Matrices Invertibles y Elementos de Álgebra Matricial

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matrices Invertibles y Elementos de Álgebra Matricial"

Transcripción

1 Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CSI/ITESM 20 de agosto de 2008 Índice 121 Introducción Transpuesta Propiedades de la transpuesta Matrices invertibles Motivación del algoritmo de inversión Algoritmo para invertir una matriz Comentario Propiedades de la inversa Ecuaciones con matrices Complejidad computacional de la inversión Introducción En esta lectura veremos la matriz transpuesta y la matriz inversa a una matriz dada En caso de que la matriz inversa a ella exista) Revisaremos las propiedades que tienen el tomar la inversa o la transpuesta de una matriz así como un método eficiente de inversión Terminaremos con la aplicación de estos conceptos a la solución de cierto tipo de ecuaciones matriciales 122 Transpuesta Definición 121 La matriz transpuesta de una matriz A n m es una matriz con dimensiones m n cuyo elemento i, j) es precisamente el elemento j, i) de la matriz A A esta matriz se le simboliza A T Una forma fácil de construir A T es tomar los renglones de A y convertirlos en columnas Ejemplo 121 Determine A T si A = Siguiendo la indicación de tomar los renglones de A como columnas para A T tenemos: 1 4 A T =

2 123 Propiedades de la transpuesta 1 La transpuesta de la transpuesta de una matriz A es otra vez A: A T) T = A 2 La transpuesta de una suma es la suma de las transpuestas: A + B) T = A T + B T 3 ca) T = ca T 4 AB) T = B T A T La transpuesta de un producto es el producto de las transpuestas pero en orden contrario 124 Matrices invertibles Definición 122 Se dice que una matriz A cuadrada n n es una matriz invertible, o que es una matriz no singular, si existe una matriz B n n, que llamaremos la matriz inversa de A, que cumple: AB = I y BA = I 1) Una matriz invertible sólo tiene una inversa, es decir, la inversa es única La única inversa de una matriz invertible A se representa por A 1 Así AA 1 = I = A 1 A 2) Como se puede ver 0C = 0, para cualquier matriz C de dimensiones adecuadas, esto significa que existen matrices cuadradas que no pueden ser invertibles La matrix cuadrada 0 es una de ellas) este tipo de matrices se llama matriz singular o matriz no invertible 125 Motivación del algoritmo de inversión Veamos un ejemplo que motivará el algoritmo para obtener la inversa de una matriz Ejemplo 122 Determine la inversa de 1 2 A = 3 5 Suponga que buscamos una matriz B, 2 2 tal que AB = I 2 2 : 1 2 b11 b = 3 5 b 21 b Así se debe cumplir: Para elemento 1,1) del producto: 1 b 11 2 b 21 = 1 Para elemento 2,1) del producto: 3 b 11 5 b 21 = 0 Para elemento 1,2) del producto: 1 b 12 2 b 22 = 0 Para elemento 2,2) del producto: 3 b 12 5 b 22 = 1 Esto conduce a dos sistemas de ecuaciones: uno en b 11 y b 21 y otro b 21 y b 22 con matrices aumentadas que al reducirse quedan:

3 y Y así b 11 = 5, b 21 = 3, b 21 = 2, y b 22 = 1 Quedando la inversa como A = B = 3 1 Observemos que Ambas matrices aumentadas tienen la misma matriz de coeficientes: exactamente A Teniendo la misma matriz de coeficientes, los sistemas deben reducirse con las mismas operaciones de renglón En cada sistema, la columna de las constantes es una columna de I Como las matrices aumentadas tienen las mismas matrices de coeficientes y las operaciones de renglón para la reducción son las mismas, entonces el proceso se puede llevar a cabo formando la matriz aumentada A I y reduciendo Después del proceso de reducción, la inversa queda exactamente acamodada en la posición donde entró I 126 Algoritmo para invertir una matriz Para determinar A 1, si existe, haga los siguiente: 1 Construya la matriz aumentada A I Aquí I representa la matriz identidad n n 2 Reduzca la matriz A I Digamos que se obtenga B C 3 Si la matriz B es la matriz identidad, entonces A sí es invertible y A 1 = C 4 Si la matriz B no es la identidad, entonces A no es invertible Ejemplo 123 Invierta las matrices: Para A 1 : A 1 I = A 1 = y A 2 = R 2 R 2 +2 R R 2 1 R R 1 R 1 3 R

4 Como en el resultado final B es la matriz identidad, A 1 es una matriz invertible y A = 2 1 Para A 2 : A 2 I = R 2 R 2 2 R R R /2 R 1 R 1 R / /2 = B C Como en el resultado final B no es la matriz identidad, A 2 no es una matriz invertible Observe con cuidado que en cálculo para A 2 que no hace falta concluir por completo hasta la forma reducida: en el momento que aparezca un renglón en ceros en la parte correspondiente a B la matriz ya no será invertible 127 Comentario Recuerde que para una matriz A n n la matriz inversa de ella se definió como una matriz B n n que cumple AB = I n = BA y en nuestra deducción del algoritmo sólo buscamos que se cumpla AB = I En los resultados teóricos de álgebra de matrices se tiene que Si A es una matriz cuadrada y existe una matriz cuadrada C tal que A C = I, entonces A es invertible Es decir, que es suficiente tener inversa lateral derecha para tener inversa por ambos lados Si A es una matriz cuadrada invertible y si B es una matriz cuadrada que cumple AB = I, entonces A 1 = B Es decir, que la inversa lateral derecha de una matriz cuadrada invertible coincide con la inversa de la matriz Estos resultados teóricos justifican que sólo busquemos la inversa derecha de una matriz para decir si la matriz es invertible y que la matriz encontrada es precisamente su inversa 128 Propiedades de la inversa 1 Si la matriz A, n n, puede invertirse, entonces el sistema Ax = b tiene solución única para cada vector b Esta solución puede calcularse como x = A 1 b 2 Sean A y B dos matrices cuadradas n n invertibles cualquiera entonces AB es invertible y AB) 1 = B 1 A 1 3 La inversa de una matriz invertible también es una matriz invertible y A 1 ) 1 = A 4

