Matrices Invertibles y Elementos de Álgebra Matricial

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matrices Invertibles y Elementos de Álgebra Matricial"

Transcripción

1 Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices invertibles 2 95 Motivación del algoritmo de inversión 2 96 Algoritmo para invertir una matriz 3 97 Comentario 4 98 Propiedades de la inversa 4 99 Ecuaciones con matrices Complejidad computacional de la inversión 8 91 Introducción En esta lectura veremos la matriz transpuesta y la matriz inversa a una matriz dada En caso de que la matriz inversa a ella exista) Revisaremos las propiedades que tienen el tomar la inversa o la transpuesta de una matriz así como un método eficiente de inversión Terminaremos con la aplicación de estos conceptos a la solución de cierto tipo de ecuaciones matriciales 92 Transpuesta Definición 91 La matriz transpuesta de una matriz A n m es una matriz con dimensiones m n cuyo elemento i, j) es precisamente el elemento j, i) de la matriz A A esta matriz se le simboliza A T Una forma fácil de construir A T es tomar los renglones de A y convertirlos en columnas Ejemplo 91 Determine A T si A = Siguiendo la indicación de tomar los renglones de A como columnas para A T tenemos: 1 4 A T =

2 93 Propiedades de la transpuesta 1 La transpuesta de la transpuesta de una matriz A es otra vez A: A T ) T = A 2 La transpuesta de una suma es la suma de las transpuestas: A + B) T = A T + B T 3 c A) T = c A T 4 A B) T = B T A T La transpuesta de un producto es el producto de las transpuestas pero en orden contrario 94 Matrices invertibles Definición 92 Se dice que una matriz A cuadrada n n es una matriz invertible, o que es una matriz no singular, si existe una matriz B n n, que llamaremos la matriz inversa de A, que cumple: A B = I y B A = I 1) Una matriz invertible sólo tiene una inversa, es decir, la inversa es única La única inversa de una matriz invertible A se representa por A 1 Así A A 1 = I = A 1 A 2) Como se puede ver 0 C = 0, para cualquier matriz C de dimensiones adecuadas, esto significa que existen matrices cuadradas que no pueden ser invertibles La matrix cuadrada 0 es una de ellas) este tipo de matrices se llama matriz singular o matriz no invertible 95 Motivación del algoritmo de inversión Veamos un ejemplo que motivará el algoritmo para obtener la inversa de una matriz Ejemplo 92 Determine la inversa de 1 2 A = 3 5 Suponga que buscamos una matriz B, 2 2 tal que A B = I 2 2 : 1 2 b11 b = 3 5 b 21 b Así se debe cumplir: Para elemento 1,1) del producto: 1 b 11 2 b 21 = 1 Para elemento 2,1) del producto: 3 b 11 5 b 21 = 0 Para elemento 1,2) del producto: 1 b 12 2 b 22 = 0 Para elemento 2,2) del producto: 3 b 12 5 b 22 = 1 Esto conduce a dos sistemas de ecuaciones: uno en b 11 y b 21 y otro b 21 y b 22 con matrices aumentadas que al reducirse quedan:

3 y Y así b 11 = 5, b 21 = 3, b 21 = 2, y b 22 = 1 Quedando la inversa como A = B = 3 1 Observemos que Ambas matrices aumentadas tienen la misma matriz de coeficientes: exactamente A Teniendo la misma matriz de coeficientes, los sistemas deben reducirse con las mismas operaciones de renglón En cada sistema, la columna de las constantes es una columna de I Como las matrices aumentadas tienen las mismas matrices de coeficientes y las operaciones de renglón para la reducción son las mismas, entonces el proceso se puede llevar a cabo formando la matriz aumentada A I y reduciendo Después del proceso de reducción, la inversa queda exactamente acamodada en la posición donde entró I 96 Algoritmo para invertir una matriz Para determinar A 1, si existe, haga los siguiente: 1 Construya la matriz aumentada A I Aquí I representa la matriz identidad n n 2 Reduzca la matriz A I Digamos que se obtenga B C 3 Si la matriz B es la matriz identidad, entonces A sí es invertible y A 1 = C 4 Si la matriz B no es la identidad, entonces A no es invertible Ejemplo 93 Invierta las matrices: Para A 1 : A 1 I = A 1 = y A 2 = R 2 R 2 +2 R R 2 1 R R 1 R 1 3 R

