = 4, en cualquier la ecuación del paso 1, 2(4) + y = 3, obtenemos que y = 3 8 = 5. Paso 5 Por lo tanto la solución del sistema es: x = 4 y = 5
16 Resolver el sistema Ejemplo 4.3 x y = 1 2x 3y = 5 Paso 1 Obsérvese que tenemos en ambas ecuaciones a x, y 2x por lo tanto, si multiplicamos a la primera ecuación por 2, obtenemos: 2x + 2y = 2 2x 3y = 5 Paso 2 Sumando ambas ecuaciones del paso anterior obtenemos: 2y 3y = 2+7, entonces y = 7. Paso 3 Ahora, sustituimos el valor de y = 7, en cualquier ecuación del paso 1, x = y 1. Entonces x = ( 7) 1 = Paso 4 Por lo tanto la solución del sistema es: x = 8 y = 7
17 5 Conclusión De los ejemplos anteriores podemos concluir que los tres métodos para obtener la solución a un sistema de ecuaciones 2 2, dan el mismo resultado. También podemos concluir que el método más eficiente es el tercero, el método de eliminación. Este método se puede generalizar para sistemas de ecuaciones más grandes, de hecho es el método más usado para dar solución a sistemas de ecuaciones lineales con n ecuaciones y m incógnitas éste lleva el nombre de método de Gauss. 16
Ecuaciones de primer grado con dos incógnitas
Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad
MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.
ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta
Matrices Invertibles y Elementos de Álgebra Matricial
Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices
SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD
Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x
VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes.
VECTORES EN EL ESPACIO. Determina el valor de t para que los vectores de coordenadas (,, t), 0, t, t) y(, 2, t) sean linealmente dependientes. Si son linealmente dependientes, uno de ellos, se podrá expresar
4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA
4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA Una ecuación con una incógnita es de segundo grado si el exponente de la incógnita es dos. Ecuaciones de segundo grado con una incógnita son: Esta última ecuación
5 Ecuaciones lineales y conceptos elementales de funciones
Programa Inmersión, Verano 206 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 3023 Clase #6: martes, 7 de junio de 206. 5 Ecuaciones lineales y conceptos elementales
Matrices equivalentes. El método de Gauss
Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar
De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.
3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen
1.4.- D E S I G U A L D A D E S
1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y
ax + b < 0, ax + b > 0, ax + b 0 o ax + b 0, multiplicamos ambos miembros de la inecuación por 6 para quitar denominadores. De esta forma se tiene
8 UNIDAD I. A modo de repaso. Preliminares Inecuaciones Una inecuación es una desigualdad en la que el criterio de comparación es la relación de orden inherente al conjunto de los números reales. Hay que
Porcentaje. Problemas sobre porcentaje. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx
Porcentaje Problemas sobre porcentaje www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2011 Contenido 1. Porcentajes 2 2. Porcentajes simplificado 4 3. Porcentajes especiales 5
E 1 E 2 E 2 E 3 E 4 E 5 2E 4
Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),
Lección 14: Problemas que se resuelven por sistemas de ecuaciones lineales
GUÍA DE MATEMÁTICAS III Lección 14: Problemas que se resuelven por sistemas de ecuaciones lineales A continuación veremos algunos problemas que se resuelven con sistemas de ecuaciones algunos ejemplos
Lección 24: Lenguaje algebraico y sustituciones
LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce
QUÉ ES UN NÚMERO DECIMAL?
QUÉ ES UN NÚMERO DECIMAL? Un número decimal representa un número que no es entero, es decir, los números decimales se utilizan para representar a los números que se encuentran entre un número entero y
ECUACION DE DEMANDA. El siguiente ejemplo ilustra como se puede estimar la ecuación de demanda cuando se supone que es lineal.
ECUACION DE DEMANDA La ecuación de demanda es una ecuación que expresa la relación que existe entre q y p, donde q es la cantidad de artículos que los consumidores están dispuestos a comprar a un precio
Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos
MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que
UNIDAD 4 Sistemas de ecuaciones lineales... 84 Introducción... 84 4.1.- Sistemas de ecuaciones lineales con dos incógnitas... 84 4.2.
FACULTAD DE INGENIERÍA - UNSJ Unidad : Sistemas de Ecuaciones Lineales UNIDAD Sistemas de ecuaciones lineales... 8 Introducción... 8.1.- Sistemas de ecuaciones lineales con dos incógnitas... 8..- Resolución
EL INTERÉS SIMPLE. El interés, como precio por el uso del dinero, se puede presentar como interés simple o como interés compuesto.