5 4 Si c es una constante cualquiera, pero diferente de cero, entonces la matriz ca también es invertible y ca) 1 = 1 c A 1 5 Si k es un número entero postivo, entonces A k también es una matriz invertible y A k) 1 = A 1 ) k 6 La matriz A T también es invertible y A T ) 1 = A 1 ) T 129 Ecuaciones con matrices Ahora pondremos en práctica nuestra álgebra con matrices para resolver ecuaciones donde se involucran incógnitas que representan matrices Ejemplo 124 Resuelva para X cx + A = B Los pasos que se siguen son muy similares al álgebra básica sumamos en ambos miembros la matriz A: cx + A) A = B A Como la suma / resta de matrices es asociativa se pueden agrupar los sumando para dejar juntos A y A: cx = cx + 0 = cx + A A) = B A Siendo estos cálculos para suma y resta de matrices tan similares a los del álgebra básica usaremos la misma regla: Si en una igualdad entre expresiones con matrices aparece sumando o restando una matriz en un miembro la podemos pasar al otro miembro restando o sumando: Ahoara debemos despejar X de la expresión procedemos a multiplicar por el escalar 1/c: X = 1X = Z + C = D Z = D C 3) cx = B A ) 1 c c X = 1 c cx) = 1 B A) c Siendo estos cálculos para la multiplicación o división con escalares tan similares a los del álgebra básica usaremos la misma regla: Si en una igualdad entre expresiones con matrices aparece multiplicando resp dividiendo) un escalar lo podemos pasar al otro miembro dividiendo resp multiplicando) 5

6 cz = D Z = 1 c D 4) Por tanto, el valor de la incógnita X es X = 1 B A) c Ejemplo 125 Asumiendo que la matriz A sea invertible, despeje la matriz X de la ecuación: AX = B Este tipo de problemas presenta a los alumnos cierta dificultad en los primeros despejes de ecuaciones matriciales Se debe tener bien en claro que la matriz A a eliminar está a la izquierda de la incógnita está multiplicando a la izquierda y que por consiguiente debe de multiplicarse por la izquierda por la matriz inversa de A: X = IX = A 1 A ) X = A 1 AX) = A 1 B Es equivocado hacer cancelar A pretendiendo multiplicar por la derecha: X = AXA 1 = BA 1 Y representa un error aún más grave dividir entre A pretendiendo cancelar A: X = AX A = B A La regla válida para cancelar matrices cuando éstas poseen inversas que multiplican es la siguiente: AX = B X = A 1 B 5) XA = B X = BA 1 6) Ejemplo 126 Suponiendo que A y B son matrices invertibles, despeje X de: ABX = C Otro problema que los alumnos enfrentan en los primeros despejes aparece en este tipo de problemas Hay dos formas correctas de pensar el problema En la primera la ecuación original se debe pensar agrupada de la siguiente manera: AB)X = C En cuyo caso el despeje de X es directo por las reglas vistas: Otra manera correcta de plantear el problema es: X = AB) 1 C A BX) = C 6

7 De donde el despeje en dos pasos es haciendo primero: BX = A 1 C Para después obtener: X = B 1 A 1 C Note que ambos resultados sin idénticos en vista de la igualdad: AB) 1 = B 1 A 1 Ejemplo 127 Despeje x de la ecuación: X T = A En este caso se debe tener presente la propiedad X T) T = X Por consiguiente, tomando la transpuesta en cada miembro: X = X T) T = A T Ejemplo 128 Despeje x de la ecuación: X 1 = A En este caso se debe tener presente la propiedad X 1) 1 = X en cada miembro: X = X 1) 1 = A 1 Por consiguiente, tomando matriz inversa Ejemplo 129 Suponiendo que A es invertible y c 0, despeje X de: Procediendo como anteriormente: A cx + B) + C = D A cx + B) = D C cx + B = A 1 D C) cx = A 1 D C) B X = A 1 D C) B ) Ejemplo 1210 Suponiendo matrices invertibles donde se requiera despeje X de: T A BX) 1 + C) + D = E Este tipo de despejes requiere ser riguroso en el orden: Pasando al segundo miembro D: T A BX) 1 + C) = E D 1 c 7

8 Multiplicando por A 1 por la derecha: Tomando la transpuesta en ambos miembros: Pasando al segundo miembro C: BX) 1 + C) T = A 1 E D) BX) 1 + C = A 1 E D) ) T BX) 1 = A 1 E D) ) T C Tomando inversa en ambos miembros: A BX = 1 E D) ) ) T 1 C Finalmente, eliminando la matriz B: X = B 1 A 1 E D) ) T C ) Complejidad computacional de la inversión Supongamos entonces que aplicamos el algoritmo de eliminación gaussiana para invertir una matriz n por n Consideraremos primero el trabajo realizado por los pasos 1 al 4 y posteriormente el trabajo realizado en el paso 5 Es importante notar que el proceso de Gauss avanza dejando la matriz escalonada hasta la columna de trabajo: a 1,1 a 1,2 a 1,m 1 a 1,m b 1,1 b 1,n 0 a 2,2 a 2,m 1 a 2,m 0 0 a m 1,m 1 a m 1,m a m,m b m,1 b m,n a n,m 1 Ciclo del paso 1 al 4 Al asumir que a m,m es diferente de cero, pasamos al paso 3 En el paso 3 hay que hacer cero debajo del elemento m, m), para cada uno de los m n renglones inferiores R i ; para ello habrá que calcular el factor f = a i,m /a m,m por el cual debe multiplicarse el renglón R m, lo cual implica realizar una división, y posteriormente realizar la operación: R i R i f R m En este caso, en el renglón i hay ceros hasta antes de la columna m, en el elemento i, m) quedará un 1 el factor f fue calculado para ello), así que los únicos elementos que deberán calcularse son los elementos del renglón i desde la columna m + 1) y hasta terminar, es decir, hasta la columna n + n, es decir, un total de 2n m elementos, y para cada uno de ellos habrá que hacer a m+1,j a m+1,j f a m,j, es decir para cada uno de ellos habrá que hacer 2 FLOPs, siendo un total de 2 2n m) elementos, el número total de FLOPs que habrá que realizar para hacer la operación R i R i f R m es, incluyendo la división para calcular f, 22n m) + 1 = 4n 2 m + 1 8