4 Como en el resultado final B es la matriz identidad, A 1 es una matriz invertible y A = 2 1 Para A 2 : A 2 I = R 2 R 2 2 R R R /2 R 1 R 1 R / /2 = B C Como en el resultado final B no es la matriz identidad, A 2 no es una matriz invertible Observe con cuidado que en cálculo para A 2 que no hace falta concluir por completo hasta la forma reducida: en el momento que aparezca un renglón en ceros en la parte correspondiente a B la matriz ya no será invertible 97 Comentario Recuerde que para una matriz A n n la matriz inversa de ella se definió como una matriz B n n que cumple A B = I n = B A y en nuestra deducción del algoritmo sólo buscamos que se cumpla A B = I En los resultados teóricos de álgebra de matrices se tiene que Si A es una matriz cuadrada y existe una matriz cuadrada C tal que A C = I, entonces A es invertible Es decir, que es suficiente tener inversa lateral derecha para tener inversa por ambos lados Si A es una matriz cuadrada invertible y si B es una matriz cuadrada que cumple A B = I, entonces A 1 = B Es decir, que la inversa lateral derecha de una matriz cuadrada invertible coincide con la inversa de la matriz Estos resultados teóricos justifican que sólo busquemos la inversa derecha de una matriz para decir si la matriz es invertible y que la matriz encontrada es precisamente su inversa 98 Propiedades de la inversa 1 Si la matriz A, n n, puede invertirse, entonces el sistema A x = b tiene solución única para cada vector b Esta solución puede calcularse como x = A 1 b 2 Sean A y B dos matrices cuadradas n n invertibles cualquiera entonces AB es invertible y A B) 1 = B 1 A 1 3 La inversa de una matriz invertible también es una matriz invertible y A 1 ) 1 = A 4

5 4 Si c es una constante cualquiera, pero diferente de cero, entonces la matriz c A también es invertible y c A) 1 = 1 c A 1 5 Si k es un número entero postivo, entonces A k también es una matriz invertible y A k) 1 = A 1 ) k 6 La matriz A T también es invertible y A T ) 1 = A 1 ) T 99 Ecuaciones con matrices Ahora pondremos en práctica nuestra álgebra con matrices para resolver ecuaciones donde se involucran incógnitas que representan matrices Ejemplo 94 Resuelva para X c X + A = B Los pasos que se siguen son muy similares al álgebra básica sumamos en ambos miembros la matriz A: c X + A) A = B A Como la suma / resta de matrices es asociativa se pueden agrupar los sumando para dejar juntos A y A: c X = c X + 0 = c X + A A) = B A Siendo estos cálculos para suma y resta de matrices tan similares a los del álgebra básica usaremos la misma regla: Si en una igualdad entre expresiones con matrices aparece sumando o restando una matriz en un miembro la podemos pasar al otro miembro restando o sumando: Ahoara debemos despejar X de la expresión procedemos a multiplicar por el escalar 1/c: X = 1 X = Z + C = D Z = D C 3) c X = B A ) 1 c c X = 1 c cx) = 1 B A) c Siendo estos cálculos para la multiplicación o división con escalares tan similares a los del álgebra básica usaremos la misma regla: Si en una igualdad entre expresiones con matrices aparece multiplicando resp dividiendo) un escalar lo podemos pasar al otro miembro dividiendo resp multiplicando) 5

6 c Z = D Z = 1 c D 4) Por tanto, el valor de la incógnita X es X = 1 B A) c Ejemplo 95 Asumiendo que la matriz A sea invertible, despeje la matriz X de la ecuación: A X = B Este tipo de problemas presenta a los alumnos cierta dificultad en los primeros despejes de ecuaciones matriciales Se debe tener bien en claro que la matriz A a eliminar está a la izquierda de la incógnita está multiplicando a la izquierda y que por consiguiente debe de multiplicarse por la izquierda por la matriz inversa de A: X = I X = A 1 A ) X = A 1 A X) = A 1 B Es equivocado hacer cancelar A pretendiendo multiplicar por la derecha: X = AXA 1 = BA 1 Y representa un error aún más grave dividir entre A pretendiendo cancelar A: X = AX A = B A La regla válida para cancelar matrices cuando éstas poseen inversas que multiplican es la siguiente: A X = B X = A 1 B 5) X A = B X = B A 1 6) Ejemplo 96 Suponiendo que A y B son matrices invertibles, despeje X de: ABX = C Otro problema que los alumnos enfrentan en los primeros despejes aparece en este tipo de problemas Hay dos formas correctas de pensar el problema En la primera la ecuación original se debe pensar agrupada de la siguiente manera: A B) X = C En cuyo caso el despeje de X es directo por las reglas vistas: Otra manera correcta de plantear el problema es: X = A B) 1 C A B X) = C 6

7 De donde el despeje en dos pasos es haciendo primero: B X = A 1 C Para después obtener: X = B 1 A 1 C Note que ambos resultados sin idénticos en vista de la igualdad: A B) 1 = B 1 A 1 Ejemplo 97 Despeje x de la ecuación: X T = A En este caso se debe tener presente la propiedad X T ) T = X Por consiguiente, tomando la transpuesta en cada miembro: X = X T ) T = A T Ejemplo 98 Despeje x de la ecuación: X 1 = A En este caso se debe tener presente la propiedad X 1) 1 = X en cada miembro: X = X 1) 1 = A 1 Por consiguiente, tomando matriz inversa Ejemplo 99 Suponiendo que A es invertible y c 0, despeje X de: Procediendo como anteriormente: A c X + B) + C = D A c X + B) = D C c X + B = A 1 D C) c X = A 1 D C) B X = 1 c A 1 D C) B ) Ejemplo 910 Suponiendo matrices invertibles donde se requiera despeje X de: T A BX) 1 + C) + D = E Este tipo de despejes requiere ser riguroso en el orden: Pasando al segundo miembro D: T A BX) 1 + C) = E D 7

