Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Una forma fácil de recordar esta suma (regla de Sarrus): Primero vamos a estudiar algunas propiedades de los determinantes."

Transcripción

1

2 Una forma fácil de recordar esta suma (regla de Sarrus): Ejemplos: Tarea: realizar al menos tres ejercicios de cálculo de determinantes de matrices de 2x2 y otros tres de 3x3. PARA DETERMINANTES DE MATRICES DE ORDEN MAYOR A TRES, no es conveniente evaluarlos por medio de la definición. Vamos a analizar un método general, adecuado para evaluar determinantes de matrices de cualquier orden. Primero vamos a estudiar algunas propiedades de los determinantes. 1. Si la matriz tiene una fila (columna) de ceros, su determinante es cero. 2. Si una fila es un múltiplo de otra fila, su determinante es cero. 3. El determinante de una matriz triangular es el producto de las entradas de la diagonal principal. Como afectan las operaciones de filas al valor del determinante?

3 1) Intercambio de filas. Si dos filas de A se intercambian para producir B, entonces: 2) Multiplicar una fila por una constante diferente de cero Si una fila de A se multiplica por una constante para producir B, entonces: que se puede escribir también 3) Sumar a una fila un múltiplo de otra fila Si a una fila de A se le suma un múltiplo de otra de sus filas para producir B, entonces: Calculo del determinante por reduccion a la forma triangular. Las operaciones de filas se pueden utilizar para reducir una matriz a la forma escalonada, (que siempre es triangular) y evaluar el determinante de esta última, solo se debe llevar el registro del efecto que tiene cada operación de fila en el valor del determinante. Ejemplo : evaluar el determinante A

4 La operación de fila de multiplicar una fila por una constante diferente de cero, se utiliza principalmente para simplificar la aritmética al realizar los cálculos manualmente. Considerar los siguiente: Se puede decir que factorizamos un múltiplo común. Ejemplo: evaluar el determinante de A para simplificar la aritmética, es conveniente un 1 en la posición pivote 1,1, esto lo podemos obtener de dos formas: 1), 2). digamos que elegimos la opción 2), entonces escribimos:

5 Analizar la reducción a la forma escalonada utilizando únicamente las operaciones de reemplazo de filas y de intercambio de filas. Si U es la forma escalonada de A, y si se realizaron r intercambios de filas, entonces: Ya que U es la forma escalonada de A, y es una matriz triangular, el determinante de U es el producto de las entradas de la diagonal principal Si A el determinante de A es diferente de cero, todas las entradas son pivotes. Por otra parte, si el determinante de A es cero, al menos es cero, y el producto. es cero. Esto se resume de la siguiente manera:,.kl EJERCICIOS: Otra forma de evaluación de los determinantes. Como se vio anteriormente, la inversa de una matriz de 2x2 es Tambien se determinó que para que la matriz fuera invertible, la forma escalonada debería tener los pivotes en las entradas de la diagonal principal.

6 Al evaluar el determinante de la matriz por operaciones de filas, se realiza el mismo procedimiento que para determinar la inversa. Observamos que para que el determinante sea diferente de cero, las entradas de la diagonal principal deben ser diferentes de cero. Por lo anterior, la matriz es invertible si y solo si su determinante es diferente de cero. Este concepto se aplica a las matrices de cualquier orden (consultar el en texto el desarrollo para una matriz de 3x3). Otra perspectiva de los determinantes Considerar una matriz de 3x3 y el hecho de que la matriz es invertible solo si la forma escalonada reducida de la matriz es la identidad. Si a es invertible, la entrada (2,2) o la entrada (3,2) debe ser diferente de cero. Supongamos que la entrada (2,2) es diferente de cero, si realizamos la operación de reemplazo de fila para hacer cero la entrada (3,2) obtenemos Donde: Ya que A es invertible, debe ser diferente de cero. Como ya vimos anteriormente, es el determinante de la matriz!!! Mas aún, este determinante se puede expresar por medio de determinantes de 2x2 Que se puede escribir de manera compacta Las matrices, y se obtienen de A eliminando la fila uno y una de las

7 tres columnas. Ejemplo. Evaluar el determinante de la matriz Ahora vamos a generalizar este procedimiento, primero vamos a definir menor y cofactor. Para cada posición de una matriz cuadrada se define "su menor", el menor de la posición (ij) es el determinante de la submatriz que resulta de eliminar la fila i y la columna j Ejemplo: considerar la matriz y evaluar los menores de las posiciones (1,1), (1,2) y (2,3) Al igual que con los menores, para cada posición de la matriz, se define un cofactor, el cofactor de la posición (ij) se define Ejemplo: evaluar los cofactores de las posiciones (1,1), (1,2), (1,3) y (3,2) de la matriz del ejemplo anterior.