9 Como esto habrá que aplicarlo a todos los renglones por debajo del renglón m y hasta el n, entonces para realizar un ciclo desde el paso 1 hasta el paso 4 deben hacerse n m)4n 2m + 1) FLOPS El ciclo del paso 1 al paso 4 y su repetición irá avanzando m desde 1 hasta n 1 Por consiguiente el total de FLOPs será: n 1 n m)4n 2 m + 1) = 5 3 n3 3 2 n2 1 6 n m=1 2 Ciclo del paso 5 Las operaciones implicadas en el paso 5 serán R m 1 a m,m R m : n divisiones Para esto se requiere n divisiones; la del pivote entre si mismo ya sabemos que dará 1 y no se realizará, simplemente en la posición m, m) pondremos un 1 R j R j a j,m R m : n multiplcaciones y n restas Esta operación sólo requiere n multiplicaciones y n restas; estas operaciones sólo tienen que ver con los términos en la parte aumentada Los nuevos elementos a j,m serán cero Como hay m 1 renglones superiores, el total de operaciones en un ciclo del paso 5 será: Por consiguiente el total de FLOPs en el paso 5 será: m 1) 2n) + n 1 2nm 1) + n) = n 3 2 n 2 + n m=n Por consiguiente, en general cuando se aplica en algoritmo de eliminación gaussiana a un sistema n n el número de FLOPs es: 8 3 n3 7 2 n n 7) 9

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

SISTEMAS DE ECUACIONES LINEALES Y MATRICES

SISTEMAS DE ECUACIONES LINEALES Y MATRICES y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015 1 Visita http://sergiosolanosabie.wikispaces.com y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015

Más detalles

Espacios de una Matriz

Espacios de una Matriz Espacios de una Matriz Departamento de Matemáticas, CSI/ITESM 31 de enero de 2008 Índice 4.1. Espacios de una Matriz........................................ 1 4.2. Espacios Lineales............................................

Más detalles

Propiedades de los Determinantes

Propiedades de los Determinantes Propiedades de los Determinantes Departamento de Matemáticas, CCIR/ITESM 26 de mayo de 2010 Índice 19.1. Propiedades............................................... 1 19.2. La adjunta de una matriz cuadrada..................................

Más detalles

Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan).

Procedimiento para encontrar la inversa de una matriz cuadrada (Método de Gauss-Jordan). Ejemplo 19: Demuestre que la matriz A es invertible y escríbala como un producto de matrices elementales. Solución: Para resolver el problema, se reduce A a I y se registran las operaciones elementales

Más detalles

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( )

Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. ) ( + ( ) ( ) MATRICES Una matriz es un arreglo rectangular de números. Los números en el arreglo se llaman elementos de la matriz. Ejemplo 1. Algunos ejemplos de matrices ( + ( ) ( + ( ) El tamaño o el orden de una

Más detalles

ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2

ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 ÁLGEBRA LINEAL I NOTAS DE CLASE UNIDAD 2 Abstract Estas notas conciernen al álgebra de matrices y serán actualizadas conforme el material se cubre Las notas no son substituto de la clase pues solo contienen

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC13 Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas ITESM Matrices: Conceptos y Operaciones Básicas Matemáticas Discretas - p. 1/25 Una matriz A m n es un arreglo

Más detalles

Francisco José Vera López

Francisco José Vera López Álgebra y Matemática Discreta Matrices. Sistemas de ecuaciones. Francisco José Vera López Dpto. de Matemática Aplicada Facultad de Informática 2015 1 Matrices 2 Sistemas de Ecuaciones Matrices Una matriz

Más detalles

Departamento de Matemáticas, CCIR/ITESM. 9 de febrero de 2011

Departamento de Matemáticas, CCIR/ITESM. 9 de febrero de 2011 Factorización LU Departamento de Matemáticas, CCIR/ITESM 9 de febrero de 2011 Índice 26.1. Introducción............................................... 1 26.2. Factorización LU............................................

Más detalles

Definición (matriz): Definición (dimensión de una matriz): Si una matriz tiene m renglones y n columnas se dice que es de dimensión m n.

Definición (matriz): Definición (dimensión de una matriz): Si una matriz tiene m renglones y n columnas se dice que es de dimensión m n. Índice general 1. Álgebra de Matrices 1 1.1. Conceptos Fundamentales............................ 1 1.1.1. Vectores y Matrices........................... 1 1.1.2. Transpuesta................................

Más detalles

Matrices y determinantes

Matrices y determinantes Matrices y determinantes 1 Ejemplo Cuál es el tamaño de las siguientes matrices? Cuál es el elemento a 21, b 23, c 42? 2 Tipos de matrices Matriz renglón o vector renglón Matriz columna o vector columna

Más detalles

Matrices. En este capítulo: matrices, determinantes. matriz inversa

Matrices. En este capítulo: matrices, determinantes. matriz inversa Matrices En este capítulo: matrices, determinantes matriz inversa 1 1.1 Matrices De manera informal una matriz es un rectángulo de números dentro de unos paréntesis. A = a 1,1 a 1,2 a 1,3 a 2,1 a 2,2 a

Más detalles

Tema 1: Matrices y Determinantes

Tema 1: Matrices y Determinantes Tema 1: Matrices y Determinantes September 14, 2009 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Se dice que una matriz

Más detalles

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ).