8 Multiplicando por A 1 por la derecha: Tomando la transpuesta en ambos miembros: Pasando al segundo miembro C: BX) 1 + C) T = A 1 E D) BX) 1 + C = A 1 E D) ) T BX) 1 = A 1 E D) ) T C Tomando inversa en ambos miembros: A BX = 1 E D) ) ) T 1 C Finalmente, eliminando la matriz B: X = B 1 A 1 E D) ) T C ) Complejidad computacional de la inversión Supongamos entonces que aplicamos el algoritmo de eliminación gaussiana para invertir una matriz n por n Consideraremos primero el trabajo realizado por los pasos 1 al 4 y posteriormente el trabajo realizado en el paso 5 Es importante notar que el proceso de Gauss avanza dejando la matriz escalonada hasta la columna de trabajo: a 1,1 a 1,2 a 1,m 1 a 1,m b 1,1 b 1,n 0 a 2,2 a 2,m 1 a 2,m 0 0 a m 1,m 1 a m 1,m a m,m b m,1 b m,n a n,m 1 Ciclo del paso 1 al 4 Al asumir que a m,m es diferente de cero, pasamos al paso 3 En el paso 3 hay que hacer cero debajo del elemento m, m), para cada uno de los m n renglones inferiores R i ; para ello habrá que calcular el factor f = a i,m /a m,m por el cual debe multiplicarse el renglón R m, lo cual implica realizar una división, y posteriormente realizar la operación: R i R i f R m En este caso, en el renglón i hay ceros hasta antes de la columna m, en el elemento i, m) quedará un 1 el factor f fue calculado para ello), así que los únicos elementos que deberán calcularse son los elementos del renglón i desde la columna m + 1) y hasta terminar, es decir, hasta la columna n + n, es decir, un total de 2 n m elementos, y para cada uno de ellos habrá que hacer a m+1,j a m+1,j f a m,j, es decir para cada uno de ellos habrá que hacer 2 FLOPs, siendo un total de 2 2 n m) elementos, el número total de FLOPs que habrá que realizar para hacer la operación R i R i f R m es, incluyendo la división para calcular f, 22 n m) + 1 = 4 n 2 m + 1 8

9 Como esto habrá que aplicarlo a todos los renglones por debajo del renglón m y hasta el n, entonces para realizar un ciclo desde el paso 1 hasta el paso 4 deben hacerse n m) 4 n 2m + 1) FLOPS El ciclo del paso 1 al paso 4 y su repetición irá avanzando m desde 1 hasta n 1 Por consiguiente el total de FLOPs será: n 1 n m) 4 n 2 m + 1) = 5 3 n3 3 2 n2 1 6 n m=1 2 Ciclo del paso 5 Las operaciones implicadas en el paso 5 serán R m 1 a m,m R m : n divisiones Para esto se requiere n divisiones; la del pivote entre si mismo ya sabemos que dará 1 y no se realizará, simplemente en la posición m, m) pondremos un 1 R j R j a j,m R m : n multiplcaciones y n restas Esta operación sólo requiere n multiplicaciones y n restas; estas operaciones sólo tienen que ver con los términos en la parte aumentada Los nuevos elementos a j,m serán cero Como hay m 1 renglones superiores, el total de operaciones en un ciclo del paso 5 será: Por consiguiente el total de FLOPs en el paso 5 será: m 1) 2 n) + n 1 2 n m 1) + n) = n 3 2 n 2 + n m=n Por consiguiente y en general: cuando se aplica en algoritmo de inversión de una matriz cuadrada n n anterior utilizando eliminación gaussiana para la reducción el número de máximo de FLOPs será: Ejemplo 911 Sea A una matriz cuadrada Será cierto que: 8 3 n3 7 2 n n 7) Si el sistema A x = 0 tiene infinitas soluciones, entonces A es invertible Que el sistema A x = 0 tenga infinitas soluciones indica que cuando se reduce A 0 queda una columna a la izquierda sin pivote Por tanto, cuando se reduzca A I quedará una columna a la izquierda sin pivote Por tanto, en la reducida no se podrá obtener I B Por tanto, la matriz A no tendrá inversa; será singular Por tanto, es falso que sea invertible La afirmación es falsa Ejemplo 912 Sea A una matriz cuadrada Será cierto que: Si para un vector b el sistema A x = b no tiene solución, entonces A es invertible Si para un vector b el sistema A x = b no tiene solución eso significará que cuando se reduce A b queda pivote en la columna de las constantes Por tanto, en la reducida de A quedará un renglón de ceros Por tanto, cuando se reduzca A I a la izquierda quedará un renglón de ceros Por tanto, en la reducida no podremos obtener I B Así A no tiene inversa Es falso que A es invertible Ejemplo 913 Sea A una matriz cuadrada Será cierto que: 9