EL INTERÉS SIMPLE El concepto de interés tiene que ver con el precio del dinero. Si alguien pide un préstamo debe pagar un cierto interés por ese dinero. Y si alguien deposita dinero en un banco, el banco
SUMA Y RESTA DE FRACCIONES
SUMA Y RESTA DE FRACCIONES CONCEPTOS IMPORTANTES FRACCIÓN: Es la simbología que se utiliza para indicar que un todo será dividido en varias partes (se fraccionará). Toda fracción tiene dos partes básicas:
1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.
Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular
Pruebas de Acceso a las Universidades de Castilla y León
Pruebas de cceso a las Universidades de Castilla y León MTEMÁTICS PLICDS LS CIENCIS SOCILES EJERCICIO Nº páginas 2 Tablas OPTTIVIDD: EL LUMNO DEBERÁ ESCOGER UN DE LS DOS OPCIONES Y DESRROLLR LS PREGUNTS
INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO
INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO INTERVALOS Los Intervalos son una herramienta matemática que se utiliza para delimitar un conjunto determinado de números reales. Por ejemplo el intervalo [-5,3]
Tarea 7 Soluciones. Sol. Sea x el porcentaje que no conocemos, entonces tenemos la siguiente. (3500)x = 420. x = 420 3500 = 3 25
Tarea 7 Soluciones. Una inversión de $3500 produce un rendimiento de $420 en un año, qué rendimiento producirá una inversión de $4500 a la misma tasa de interés durante el mismo tiempo? Sol. Sea x el porcentaje
6 Ecuaciones de 1. er y 2. o grado
8985 _ 009-08.qd /9/07 5:7 Página 09 Ecuaciones de. er y. o grado INTRODUCCIÓN La unidad comienza diferenciando entre ecuaciones e identidades, para pasar luego a la eposición de los conceptos asociados
Sistemas de dos ecuaciones lineales con dos incógnitas
Sistemas de dos ecuaciones lineales con dos incógnitas Una ecuación lineal con dos incógnitas es una epresión de la forma a b c donde a, b c son los coeficientes (números) e son las incógnitas. Gráficamente
EJERCICIOS SOBRE : ECUACIONES DE PRIMER GRADO
1.- Igualdades. Las expresiones en donde aparecen el signo =, se llaman igualdades. Ejemplo: 5 = 7-2 ; x + 2 = 9 Toda igualdad consta de dos miembros, el primer miembro ( lo escrito antes del signo igual
b) Los lados de un triángulo rectángulo tienen por medida tres números naturales consecutivos. Halla dichos lados.
Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz Reduce a común denominador el siguiente conjunto de fracciones: + ; y Común denominador: ( + )( ) MCM + ( )( ) ( )( + )( ) ( ) (
3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada?
Problemas de Cinemática 1 o Bachillerato Caída libre y tiro horizontal 1. Desde un puente se tira hacia arriba una piedra con una velocidad inicial de 6 m/s. Calcula: a) Hasta qué altura se eleva la piedra;
Cap. 24 La Ley de Gauss
Cap. 24 La Ley de Gauss Una misma ley física enunciada desde diferentes puntos de vista Coulomb Gauss Son equivalentes Pero ambas tienen situaciones para las cuales son superiores que la otra Aquí hay
Divisibilidad y números primos
Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos
SISTEMAS DE ECUACIONES LINEALES
Capítulo 7 SISTEMAS DE ECUACIONES LINEALES 7.1. Introducción Se denomina ecuación lineal a aquella que tiene la forma de un polinomio de primer grado, es decir, las incógnitas no están elevadas a potencias,
Selectividad Junio 2008 JUNIO 2008 PRUEBA A
Selectividad Junio 008 JUNIO 008 PRUEBA A 3 a x + a y =.- Sea el sistema: x + a y = 0 a) En función del número de soluciones, clasifica el sistema para los distintos valores del parámetro a. b) Resuélvelo
Colegio Las Tablas Tarea de verano Matemáticas 3º ESO
Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y
EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO
EJERCICIOS RESUELTOS SOBRE ERRORES DE REDONDEO 1º) Considérese un número estrictamente positivo del sistema de números máquina F(s+1, m, M, 10). Supongamos que tal número es: z = 0.d 1 d...d s 10 e Responde
TEMA 5 RESOLUCIÓN DE CIRCUITOS
TEMA 5 RESOLUCIÓN DE CIRCUITOS RESOLUCIÓN DE CIRCUITOS POR KIRCHHOFF Para poder resolver circuitos por Kirchhoff debemos determinar primeros los conceptos de malla, rama y nudo. Concepto de malla: Se llama
1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde
Soluciones de la relación del Tema 6. 1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B1, p), donde p = P X = 1) = P la persona presente síntomas)
SISTEMAS DE ECUACIONES LINEALES
SISTEMAS DE ECUACIONES LINEALES INTRODUCCIÓN En el presente documento se explican detalladamente dos importantes temas: 1. Descomposición LU. 2. Método de Gauss-Seidel. Se trata de dos importantes herramientas
Métodos Iterativos para Resolver Sistemas Lineales
Métodos Iterativos para Resolver Sistemas Lineales Departamento de Matemáticas, CCIR/ITESM 17 de julio de 2009 Índice 3.1. Introducción............................................... 1 3.2. Objetivos................................................