MATRICES. Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden x (que se lee por ). 1 MATRICES 1 Una matriz es una disposición rectangular de números (Reales); la forma general de una matriz con filas y columnas es Se simboliza tal matriz por y se le llamará una matriz x o matriz de orden

Más detalles

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

1 0 4/ 5 13/

1 0 4/ 5 13/ 1 1 1 7 1 0 4/ 5 13/ 5 R1 R 1+1/5R3 0 0 0 2 R2 R3 0 5 9 22 0 5 9 22 0 0 0 2 Como la matriz tiene un renglón (0, 0, 0, 2) indica que el sistema no tiene solución ya que no existe un número que sea 2 y al

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) 2a 2c 2b 2u 2w 2v. a b c. u v w. p q r. a b c.

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) 2a 2c 2b 2u 2w 2v. a b c. u v w. p q r. a b c. UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) - Calcular los siguientes determinantes: 3 3 a) b) 3 5 5 3 4 5 Hoja : Matrices y sistemas de ecuaciones lineales

Más detalles

SISTEMAS DE ECUACIONES LINEALES MÉTODO DE LA MATRIZ INVERSA

SISTEMAS DE ECUACIONES LINEALES MÉTODO DE LA MATRIZ INVERSA MÉTODO DE LA MATRIZ INVERSA Índice Presentación... 3 Método de la matriz inversa... 4 Observaciones... 5 Ejemplo I.I... 6 Ejemplo I.II... 7 Ejemplo II... 8 Sistemas compatibles indeterminados... 9 Método

Más detalles

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar.

Definición: Dos matrices A y B son iguales si tienen el mismo orden y coinciden los elementos que ocupan el mismo lugar. UNIDAD 03: MATRICES Y DETERMINANTES. 3.1 Conceptos de Matrices. 3.1.1 Definición de matriz. Definición: Se lama matriz de orden m x n a un arreglo rectangular de números dispuestos en m renglones y n columnas.

Más detalles

Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales

Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales Matemáticas 2ºBachillerato Aplicadas a las Ciencias Sociales 1era evaluación. Determinantes DETERMINANTES Se trata de una herramienta matemática que sólo se puede utilizar cuando nos encontremos con matrices

Más detalles

Clase 8 Matrices Álgebra Lineal

Clase 8 Matrices Álgebra Lineal Clase 8 Matrices Álgebra Lineal Código Escuela de Matemáticas - Facultad de Ciencias Universidad Nacional de Colombia Matrices Definición Una matriz es un arreglo rectangular de números denominados entradas

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes 1 ÍNDICE Matemáticas Cero Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 5 2

Más detalles

Introducción a Matrices y Eliminación Gaussiana

Introducción a Matrices y Eliminación Gaussiana Introducción a Matrices y Eliminación Gaussiana 1 Sistema de Ecuaciones Matricial 2 Definición Una matriz es un arreglo rectangular de valores llamados elementos, organizados por filas y columnas. Ejemplo:

Más detalles

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES

DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES ALGEBRA DE MATRICES DEFINICIONES TIPOS DE MATRICES DETERMINANTES Y PROPIEDADES OPERACIONES MATRICIALES INVERSA DE UNA MATRIZ SISTEMAS DE ECUACIONES DEFINICIONES 2 Las matrices y los determinantes son herramientas

Más detalles

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes

Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes Álgebra y Trigonometría Clase 7 Sistemas de ecuaciones, Matrices y Determinantes CNM-108 Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3

Es decir, det A = producto de diagonal principal producto de diagonal secundaria. Determinante de una matriz cuadrada de orden 3 1.- DETERMINANTE DE UNA MATRIZ CUADRADA Determinante de una matriz cuadrada de orden 1 Dada una matriz cuadrada de orden 1, A = (a), se define det A = det (a) = a Determinante de una matriz cuadrada de

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Ma1010 Departamento de Matemáticas ITESM Álgebra - p. 1/31 En este apartado se introduce uno de los conceptos más importantes del curso: el de combinación lineal entre vectores. Se establece la

Más detalles

Se dice que una matriz cuadrada A es invertible, si existe una matriz B con la propiedad de que

Se dice que una matriz cuadrada A es invertible, si existe una matriz B con la propiedad de que MATRICES INVERTIBLES Se dice que una matriz cuadrada A es invertible, si existe una matriz B con la propiedad de que AB = BA = I siendo I la matriz identidad. Denominamos a la matriz B la inversa de A

Más detalles

Matrices y operaciones con Matrices.

Matrices y operaciones con Matrices. Matrices y operaciones con Matrices En clases anteriores hemos usado arreglos rectangulares de números, denominados matrices aumentadas, para resolver sistemas de ecuaciones lineales Denición Una matriz

Más detalles

Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas.

Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas. 1.- CONCEPTO DE MATRIZ. TIPOS DE MATRICES Definición de matriz Una matriz A es un conjunto de números dispuestos en filas y en columnas. 1 3 4 Por ejemplo, A = es una matriz de 2 filas y 3 columnas 0 5

Más detalles

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES

MATEMÁTICAS 2º BACH TECNOL. MATRICES. Profesor: Fernando Ureña Portero MATRICES CONCEPTO DE MATRIZ Definición: Se denomina matriz A o (a ij ) a todo conjunto de números o expresiones dispuestos en forma rectangular, formando filas y columnas : Columnas Filas Elemento a ij : Cada uno

Más detalles

3.1. Operaciones con matrices. (Suma, resta, producto y traspuesta)

3.1. Operaciones con matrices. (Suma, resta, producto y traspuesta) Operaciones con matrices Suma, resta, producto y traspuesta Suma, resta y multiplicación por escalares Las matrices de un tamaño fijo m n se pueden sumar entre sí y esta operación de sumar se puede definir

Más detalles

Algebra Lineal Tarea No 8: Propiedades de los determinantes Solución a algunos problemas de la tarea (al 29 de junio de 2014)

Algebra Lineal Tarea No 8: Propiedades de los determinantes Solución a algunos problemas de la tarea (al 29 de junio de 2014) Algebra Lineal Tarea No 8: Propiedades de los determinantes a algunos problemas de la tarea (al 29 de junio de 2014) 1. Si A y son matrices 2 2 tales que A = 5 y = 4 calcule los determinantes de las matrices:

Más detalles

Matrices y Sistemas Lineales

Matrices y Sistemas Lineales Matrices y Sistemas Lineales Álvarez S, Caballero MV y Sánchez M a M salvarez@umes, mvictori@umes, marvega@umes Índice 1 Definiciones 3 11 Matrices 3 12 Sistemas lineales 6 2 Herramientas 8 21 Operaciones

Más detalles

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS.

TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. TEMA 1. MATRICES, DETERMINANTES Y APLICACIÓN DE LOS DETERMINANTES. 1. MATRICES. CONCEPTO DE MATRIZ. LA MATRIZ COMO EXPRESIÓN DE TABLAS Y GRAFOS. DEFINICIÓN: Las matrices son tablas numéricas rectangulares

Más detalles

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma.

FICHAS REPASO 3º ESO. Para restar números enteros, se suma al minuendo el opuesto del sustraendo y después se aplican las reglas de la suma. FICHAS REPASO º ESO OPERACIONES CON NÚMEROS ENTEROS El valor absoluto de un número entero es el número natural que resulta al prescindir del signo. Por ejemplo, el valor absoluto de es y el valor absoluto

Más detalles

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices 1.1. Conceptos básicos y ejemplos Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. NOTA:

Más detalles

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes

Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Tema 1: Matrices. Sistemas de ecuaciones. Determinantes José M. Salazar Octubre de 2016 Tema 1: Matrices. Sistemas de ecuaciones. Determinantes Lección 1. Matrices. Sistemas de ecuaciones. Determinantes

Más detalles

Expresión C. numérico Factor literal 9abc 9 abc

Expresión C. numérico Factor literal 9abc 9 abc GUÍA DE REFUERZO DE ÁLGEBRA Un término algebraico es el producto de una o más variables (llamado factor literal) y una constante literal o numérica (llamada coeficiente). Ejemplos: 3xy ; 45 ; m Signo -

Más detalles

Matrices y Determinantes

Matrices y Determinantes Matrices y Determinantes Definición de matriz Matriz Una matriz es un ente matemático equivalente a una tabla; es decir, es un arreglo de elementos de cualquier naturaleza (aunque, en general, suelen ser

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Eliminación gaussiana y otros algoritmos Departamento de Matemáticas ITESM Eliminación gaussiana y otros algoritmos Álgebra Lineal - p. 1/77 En esta lectura veremos procedimientos

Más detalles

Mínimos Cuadrados. Departamento de Matemáticas, CCIR/ITESM. 30 de junio de 2011

Mínimos Cuadrados. Departamento de Matemáticas, CCIR/ITESM. 30 de junio de 2011 Mínimos Cuadrados Departamento de Matemáticas, CCIR/ITESM 30 de junio de 011 Índice 4.1.Introducción............................................... 1 4..Error Cuadrático............................................

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Expresiones algebraicas. Ecuaciones de primer grado

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas Expresiones algebraicas. Ecuaciones de primer grado lasmatemáticaseu Pedro Castro Ortega Epresiones algebraicas Ecuaciones de primer grado 1 Epresiones algebraicas 11 Definición de epresión algebraica Una epresión algebraica es un conjunto de números letras

Más detalles

Espacios Generados en R n

Espacios Generados en R n Espacios Generados en R n Departamento de Matemáticas, CCIR/ITESM 2 de enero de 2 Índice 7.. Objetivos................................................ 7.2. Introducción...............................................

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Capítulo 4 Sistemas de Ecuaciones Lineales y Matrices El problema central del Álgebra Lineal es la resolución de ecuaciones lineales simultáneas Una ecuación lineal con n-incógnitas x 1, x 2,, x n es una

Más detalles

Capítulo 5. Cálculo matricial. 5.1 Matrices

Capítulo 5. Cálculo matricial. 5.1 Matrices Capítulo 5 Cálculo matricial 5. Matrices Una matriz de m filas y n columnas, en adelante matriz m n, es una configuración rectangular de elementos, con n entradas por cada fila, y m por cada columna, encerrada,

Más detalles

Lección 8. Matrices y Sistemas de Ecuaciones Lineales

Lección 8. Matrices y Sistemas de Ecuaciones Lineales Lección 8 Matrices y Sistemas de Ecuaciones Lineales MIGUEL ANGEL UH ZAPATA 1 Análisis Numérico I Facultad de Matemáticas, UADY Septiembre 2014 1 Centro de Investigación en Matemáticas, Unidad Mérida En

Más detalles

Unidad 2. Matrices Conceptos básicos 2.2. Operaciones con matrices 2.3. Matriz Inversa 2.4. El método de Gauss-Jordan 2.5.

Unidad 2. Matrices Conceptos básicos 2.2. Operaciones con matrices 2.3. Matriz Inversa 2.4. El método de Gauss-Jordan 2.5. Unidad. Matrices.. Conceptos básicos.. Operaciones con matrices.. Matriz Inversa.. El método de Gauss-Jordan.. Aplicaciones Objetivos particulares de la unidad Al culminar el aprendizaje de la unidad,

Más detalles

Matemáticas Aplicadas a los Negocios

Matemáticas Aplicadas a los Negocios LICENCIATURA EN NEGOCIOS INTERNACIONALES Matemáticas Aplicadas a los Negocios Unidad 4. Aplicación de Matrices OBJETIVOS PARTICULARES DE LA UNIDAD Al finalizar esta unidad, el estudiante será capaz de:

Más detalles

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para :

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para : II / 7 UNIVERSIDAD SIMON BOLIVAR MA6 abril-julio de 29 Ejercicios sugeridos para : los temas de las clases del 28 y de abril de 29. Temas : Métodos de Gauss y Gauss-Jordan. Sistemas homogéneos y no homogéneos.