10 Si la matriz A no es invertible, entonces A x = 0 tiene infinitas soluciones Si suponemos que la matriz A no es invertible, entonces cuando se reduce A I no queda la identidad en el lado izquierdo Por consiguiente, debe quedar un renglón sin pivote a la izquierda Por tanto, cuando se reduce A 0 debe quedar a la izquierda un renglón de ceros Por tanto y debido a que la matriz es cuadrada debe queda una columna sin pivote a la izquierda en tal reducida Como a la derecha no quedan pivotes pues a la derecha entró el vector de ceros, concluimos que tal sistema es consistente y que en su reducida queda una columna sin pivote Por tanto, A 0 tendrá infinitas soluciones La afirmación es cierta Ejemplo 914 Sea A una matriz cuadrada Será cierto que: Si la matriz A A no es invertible, entonces A x = 0 tiene solución única Si A A no es invertible, tampoco lo es A pues en caso contrario A A sería invertible, que no es el caso) Por tanto, en el lado izquierdo de la reducida de A I no puede quedar la matriz identidad Por tanto, a la izquierda de la reducida de A 0 no queda la identidad Por tanto, debe quedar un renglón sin pivote y por consiguiente siendo cuadrada A) debe quedar una columna sin pivote Por tanto A 0 debe tener infinitas soluciones Así, es falso que A 0 tiene solución única 10

Matrices: Conceptos y Operaciones Básicas

Matrices: Conceptos y Operaciones Básicas Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas, CCIR/ITESM 8 de septiembre de 010 Índice 111 Introducción 1 11 Matriz 1 113 Igualdad entre matrices 11 Matrices especiales 3 115 Suma

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Sistemas de Ecuaciones Lineales y Matrices Oscar G Ibarra-Manzano, DSc Departamento de Area Básica - Tronco Común DES de Ingenierías Facultad de Ingeniería, Mecánica, Eléctrica y Electrónica Trimestre

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 2012

Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 2012 Grupo: Matrícula: Nombre: Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 22. (pts) Sea A una matriz cuadrada. Indique validez a cada una de las siguientes

Más detalles

Espacios generados, dependencia lineal y bases

Espacios generados, dependencia lineal y bases Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................

Más detalles

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Matrices 2 11 Matrices cuadradas 3 12 Matriz transpuesta 4 13 Matriz identidad

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R.

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R. ALGEBRA LINEAL Héctor Jairo Martínez R. Ana María Sanabria R. SEGUNDO SEMESTRE 8 Índice general. SISTEMAS DE ECUACIONES LINEALES.. Introducción................................................ Conceptos

Más detalles

Problemas de 2 o Bachillerato (ciencias sociales) Isaac Musat Hervás

Problemas de 2 o Bachillerato (ciencias sociales) Isaac Musat Hervás Problemas de 2 o Bachillerato ciencias sociales) Isaac Musat Hervás 27 de mayo de 2007 2 Índice General 1 Problemas de Álgebra 5 1.1 Matrices, Exámenes de Ciencias Sociales............ 5 1.2 Sistemas de

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

Producto Interno y Ortogonalidad

Producto Interno y Ortogonalidad Producto Interno y Ortogonalidad Departamento de Matemáticas, CSI/ITESM 15 de octubre de 2009 Índice 8.1. Contexto................................................ 1 8.2. Introducción...............................................

Más detalles

1. INVERSA DE UNA MATRIZ REGULAR

1. INVERSA DE UNA MATRIZ REGULAR . INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

Departamento de Matemática Aplicada FUNDAMENTOS DE MATEMATICAS. Ingeniería Química (Curso 2005-06) Álgebra Lineal Práctica 3

Departamento de Matemática Aplicada FUNDAMENTOS DE MATEMATICAS. Ingeniería Química (Curso 2005-06) Álgebra Lineal Práctica 3 1. Matrices en Matlab Departamento de Matemática Aplicada FUNDAMENTOS DE MATEMATICAS. Ingeniería Química (Curso 2005-06) Álgebra Lineal Práctica 3 Para introducir una matriz en Matlab se procede de la

Más detalles

Métodos Iterativos para Resolver Sistemas Lineales

Métodos Iterativos para Resolver Sistemas Lineales Métodos Iterativos para Resolver Sistemas Lineales Departamento de Matemáticas, CCIR/ITESM 17 de julio de 2009 Índice 3.1. Introducción............................................... 1 3.2. Objetivos................................................

Más detalles

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES Ana Morata Gasca 1 DEFINICIÓN DE VECTOR Un vector es todo segmento de recta dirigido en el espacio. CARACTERÍSTICAS DE UN VECTOR Origen o Punto de aplicación:

Más detalles

Matrices invertibles. La inversa de una matriz

Matrices invertibles. La inversa de una matriz Matrices invertibles. La inversa de una matriz Objetivos. Estudiar la definición y las propiedades básicas de la matriz inversa. Más adelante en este curso vamos a estudiar criterios de invertibilidad

Más detalles

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de E.T.S. DE INGENIERÍA INFORMÁTICA Apuntes de ÁLGEBRA LINEAL para la titulación de INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN Fco. Javier Cobos Gavala Amparo Osuna Lucena Rafael Robles Arias Beatriz Silva

Más detalles

MATRICES SELECTIVIDAD

MATRICES SELECTIVIDAD MATRICES SELECTIVIDAD 1.- Sea K un número natural y sean las matrices a) Calcular A k. b) Hallar la matriz X que verifica que A K X = B C. Solución: 1 K K 0 0 0 ; X 1 1 0 0 1 1 1 K A 0 1 0 1 1 1 A 0 1

Más detalles

UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD. Miguel A. Jorquera

UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD. Miguel A. Jorquera UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD Miguel A. Jorquera BACHILLERATO MATEMÁTICAS II JUNIO 2 ii Índice General 1 Examen Junio 2. Opción B 1 2 SOLUCIONES del examen de junio 2 Opción

Más detalles

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1.