PARTE 3 ECUACIONES DE EQUIVALENCIA FINANCIERA T E M A S
PARTE 3 ECUACIONES DE EQUIVALENCIA FINANCIERA Valor del dinero en el tiempo Conceptos de capitalización y descuento Ecuaciones de equivalencia financiera Ejercicio de reestructuración de deuda T E M A
La lección de hoy es sobre Resolver Ecuaciones. El cuál es la expectativa para el aprendizaje del estudiante SEI.2.A1.1
SEI.2.A1.1-Solving Equations-Student Learning Expectation. La lección de hoy es sobre Resolver Ecuaciones. El cuál es la expectativa para el aprendizaje del estudiante SEI.2.A1.1 En esta lección aprenderemos
SOLUCIÓN DE INECUACIONES DE UNA VARIABLE
SOLUCIÓN DE INECUACIONES DE UNA VARIABLE Resolver una inecuación es hallar el conjunto de soluciones de las incógnitas que satisfacen la inecuación. Terminología: ax + b > cx + d Primer miembro Segundo
LÍMITES Y CONTINUIDAD DE FUNCIONES
Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos
a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)
Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,
Profr. Efraín Soto Apolinar. Factorización
Factorización La factorización es la otra parte de la historia de los productos notables. Esto es, ambas cosas se refieren a las mismas fórmulas, pero en los productos notables se nos daba una operación
DESIGUALDADES E INECUACIONES
DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia
GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008
1. Sean los puntos A (1, 0,-1) y B (,-1, 3). Calcular la distancia del origen de coordenadas a la recta que pasa por A y B. Calculemos la recta que pasa por A y B. El vector AB es (1,-1,4) y por tanto
Tema 2. Espacios Vectoriales. 2.1. Introducción
Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por
DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:
DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)
PROBLEMAS DE ECUACIONES SIMULTÁNEAS
PROBLEMAS DE ECUACIONES SIMULTÁNEAS Por: ELÍAS LOYOLA CAMPOS 1. En un recinto del zoológico se tienen dos tipos de animales: avestruces y jirafas. Hay 30 ojos y 44 patas, cuántos animales hay de cada tipo?
Ejercicios de Trigonometría
Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple
Segundo de Bachillerato Geometría en el espacio
Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto
UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS
UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables
Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.
Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).