Más detalles

Conjuntos y matrices. Sistemas de ecuaciones lineales

Conjuntos y matrices. Sistemas de ecuaciones lineales 1 Conjuntos y matrices Sistemas de ecuaciones lineales 11 Matrices Nuestro objetivo consiste en estudiar sistemas de ecuaciones del tipo: a 11 x 1 ++ a 1m x m = b 1 a n1 x 1 ++ a nm x m = b n Una solución

Más detalles

Matrices y Sistemas de Ecuaciones lineales

Matrices y Sistemas de Ecuaciones lineales Matrices y Sistemas de Ecuaciones lineales Llamaremos M m n (K) al conjunto de las matrices A = (a ij ) (i = 1, 2,..., m; j = 1, 2,..., n) donde los elementos a ij pertenecen a un cuerpo K. Las matrices,

Más detalles

Matrices Inversas. Rango Matrices Elementales

Matrices Inversas. Rango Matrices Elementales Matrices Inversas. Rango Matrices Elementales Araceli Guzmán y Guillermo Garro Facultad de Ciencias UNAM Semestre 2018-1 doyouwantmektalwar.wordpress.com Matrices Matrices identidad La matriz identidad

Más detalles

PREPA N o 2. Matriz Inversa y Determinantes.

PREPA N o 2. Matriz Inversa y Determinantes. UNIVERSIDAD SIMÓN BOLÍVAR MATEMÁTICAS III (MA-1116) Elaborado por Miguel Labrador 12-10423 Ing. Electrónica PREPA N o 2. Matriz Inversa y Determinantes. Sist. de ecuaciones lineales (cierre), cálculo de

Más detalles

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa

Ecuaciones matriciales AX = B y XA = B. Cálculo de la matriz inversa Ecuaciones matriciales AX = B y XA = B Cálculo de la matriz inversa Objetivos Aprender a resolver ecuaciones matriciales de la forma AX = B y XA = B Aprender a calcular la matriz inversa con la eliminación

Más detalles

Contenido. 2 Operatoria con matrices. 3 Determinantes. 4 Matrices elementales. 1 Definición y tipos de matrices

Contenido. 2 Operatoria con matrices. 3 Determinantes. 4 Matrices elementales. 1 Definición y tipos de matrices elementales Diciembre 2010 Contenido Definición y tipos de matrices elementales 1 Definición y tipos de matrices 2 3 4 elementales 5 elementales Definición 1.1 (Matriz) Una matriz de m filas y n columnas

Más detalles

Departamento de Matemática Aplicada CÁLCULO COMPUTACIONAL. Licenciatura en Química (Curso ) Matrices Práctica 1

Departamento de Matemática Aplicada CÁLCULO COMPUTACIONAL. Licenciatura en Química (Curso ) Matrices Práctica 1 Departamento de Matemática Aplicada CÁLCULO COMPUTACIONAL. Licenciatura en Química (Curso 2005-06) Matrices Práctica 1 1. Introducción En esta práctica vamos a profundizar un poco en las capacidades de

Más detalles

Las matrices se denotarán usualmente por letras mayúsculas, A, B,..., y los elementos de las mismas por minúsculas, a, b,...

Las matrices se denotarán usualmente por letras mayúsculas, A, B,..., y los elementos de las mismas por minúsculas, a, b,... INTRO. MATRICES Y DETERMINANTES Prof. Gustavo Sosa Las matrices se utilizan en el cálculo numérico, en la resolución de sistemas de ecuaciones lineales, de las ecuaciones diferenciales y de las derivadas

Más detalles

El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos

El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos El álgebra de las matrices Suma y producto por un escalar Producto de matrices Propiedades y ejemplos c Jana Rodriguez Hertz p. 1/1 Suma de matrices - definición Si dos matrices A,B M m n K tienen el mismo

Más detalles

A 4. En los siguientes ejercicios, resuelva el sistema de ecuaciones utilizando la regla de Cramer.

A 4. En los siguientes ejercicios, resuelva el sistema de ecuaciones utilizando la regla de Cramer. 9. Encuentre el determinante de A. Encuentre el determinante de A 8 9 En los siguientes ejercicios, resuelva el sistema de ecuaciones utilizando la regla de Cramer.. x x 8. x x 8 x x x x 9. x x 8. x 8x

Más detalles

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para :

UNIVERSIDAD SIMON BOLIVAR MA1116 abril-julio de 2009 Departamento de Matemáticas Puras y Aplicadas. Ejercicios sugeridos para : UNIVERSIDAD SIMON BOLIVAR MA6 abril-julio de 29 I / Ejercicios sugeridos para : los temas de las clases del 2 y 23 de abril de 29. Tema : Matrices. Operaciones con matrices. Ejemplos. Operaciones elementales

Más detalles

Algebra lineal Matrices

Algebra lineal Matrices Algebra lineal Matrices Una matriz A un arreglo rectangular de números dispuestos en m renglones (filas) y n columnas. Fila 1 La componente o elemento ij de A, denotado por es el número que aparece en

Más detalles

Tema 1: MATRICES. OPERACIONES CON MATRICES

Tema 1: MATRICES. OPERACIONES CON MATRICES Tema 1: MATRICES. OPERACIONES CON MATRICES 1. DEFINICIÓN Y TIPO DE MATRICES DEFINICIÓN. Una matriz es un conjunto de números reales dispuestos en filas y columnas. Si en ese conjunto hay m n números escritos

Más detalles

TEMA 1: MATRICES Y DETERMINANTES

TEMA 1: MATRICES Y DETERMINANTES TEMA 1: MATRICES Y DETERMINANTES 1 Matrices Definición 11 Una matriz es un arreglo rectangular de números reales de la forma a 11 a 12 a 1m a 21 a 22 a 2m A = a n1 a n2 a nm Las líneas horizontales (verticales)

Más detalles

MATRICES Y DETERMINANTES MATRIZ INVERSA

MATRICES Y DETERMINANTES MATRIZ INVERSA Índice Presentación... 3 Determinante de una matriz... 4 Determinante de matrices de orden 2 y 3... 5 Determinante de una matriz... 6 Ejemplo... 7 Propiedades del cálculo de determinantes... 8 Matriz inversa...