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1. ÍNDICE 9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES....................... 189 9.2. OPERACIONES CON MATRICES..................... 190 9.3. MATRICES CUADRADAS.......................... 192 9.3.1. Matrices

Más detalles

1. Cambios de base en R n.

1. Cambios de base en R n. er Curso de Ingeniero de Telecomunicación. Álgebra. Curso 8-9. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema 5. Cambios de Base. Aplicaciones Lineales. Teoría y Ejercicios Resueltos..

Más detalles

Álgebra matricial. 2.1. Adición y trasposición

Álgebra matricial. 2.1. Adición y trasposición Capítulo 2 Álgebra matricial Estas notas están basadas en las realizadas por el profesor Manuel Jesús Gago Vargas para la asignatura Métodos matemáticos: Álgebra lineal de la Licenciatura en Ciencias y

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES Capítulo 7 SISTEMAS DE ECUACIONES LINEALES 7.1. Introducción Se denomina ecuación lineal a aquella que tiene la forma de un polinomio de primer grado, es decir, las incógnitas no están elevadas a potencias,

Más detalles

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3 Aplicaciones Tema 3.3 Sistemas de ecuaciones lineales: regla de Cramer

Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3 Aplicaciones Tema 3.3 Sistemas de ecuaciones lineales: regla de Cramer Cálculo científico y técnico con HP49g/49g+/48gII/50g Módulo 3 Aplicaciones Tema 3.3 Sistemas de ecuaciones lineales: regla de Cramer Francisco Palacios Escuela Politécnica Superiror de Ingeniería Manresa

Más detalles

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior. Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 49 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades: Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición

Más detalles

Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Antonio Francisco Roldán López de Hierro * Convocatoria

Más detalles

Ahora podemos comparar fácilmente las cantidades de cada tamaño que se vende. Estos valores de la matriz se denominan elementos.

Ahora podemos comparar fácilmente las cantidades de cada tamaño que se vende. Estos valores de la matriz se denominan elementos. Materia: Matemática de 5to Tema: Definición y Operaciones con Matrices 1) Definición Marco Teórico Una matriz consta de datos que se organizan en filas y columnas para formar un rectángulo. Por ejemplo,

Más detalles

Cambio de representaciones para variedades lineales.

Cambio de representaciones para variedades lineales. Cambio de representaciones para variedades lineales 18 de marzo de 2015 ALN IS 5 Una variedad lineal en R n admite dos tipos de representaciones: por un sistema de ecuaciones implícitas por una familia

Más detalles

Álgebra II, licenciatura. Examen parcial I. Variante α.

Álgebra II, licenciatura. Examen parcial I. Variante α. Engrape aqu ı No doble Álgebra II, licenciatura. Examen parcial I. Variante α. Operaciones con matrices. Sistemas de ecuaciones lineales. Nombre: Calificación ( %): examen escrito tarea 1 tarea 2 asist.+

Más detalles

Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL. x x1 n. θ y. 1 n x1 n ȳ1 n. Carlos Arce S. William Castillo E. Jorge González V.

Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL. x x1 n. θ y. 1 n x1 n ȳ1 n. Carlos Arce S. William Castillo E. Jorge González V. Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL x x x1 n θ y y ȳ1 n 1 n x1 n ȳ1 n Carlos Arce S. William Castillo E. Jorge González V. 2003 Algebra Lineal Carlos Arce S., William Castillo

Más detalles

ÁLGEBRA LINEAL SAUL EDUARDO HERNANDEZ CANO RED TERCER MILENIO

ÁLGEBRA LINEAL SAUL EDUARDO HERNANDEZ CANO RED TERCER MILENIO ÁLGEBRA LINEAL ÁLGEBRA LINEAL SAUL EDUARDO HERNANDEZ CANO RED TERCER MILENIO AVISO LEGAL Derechos Reservados 2012, por RED TERCER MILENIO S.C. Viveros de Asís 96, Col. Viveros de la Loma, Tlalnepantla,

Más detalles

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS Guía de Estudio para examen de Admisión de Matemáticas CONTENIDO PRESENTACIÓN... 3 I. ARITMÉTICA... 4 1. OPERACIONES CON FRACCIONES...

Más detalles

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-)

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) CÁLCULO MATEMÁTICO BÁSICO LOS NUMEROS ENTEROS Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) Si un número aparece entre barras /5/, significa que su

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Problemas teóricos Sistemas de ecuaciones lineales con parámetros En los siguientes problemas hay que resolver el sistema de ecuaciones lineales para todo valor del parámetro

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES CÁRDENAS ESPINOSA CÉSAR OCTAVIO racsec_05@hotmail.com Boleta: 2009350122 CASTILLO GUTIÉRREZ

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Índice general 1. Sistemas de ecuaciones lineales 2 2. Método de sustitución 5 3. Método de igualación 9 4. Método de eliminación 13 5. Conclusión 16 1 Sistemas de ecuaciones

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 3 espacios vectoriales Objetivos: Al inalizar la unidad, el alumno: Describirá las características de un espacio vectorial. Identiicará las propiedades de los subespacios vectoriales. Ejempliicará