(Ec.1) 2α + β = b (Ec.4) (Ec.3)
Problema 1. Hallar t R para que el vector x = (3, 8, t) pertenezca al subespacio engendrado por los vectores u = (1, 2, 3) y v = (1, 3, 1). Solución del problema 1. x L{ u, v} si, y sólo si, existen α,
1. Lección 3 - Leyes de Capitalización
1. Lección 3 - Leyes de Capitalización Apuntes: Matemáticas Financieras 1.1. Capitalización Simple 1.1.1. Expresión matemática La expresión matemática de la capitalización simple es: L 1 (t) = 1 + i t
AXIOMAS DE CUERPO (CAMPO) DE LOS NÚMEROS REALES
AXIOMASDECUERPO(CAMPO) DELOSNÚMEROSREALES Ejemplo: 6 INECUACIONES 15 VA11) x y x y. VA12) x y x y. Las demostraciones de muchas de estas propiedades son evidentes de la definición. Otras se demostrarán
Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II
Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Antonio Francisco Roldán López de Hierro * Convocatoria
UNIDAD DE APRENDIZAJE IV
UNIDAD DE APRENDIZAJE IV Saberes procedimentales 1. Interpreta y utiliza correctamente el lenguaje simbólico ara el manejo de expresiones algebraicas. 2. Identifica operaciones básicas con expresiones
Subespacios vectoriales en R n
Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo
1. Lección 5 - Comparación y Sustitución de capitales
Apuntes: Matemáticas Financieras 1. Lección 5 - Comparación y Sustitución de capitales 1.1. Comparación de Capitales Se dice que dos capitales son equivalentes cuando tienen el mismo valor en la fecha
1. HABILIDAD MATEMÁTICA
HABILIDAD MATEMÁTICA SUCESIONES, SERIES Y PATRONES. HABILIDAD MATEMÁTICA Una serie es un conjunto de números, literales o dibujos ordenados de tal manera que cualquiera de ellos puede ser definido por
Espacios generados, dependencia lineal y bases
Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................
CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES
INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo
Nivelación de Matemática MTHA UNLP 1. Los números reales se pueden representar mediante puntos en una recta.
Nivelación de Matemática MTHA UNLP 1 1. Desigualdades 1.1. Introducción. Intervalos Los números reales se pueden representar mediante puntos en una recta. 1 0 1 5 3 Sean a y b números y supongamos que
BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.
BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades
Resolución de ecuaciones lineales. En general para resolver una ecuación lineal o de primer grado debemos seguir los siguientes pasos:
Resolución de ecuaciones lineales En general para resolver una ecuación lineal o de primer grado debemos seguir los siguientes pasos: 1º Quitar paréntesis. Si un paréntesis tiene el signo menos delante,
Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim
) Sea la función: f(x) = ln( x ): a) Dar su Dominio y encontrar sus asíntotas verticales, horizontales y oblicuas. b) Determinar los intervalos de crecimiento y decrecimiento, los máximos y mínimos, los
ILUSTRACIÓN DEL PROBLEMA DE LA IDENTIFICABILIDAD EN LOS MODELOS MULTIECUACIONALES
ILUSTRACIÓN DEL PROBLEMA DE LA IDENTIFICABILIDAD EN LOS MODELOS MULTIECUACIONALES El objetivo de este documento es ilustrar matemáticamente, y con un caso concreto, el problema de la identificación en
PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables
Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver
Repaso de matrices, determinantes y sistemas de ecuaciones lineales
Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento
Límites. Problemas básicos de límites. José de Jesús Angel Angel
Límites Problemas básicos de ites José de Jesús Angel Angel jjaa@math.com.mx c 2007-2008 Contenido 1. Límites 2 2. Límites con ɛ δ 4 3. Límites con simple evaluación 12 4. Límites con una diferencia de
1. El teorema de la función implícita para dos y tres variables.
GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Aplicaciones de la derivación parcial.. El teorema de la función implícita para dos tres variables. Una ecuación con dos incógnitas. Sea f :( x, ) U f(
1 Espacios y subespacios vectoriales.
UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto
La Lección de Hoy es Distancia entre dos puntos. El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1
La Lección de Hoy es Distancia entre dos puntos El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1 La formula de la distancia dada a dos pares es: d= (x 2 -x 1 ) 2 + (y 2 -y 1 ) 2 De
Cajón de Ciencias. Problemas resueltos de sistemas de ecuaciones
Problemas resueltos de sistemas de ecuaciones 1) En una granja se crían gallinas y conejos. En total hay 50 cabezas y 134 patas Cuántos animales hay de cada clase? 2) En un taller hay vehículos de 4 y
Álgebra Lineal Ma1010
Álgebra Lineal Ma1010 Mínimos Cuadrados Departamento de Matemáticas ITESM Mínimos Cuadrados Álgebra Lineal - p. 1/34 En esta sección veremos cómo se trabaja un sistema inconsistente. Esta situación es
ECUACIONES DE PRIMER GRADO
ECUACIONES DE PRIMER GRADO 1- ECUACION DE PRIMER GRADO CON UNA INCOGNITA Una ecuación de primer grado con una incógnita es una igualdad en la que figura una letra sin eponente y que es cierta para un solo
Multiplicación. Adición. Sustracción
bernardsanz TERMINOLOGÍA ALGEBRAICA Algebra: generalización de la aritmética, la cual representa cantidades por medio de símbolos en lugar de números concretos, estos símbolos representan números cualesquiera.
Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.
Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental
Anexo 1: Demostraciones
75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:
1 1 0 1 x 1 0 1 1 1 1 0 1 + 1 1 0 1 0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 1
5.1.3 Multiplicación de números enteros. El algoritmo de la multiplicación tal y como se realizaría manualmente con operandos positivos de cuatro bits es el siguiente: 1 1 0 1 x 1 0 1 1 1 1 0 1 + 1 1 0
LÍMITES DE FUNCIONES Y DE SUCESIONES
LÍMITES DE FUNCIONES Y DE SUCESIONES Índice: 1.Funciones reales de variable real-------------------------------------------------------------- 1 2. Límite finito de una función en un punto.---------------------------------------------------
Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales
Matemáticas I: Hoa 3 Espacios vectoriales y subespacios vectoriales Eercicio 1. Demostrar que los vectores v 1, v 2, v 3, v 4 expresados en la base canónica forman una base. Dar las coordenadas del vector
HIgualdades y ecuacionesh. HElementos de una ecuaciónh. HEcuaciones equivalentes. HSin denominadoresh. HCon denominadoresh
6 Ecuaciones Objetivos En esta quincena aprenderás a: Reconocer situaciones que pueden resolverse con ecuaciones Traducir al lenguaje matemático enunciados del lenguaje ordinario. Conocer los elementos
Geometría Tridimensional
Capítulo 4 Geometría Tridimensional En dos dimensiones trabajamos en el plano mientras que en tres dimensiones trabajaremos en el espacio, también provisto de un sistema de coordenadas. En el espacio,
MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas
Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 3 Ecuaciones y sistemas. Inecuaciones Elaborado por la Profesora Doctora
Aproximación local. Plano tangente. Derivadas parciales.
Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación
Matemáticas 1204, 2013 Semestre II Tarea 5 Soluciones
Matemáticas 104, 01 Semestre II Tarea 5 Soluciones Problema 1: Una definición errónea de línea tangente a una curva es: La línea L es tangente a la curva C en el punto P si y sólamente si L pasa por C
Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.
Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una
3. x+y x + y. 4. x k k x k,k 0. 5. x k x k x k,k 0. x 1 3
Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 4 Inecuaciones con Valor Absoluto J. Labrin - G.Riquelme Propiedades de Valor Absoluto: 1. x y = x y 2. x y = x
Objetivos: Al inalizar la unidad, el alumno:
Unidad 7 transformaciones lineales Objetivos: Al inalizar la unidad, el alumno: Comprenderá los conceptos de dominio e imagen de una transformación. Distinguirá cuándo una transformación es lineal. Encontrará
Selectividad Septiembre 2006 SEPTIEMBRE 2006
Bloque A SEPTIEMBRE 2006 1.- En una fábrica trabajan 22 personas entre electricistas, administrativos y directivos. El doble del número de administrativos más el triple del número de directivos, es igual
La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1.
LF.3.A1.2-Steve Cole-Determining Domain and Ranges- La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1.2 Qué es Dominio? Es
forma explícita forma implícita Por ejemplo cuando: a) representa la forma implícita a una. representa implícitamente a
FUNCIONES IMPLÍCITAS Profesora Claudia Durnbeck Una curva C contenida en ó puede estar definida por una ecuación: forma explícita forma implícita En muchos casos se puede pasar de una forma a otra, pero
ORGANIZACIÓN INDUSTRIAL (16691-ECO) PARTE II: MODELOS DE COMPETENCIA IMPERFECTA TEMA 2: EL MONOPOLIO SOLUCIÓN A LOS PROBLEMAS PROPUESTOS
ORGANIZACIÓN INDUSTRIAL (16691-ECO) PARTE II: MODELOS DE COMPETENCIA IMPERFECTA TEMA 2: EL MONOPOLIO 2.1 ANÁLISIS DE EQUILIBRIO 2.2. DISCRIMINACIÓN DE PRECIOS Y REGULACIÓN SOLUCIÓN A LOS PROBLEMAS PROPUESTOS
Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:
Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.
Alternativamente, los vectores también se pueden poner en función de los vectores unitarios:
1. Nociones fundamentales de cálculo vectorial Un vector es un segmento orientado que está caracterizado por tres parámetros: Módulo: indica la longitud del vector Dirección: indica la recta de soporte