Más detalles

11.SISTEMAS DE ECUACIONES LINEALES DEFINICIÓN DE ECUACIÓN LINEAL DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN

11.SISTEMAS DE ECUACIONES LINEALES DEFINICIÓN DE ECUACIÓN LINEAL DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN ÍNDICE 11SISTEMAS DE ECUACIONES LINEALES 219 111 DEFINICIÓN DE ECUACIÓN LINEAL 219 112 DEFINICIÓN DE SISTEMA LINEAL Y CONJUNTO SOLUCIÓN 220 113 EQUIVALENCIA Y COMPATIBILIDAD 220 11 REPRESENTACIÓN MATRICIAL

Más detalles

Una matriz es un arreglo rectangular de elementos. Por ejemplo:

Una matriz es un arreglo rectangular de elementos. Por ejemplo: 1 MATRICES CONCEPTOS BÁSICOS Definición: Matriz Una matriz es un arreglo rectangular de elementos. Por ejemplo: es una matriz de 3 x 2 (que se lee 3 por 2 ) pues es un arreglo rectangular de números con

Más detalles

INFORMÁTICA MATLAB GUÍA 3 Operaciones con Matrices

INFORMÁTICA MATLAB GUÍA 3 Operaciones con Matrices 1. ARREGLOS BIDIMENSIONALES (MATRICES) A las matrices también se les conoce como arreglos bidimensionales, y son una colección de números distribuidos en filas y columnas: Usos de las matrices: Electricidad

Más detalles

(2) X(3I + A) = B 2I (3) X(3I + A)(3I + A) 1 = (B 2I)(3I + A) 1 (5) X = (B 2I)(3I + A) 1

(2) X(3I + A) = B 2I (3) X(3I + A)(3I + A) 1 = (B 2I)(3I + A) 1 (5) X = (B 2I)(3I + A) 1 Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta B 1. a) Despeja la matriz X en la siguiente ecuación

Más detalles

Matrices y sistemas lineales

Matrices y sistemas lineales 15 Matemáticas I : Preliminares Tema 2 Matrices y sistemas lineales 2.1 Definiciones básicas Una matriz es una tabla rectangular de números, es decir, una distribución ordenada de números. Los números

Más detalles

UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS

UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS UNIDAD I: SISTEMAS DE DOS ECUACIONES CON DOS INCÓGNITAS Sistemas de dos ecuaciones con dos incógnitas. Método de igualación. Método de reducción. Método de sustitución Método de eliminación Gaussiana.

Más detalles

Semana 2 [1/29] Matrices. 31 de julio de Matrices

Semana 2 [1/29] Matrices. 31 de julio de Matrices Semana 2 [1/29] 31 de julio de 2007 elementales Semana 2 [2/29] Matriz de permutación Matriz de permutación Una matriz elemental de permutación tiene la siguiente estructura: 1 0 0 1 0 1 fila p 1 I pq

Más detalles

TEMA 3. Algebra. Teoría. Matemáticas

TEMA 3. Algebra. Teoría. Matemáticas 1 1 Las expresiones algebraicas Las expresiones algebraicas son operaciones aritméticas, de suma, resta, multiplicación y división, en las que se combinan letras y números. Para entenderlo mejor, vamos

Más detalles

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES

RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES 3 RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES Página 74 Determinantes de orden 2 Resuelve cada uno de los siguientes sistemas de ecuaciones y calcula el determinante de la matriz de los coeficientes:

Más detalles

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS

1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1 SISTEMAS DE ECUACIONES LINEALES. MÉTODO DE GAUSS 1.1 SISTEMAS DE ECUACIONES LINEALES Una ecuación lineal es una ecuación polinómica de grado 1, con una o varias incógnitas. Dos ecuaciones son equivalentes

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones.

Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Tema 1. Espacios Vectoriales. Sistemas de ecuaciones. Álgebra Lineal Escuela Politécnica Superior Universidad de Málaga Emilio Muñoz-Velasco (Basado en los apuntes de Jesús Medina e Inmaculada Fortes)

Más detalles

Fundamentos matemáticos. Tema 2 Matrices y ecuaciones lineales

Fundamentos matemáticos. Tema 2 Matrices y ecuaciones lineales Grado en Ingeniería agrícola y del medio rural Tema 2 José Barrios García Departamento de Análisis Matemático Universidad de La Laguna jbarrios@ull.es 2017 Licencia Creative Commons 4.0 Internacional J.

Más detalles

Tema 5: Sistemas de ecuaciones lineales.

Tema 5: Sistemas de ecuaciones lineales. TEORÍA DE ÁLGEBRA: Tema 5 DIPLOMATURA DE ESTADÍSTICA 1 Tema 5: Sistemas de ecuaciones lineales 1 Definiciones generales Definición 11 Una ecuación lineal con n incognitas es una expresión del tipo a 1

Más detalles

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte)

TRABAJO DE MATEMÁTICAS. PENDIENTES DE 1º ESO. (2ª parte) TRABAJO DE MATEMÁTICAS PENDIENTES DE 1º ESO. (2ª parte) NÚMEROS RACIONALES REDUCCIÓN DE FRACCIONES AL MISMO DENOMINADOR Para reducir varias fracciones al mismo denominador se siguen los siguientes pasos:

Más detalles

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES

Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Tema 1 CÁLCULO MATRICIAL y ECUACIONES LINEALES Prof. Rafael López Camino Universidad de Granada 1 Matrices Definición 1.1 Una matriz (real) de n filas y m columnas es una expresión de la forma a 11...