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

Apuntes de Álgebra Lineal

Apuntes de Álgebra Lineal Apuntes de Álgebra Lineal Mariano Echeverría Introducción al Curso El álgebra lineal se caracteriza por estudiar estructuras matemáticas en las que es posible tomar sumas entre distintos elementos de cierto

Más detalles

Métodos Numéricos: Guía de estudio Tema 6 Métodos iterativos para sistemas de ecuaciones lineales

Métodos Numéricos: Guía de estudio Tema 6 Métodos iterativos para sistemas de ecuaciones lineales Métodos Numéricos: Guía de estudio Tema 6 Métodos iterativos para sistemas de ecuaciones lineales Francisco Palacios Escuela Politécnica Superior de Ingeniería de Manresa Universidad Politécnica de Cataluña

Más detalles

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla.

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla. ÁLGEBRA LINEAL Apuntes elaborados por Juan González-Meneses López. Curso 2008/2009 Departamento de Álgebra. Universidad de Sevilla. Índice general Tema 1. Matrices. Determinantes. Sistemas de ecuaciones

Más detalles

Las matrices tienen un número cada vez mas creciente de aplicaciones en la solución de problemas en Ciencia y Tecnología.

Las matrices tienen un número cada vez mas creciente de aplicaciones en la solución de problemas en Ciencia y Tecnología. Aplicaciones de las Matrices a la Solución de Problemas de Redes Eléctricas Resumen Se muestra como obtener, sistemas de ecuaciones lineales que permitan calcular intensidades de corrientes en los ramales

Más detalles

Espacios vectoriales y aplicaciones lineales

Espacios vectoriales y aplicaciones lineales Capítulo 3 Espacios vectoriales y aplicaciones lineales 3.1 Espacios vectoriales. Aplicaciones lineales Definición 3.1 Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea K un

Más detalles

Congruencias de Grado Superior

Congruencias de Grado Superior Congruencias de Grado Superior Capítulo 3 3.1 Introdución En el capítulo anterior vimos cómo resolver congruencias del tipo ax b mod m donde a, b y m son enteros m > 1, y (a, b) = 1. En este capítulo discutiremos

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Primeras definiciones Una aplicación lineal de un K-ev de salida E a un K-ev de llegada F es una aplicación f : E F tal que f(u + v) = f(u) + f(v) para todos u v E f(λ u) = λ f(u)

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES INTRODUCCIÓN En el presente documento se explican detalladamente dos importantes temas: 1. Descomposición LU. 2. Método de Gauss-Seidel. Se trata de dos importantes herramientas

Más detalles

>> 10.5 + 3.1 % suma de dos números reales, el resultado se asigna a ans

>> 10.5 + 3.1 % suma de dos números reales, el resultado se asigna a ans Universidad de Concepción Facultad de Ciencias Físicas y Matemáticas Departamento de Ingeniería Matemática Cálculo Numérico (521230) Laboratorio 1: Introducción al Matlab Matlab es una abreviatura para

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Concepto de aplicación lineal T : V W Definición: Si V y W son espacios vectoriales con los mismos escalares (por ejemplo, ambos espacios vectoriales reales o ambos espacios vectoriales

Más detalles

Factorización. Ejercicios de factorización. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Factorización. Ejercicios de factorización. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Factorización Ejercicios de factorización www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2008 Contenido 1. Introducción 2 1.1. Notación...........................................

Más detalles

La imaginación es más importante que el conocimiento. Albert Einstein. Unidad 6. Suma y resta d e monomios y polinomios. Objetivos

La imaginación es más importante que el conocimiento. Albert Einstein. Unidad 6. Suma y resta d e monomios y polinomios. Objetivos La imaginación es más importante que el conocimiento. Albert Einstein Unidad 6 Suma y resta d e monomios y polinomios Objetivos mat emát ic as 1 Introducción C uando estábamos en primaria la maestra nos

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario) Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES

Más detalles

Apéndice A. Repaso de Matrices

Apéndice A. Repaso de Matrices Apéndice A. Repaso de Matrices.-Definición: Una matriz es una arreglo rectangular de números reales dispuestos en filas y columnas. Una matriz com m filas y n columnas se dice que es de orden m x n de

Más detalles

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +

Más detalles

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Ejercicio 1 Escribe las siguientes matrices en forma normal de Hermite: 2 4 3 1 2 3 2 4 3 1 2 3 1. 1 2 3 2. 2 1 1 3. 1 2 3 4. 2

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra)

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra) MATEMÁTICAS II 1 José M. Ramos González Este libro es totalmente gratuito y solo vale la tinta y el papel en que se imprima. Es de libre divulgación y no está sometido a ningún copyright. Tan solo se

Más detalles

Polinomios y Fracciones Algebraicas

Polinomios y Fracciones Algebraicas Tema 4 Polinomios y Fracciones Algebraicas En general, a lo largo de este tema trabajaremos con el conjunto de los números reales y, en casos concretos nos referiremos al conjunto de los números complejos.

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Un grupo de variables representadas por letras junto con un conjunto de números combinados con operaciones de suma, resta, multiplicación, división, potencia o etracción de raíces

Más detalles

Las matrices Parte 1-2 o bachillerato

Las matrices Parte 1-2 o bachillerato Parte 1-2 o bachillerato wwwmathandmatesurlph 2014 1 Introducción Generalidades 2 Definición Ejercicio 1 : Suma de dos matrices cuadradas 2x2 Ejercicio 2 : Suma de dos matrices cuadradas 3x3 Propiedades

Más detalles

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires Fascículo 2 Cursos de grado ISSN 1851-1317 Gabriela Jeronimo Juan Sabia Susana Tesauri Álgebra Lineal Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2008

Más detalles

Límites y Continuidad de funciones

Límites y Continuidad de funciones CAPITULO Límites y Continuidad de funciones Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

Iniciación a las Matemáticas para la ingenieria

Iniciación a las Matemáticas para la ingenieria Iniciación a las Matemáticas para la ingenieria Los números naturales 8 Qué es un número natural? 11 Cuáles son las operaciones básicas entre números naturales? 11 Qué son y para qué sirven los paréntesis?

Más detalles

IES Fco Ayala de Granada Sobrantes de 2011 ( Modelo 3) Solución Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Sobrantes de 2011 ( Modelo 3) Solución Germán-Jesús Rubio Luna IES Fco Ayala de Granada Sobrantes de 11 ( Modelo 3) Germán-Jesús Rubio Luna Opción A Ejercicio 1 opción A, modelo 3 del 11 [ 5 puntos] Dada la función f : R R definida por f(x) ax 3 + bx +cx, determina

Más detalles

CAPITULO 2: MATRICES Y DETERMINANTES

CAPITULO 2: MATRICES Y DETERMINANTES CAPITULO : MATRICES Y DETERMINANTES Cuando los sistemas de ecuaciones lineales son extensos, mayormente se utiliza matrices por su facilidad de manejo. Las matrices son ordenamientos de datos y se usan

Más detalles

Determinantes y Desarrollo por Cofactores

Determinantes y Desarrollo por Cofactores Determinantes y Desarrollo por Cofactores Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 11.1.Introducción............................................... 1 11.2.El determinate de una

Más detalles

Sección 4.5: Transformaciones del plano y del espacio. Sección 4.6: Problema de mínimos cuadrados y aplicaciones.

Sección 4.5: Transformaciones del plano y del espacio. Sección 4.6: Problema de mínimos cuadrados y aplicaciones. Tema 4 Producto escalar En bachiller habéis visto los conceptos de producto escalar, longitud, distancia y perpendicularidad en R y R 3 En este tema del curso se generalizan estos conceptos a R n, junto

Más detalles

Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos.

Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos. Dependencia lineal de vectores y sus aplicaciones a la resolución de sistemas de ecuaciones lineales y de problemas geométricos. Prof. D. Miguel Ángel García Hoyo. Septiembre de 2011 Dependencia lineal

Más detalles

Algoritmo para resolver exactamente sistemas de ecuaciones lineales con coeficientes enteros

Algoritmo para resolver exactamente sistemas de ecuaciones lineales con coeficientes enteros Miscelánea Matemática 43 (2006) 7 132 SMM Algoritmo para resolver exactamente sistemas de ecuaciones lineales con coeficientes enteros Daniel Gómez-García Facultad de Ingeniería Universidad Autónoma de

Más detalles

Biblioteca Virtual Ejercicios Resueltos

Biblioteca Virtual Ejercicios Resueltos EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar

Más detalles

CONCEPTOS ALGEBRAICOS BASICOS

CONCEPTOS ALGEBRAICOS BASICOS CONCEPTOS ALGEBRAICOS BASICOS OBJETIVOS: 1.- Expresar relaciones numéricas mediante símbolos numéricos y literales. 2.- Reconocer las expresiones algebraicas y sus elementos. 3.- Reducir y evaluar expresiones

Más detalles

Tema 3. Matrices, determinantes y sistemas de ecuaciones lineales.

Tema 3. Matrices, determinantes y sistemas de ecuaciones lineales. Ingeniería Civil Matemáticas I -3 Departamento de Matemática Aplicada II Escuela Superior de Ingenieros Universidad de Sevilla Tema 3 Matrices, determinantes y sistemas de ecuaciones lineales 3- Matrices

Más detalles

ÁLGEBRA Tema 1) MATRICES

ÁLGEBRA Tema 1) MATRICES MTEMÁTICS PLICDS LS CIENCIS SOCILES II ÁLGER Tema ) MTRICES Orientaciones para la PRUE DE CCESO L UNIVERSIDD en relación con este tema: Conocer el vocabulario básico para el estudio de matrices: elemento

Más detalles

Matrices y sus operaciones

Matrices y sus operaciones Capítulo 1 Matrices y sus operaciones 1.1. Definiciones Dados dos enteros m, n 1 y un cuerpo conmutativo IK, llamamos matriz de m filas y n columnas con coeficientes en IK a un conjunto ordenado de n vectores

Más detalles

Problemas Resueltos de Desigualdades y Programación Lineal

Problemas Resueltos de Desigualdades y Programación Lineal Universidad de Sonora División de Ciencias Exactas y Naturales Departamento de Matemáticas. Problemas Resueltos de Desigualdades y Programación Lineal Para el curso de Cálculo Diferencial de Químico Biólogo

Más detalles

Vectores en R n y producto punto

Vectores en R n y producto punto Vectores en R n y producto punto Departamento de Matemáticas, CCIR/ITESM 10 de enero de 011 Índice 4.1. Introducción............................................... 1 4.. Vector..................................................