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio Propuesta A

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio Propuesta A Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta A 1. a) Despeja la matriz X en la siguiente ecuación matricial:

Más detalles

Algebra de Matrices 1

Algebra de Matrices 1 Algebra de Matrices Definición Una matriz es un arreglo rectangular de valores llamados elementos, organizados por filas y columnas. Ejemplo: Notas: A 6. Las matrices son denotadas con letras mayúsculas..

Más detalles

TEMA V. Pues bien, a estas caracterizaciones de los sistemas de ecuaciones lineales se las llamó matrices. En el caso del sistema considerado tenemos:

TEMA V. Pues bien, a estas caracterizaciones de los sistemas de ecuaciones lineales se las llamó matrices. En el caso del sistema considerado tenemos: TEMA V 1. MATRICES Y SISTEMAS DE ECUACIONES LINEALES. Sea el siguiente sistema de ecuaciones lineales: Realmente quien determina la naturaleza y las soluciones del sistema, no son las incógnitas: x, y,

Más detalles

Definición de la matriz inversa

Definición de la matriz inversa Definición de la matriz inversa Objetivos Aprender la definición de la matriz inversa Requisitos Multiplicación de matrices, habilidades básicas de resolver sistemas de ecuaciones Ejemplo El número real

Más detalles

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A =

Matrices: repaso. Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas. Una matriz A M m n es de la forma A = Matrices: repaso Denotaremos con M m n el conjunto de matrices de tamaño m n, o sea, de m filas y n columnas Una matriz A M m n es de la forma a 11 a 1n A = a m1 a mn Denotaremos A ij = a ij el coeficiente

Más detalles

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes. Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES

Más detalles

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico.

Tema 1: Matrices. El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. Tema 1: Matrices El concepto de matriz alcanza múltiples aplicaciones tanto en la representación y manipulación de datos como en el cálculo numérico. 1. Terminología Comenzamos con la definición de matriz

Más detalles

Álgebra y Matemática Discreta

Álgebra y Matemática Discreta Álgebra y Matemática Discreta Sesión de Teoría 18 (c) 2013 Leandro Marín, Francisco J. Vera, Gema M. Díaz 11 Nov 2013-17 Nov 2013 Ecuaciones Matriciales Ecuaciones Matriciales En muchas ocasiones, se plantean

Más detalles

DOCENTE: JESÚS E. BARRIOS P.

DOCENTE: JESÚS E. BARRIOS P. DOCENTE: JESÚS E. BARRIOS P. DEFINICIONES Es larga la historia del uso de las matrices para resolver ecuaciones lineales. Un texto matemático chino que proviene del año 300 A. C. a 200 A. C., Nueve capítulos

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES APLICACIONES COMPUTACIONALES INGENIERÍA EJECUCIÓN MECÁNICA SISTEMAS DE ECUACIONES LINEALES REGLA DE CRAMER Esta regla establece que cada incógnita de un sistema de ecuaciones lineales algebraicas puede

Más detalles

CALCULO I UNIDAD I MATRICES. Instituto Profesional Iplacex

CALCULO I UNIDAD I MATRICES. Instituto Profesional Iplacex CALCULO I UNIDAD I MATRICES 1.3 Transformación de matrices A las matrices se les pueden realizar ciertas transformaciones o cambios internos, siempre y cuando no afecten ni el orden ni el rango de la misma.

Más detalles

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES

EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES EJERCICIOS DE SELECTIVIDAD LOGSE en EXTREMADURA MATRICES DETERMINANTES Y SISTEMAS DE ECUACIONES JUNIO 06/07. a) Calcula el rango de la matriz A según los valores del parámetro a 3 a A = 4 6 8 3 6 9 b)

Más detalles

Sistemas lineales de ecuaciones

Sistemas lineales de ecuaciones Sistemas lineales de ecuaciones Conceptos previos a) Sistemas de ecuaciones lineales. b) Solución de un sistema. c) Sistemas triangulares. Resolución de sistemas Métodos directos a) Método de eliminación

Más detalles

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución:

Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4. Halla los determinantes de las siguientes matrices: Solución: 3 Determinantes. Determinantes de orden 2 y 3 por Sarrus Piensa y calcula 3 6 Dada la proporción =, calcula el producto de extremos menos el producto de medios. 4 8 3 8 6 4 = 24 24 = 0 Aplica la teoría.

Más detalles

Instituto Tecnológico Autónomo de México. 1. At =..

Instituto Tecnológico Autónomo de México. 1. At =.. Instituto Tecnológico Autónomo de México TRANSPUESTA DE UNA MATRIZ DEFINICION : Transpuesta Sea A = (a ij ) una matriz de mxn Entonces la transpuesta de A, que se escribe A t, es la matriz de nxm obtenida

Más detalles

Relación de problemas. Álgebra lineal.

Relación de problemas. Álgebra lineal. Relación de problemas Álgebra lineal Tema 1 Sección 1 Matrices Determinantes Sistemas lineales Matrices Ejercicio 11 Consideremos las siguientes matrices: ( 1 2 A = 1 1 ) ( 1 1 B = 0 1 ) C = 1 0 0 0 1

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 Métodos Iterativos para Resolver Sistemas Lineales Departamento de Matemáticas ITESM Métodos Iterativos para Resolver Sistemas Lineales Álgebra Lineal - p. 1/30 En esta lectura veremos

Más detalles

Matrices, determinantes y sistemas de ecuaciones lineales

Matrices, determinantes y sistemas de ecuaciones lineales Matrices, determinantes y sistemas de ecuaciones lineales David Ariza-Ruiz 10 de octubre de 2012 1 Matrices Una matriz es una tabla numérica rectangular de m filas y n columnas dispuesta de la siguiente

Más detalles