Más detalles

Introducción al Álgebra Lineal

Introducción al Álgebra Lineal UNIVERSIDAD CENTRAL DE VENEZUELA FACULTAD DE CIENCIAS ESCUELA DE MATEMÁTICA LABORATORIO DE FORMAS EN GRUPOS Introducción al Álgebra Lineal Ramón Bruzual Marisela Domínguez Caracas, Venezuela Septiembre

Más detalles

IES Fco Ayala de Granada ( Modelo 5) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada ( Modelo 5) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 0-0 Opción A Ejercicio, Opción A, Modelo 5 de 0 ['5 puntos] Un alambre de longitud metros se divide en dos trozos Con el primero se forma

Más detalles

UNIDAD I NÚMEROS REALES

UNIDAD I NÚMEROS REALES UNIDAD I NÚMEROS REALES Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números racionales y números

Más detalles

Valores y vectores propios de una matriz. Juan-Miguel Gracia

Valores y vectores propios de una matriz. Juan-Miguel Gracia Juan-Miguel Gracia Índice 1 Valores propios 2 Polinomio característico 3 Independencia lineal 4 Valores propios simples 5 Diagonalización de matrices 2 / 28 B. Valores y vectores propios Definiciones.-

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 es en R n y producto punto Departamento de Matemáticas ITESM es en R n y producto punto Álgebra Lineal - p. 1/40 En este apartado se introduce el concepto de vectores en el espacio

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,

Más detalles

Operaciones Matriciales. Usos y Aplicaciones

Operaciones Matriciales. Usos y Aplicaciones Operaciones Matriciales. Usos y Aplicaciones Héctor L. Mata Las siguientes notas tienen por finalidad reforzar el conocimiento de los cursantes del Seminario de Economía Aplicada en lo referente a la forma

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS 2 Í N D I C E CAPÍTULO MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES MATRICES. MATRIZ. DEFINICIÓN 2. ALGUNOS

Más detalles

INTRODUCCIÓN AL ÁLGEBRA LINEAL Y DE MATRICES. APLICACIONES CON EXCEL

INTRODUCCIÓN AL ÁLGEBRA LINEAL Y DE MATRICES. APLICACIONES CON EXCEL INTRODUCCIÓN AL ÁLGEBRA LINEAL Y DE MATRICES. APLICACIONES CON EXCEL Araceli Rendón Trejo, Jesús Rodríguez Franco, Andrés Morales Alquicira UNIVERSIDAD AUTONOMA METROPOLITANA UNIDAD XOCHIMILCO Casa abierta

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

Notaciones y Pre-requisitos

Notaciones y Pre-requisitos Notaciones y Pre-requisitos Símbolo Significado N Conjunto de los números naturales. Z Conjunto de los números enteros. Q Conjunto de los números enteros. R Conjunto de los números enteros. C Conjunto

Más detalles

Tema 2: Los números enteros (Z)

Tema 2: Los números enteros (Z) Tema 2: Los números enteros (Z) Por qué introducir los números enteros? Para dar respuesta a necesidades de cálculo en la práctica. Por necesidades propias de la aritmética (para hacerla completa ). Cómo

Más detalles

Cálculo Simbólico también es posible con GeoGebra

Cálculo Simbólico también es posible con GeoGebra www.fisem.org/web/union ISSN: 1815-0640 Número 34. Junio de 2013 páginas 151-167 Coordinado por Agustín Carrillo de Albornoz Cálculo Simbólico también es posible con GeoGebra Antes de exponer las posibilidades

Más detalles

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo POLINOMIOS 1.1. DEFINICIONES Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo p(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n + ; a i, x K; n N

Más detalles

Tema 4.- El espacio vectorial R n.

Tema 4.- El espacio vectorial R n. Tema 4- El espacio vectorial R n Subespacios vectoriales de R n Bases de un subespacio Rango de una matriz 4 Bases de R n Cambios de base 5 Ejercicios En este tema estudiamos la estructura vectorial del

Más detalles

3FUNCIONES LOGARÍTMICAS

3FUNCIONES LOGARÍTMICAS 3FUNCIONES LOGARÍTMICAS Problema 1 Si un cierto día, la temperatura es de 28, y hay mucha humedad, es frecuente escuchar que la sensación térmica es de, por ejemplo, 32. La sensación térmica depende de

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

El anillo de polinomios sobre un cuerpo

El anillo de polinomios sobre un cuerpo Capítulo 2 El anillo de polinomios sobre un cuerpo En este capítulo pretendemos hacer un estudio sobre polinomios paralelo al que hicimos en el capítulo anterior sobre los números enteros. Para esto, es

Más detalles

E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid. Grado en Ingeniería en Tecnologías Industriales. Grado en Ingeniería Química

E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid. Grado en Ingeniería en Tecnologías Industriales. Grado en Ingeniería Química E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid Grado en Ingeniería en Tecnologías Industriales Grado en Ingeniería Química Apuntes de Álgebra ( Curso 2014/15) Departamento de Matemática

Más detalles