8 El determinante de una matriz se obtiene de la sumatoria de los productos de las entradas de una fila por los cofactores de cada entrada. Considerar una matriz de orden n Se puede utilizar una columna en lugar de una fila. Ejemplo. Evaluar el determinante de la matriz Usando la segunda fila (desarrollando por la segunda fila) Este método para evaluar un determinante solo es práctico para matrices de orden no muy alto y con muchas entradas de valor cero. Leer la nota numérica al respecto en el libro de texto. Ahora algunas propiedades relacionadas con el determinante de operaciones matriciales: Sean A y B matrices de orden n y c un escalar

9 Algunas aplicaciones y aspectos relacionados con los determinantes 1. Regla de Cramer 2. Inversa de una matriz por la adjunta 3. Areas y volumenes 4. Ecuaciones de rectas y planos REGLA DE CRAMER Aplicación a la solución de sistemas lineales de solución única, aunque solo es práctica para sistemas de 2x2 y 3x3. Sea un sistema lineal Definimos la matriz o simplemente la matriz que se obtiene al reemplazar la columna i de A por el vector b. La regla de Cramer nos da la solución del sistema lineal, de acuerdo a Si A es una matriz invertible de nxn. Para cualquier b en de Se obtiene de: Ejemplo: usar la regla de Cramer para resolver el sistema, la solución única x

10 Ejemplo: obtener la solución del sistema, donde s es un parámetro no especificado. El sistema tiene solución única cuando Ejercicio para clase: obtener y INVERSA DE UNA MATRIZ POR LA ADJUNTA Considerar una matriz invertible A de nxn, y los cofactores de A. Si los cofactores se utulizan como valores para las entradas de una matriz de nxn, la matriz de cofactores y su traspuesta, la adjunta de A La inversa de la matriz A está dada por la ecuación Es necesario aclarar que la obtención de la inversa por esta fórmula no es práctico, el uso de esta fórmula es principalmente para aspectos teóricos. Ejemplo: encontrar la inversa de la matriz

11 Investigación: aspectos teóricos obtenidos a partir de la fórmula Areas y volúmenes Considerar un paralelogramo con vértices (0,0), (a,0), (0,d) y (a,d). Las coordenadas de los vértices opuestos se escriben como columnas de una matriz, entonces el área del paralelogramos es En general, si las columnas de A corresponden a vértices opuestos del paralelogramo, el área del paralelogramo es, analizar la figura recordando el efecto de las operaciones de filas en el valor del determinante y la representación gráfica de los múltiplos escalares de los vectores

12 El volumen de un paralelepípedo se puede calcular si las coordenadas de tres vértices se colocan como columnas de una matriz por medio de ver las figuras. Rectas y planos La ecuación de una recta que paso por los puntos Se obtiene de la ecuación Ejemplo: encontrar la ecuación de la recta que pasa por los puntos (2,4) y (-1,3) Dibujar la recta y comprobar por otro método. Si tres puntos yacen sobre un plano, la ecuación de este plano está dada por Ejemplo: encontrar una ecuación para el plano que pasa por los puntos (0,1,0), (-1,3,2) y (-2,0,1) Solucion: Ecuación del plano:

13 Valores y vectores propios Los valores propios, tambien llamados eigenvalores son un tema muy importante del Algebra Lineal, ya que tiene aplicación en muy diferentes áreas. El tema se puede abordar de diferentes maneras, por ejemplo: Para una matriz A de nxn y un vector x en, existe un escalar para el cual x es un múltiplo de Ax?, esto es, existe un escalar tal que se cumple Veamos un ejemplo y su interpretación geométrica. Ejenplo: sea y Para v, Para u, Para v existe un escalar (2), pero para u no, la interpretación gráfica se muestra en la figura Definición: Un vector propio de una matriz A de nxn es un vector x no nulo tal que se cumple para algún valor. Al escalar se le llama valor propio de A. Ejemplo: demostrar que 7 es un valor propio de la matriz De acuerdo a la definición, el escalar 7 es un valor propio si y solo si la ecuación

14 tiene soluciones no triviales. Ahora resolvamos la ecuación matricial equivalente La solución a la ecuación matricial, corresponde a la de un sistema de ecuaciones homogéneo. 7 es un valor propio de la matriz A, porque cumple con la ecuación para los vectores que son múltiplos escalares del vector Se dice: los vectores que son múltiplos escalares de son vectores propios de A correspondientes al valor propio 7. En el ejemplo anterior se obtuvieron los vectores propios de un cierto valor propio, esto fue para demostrar que el escalar es un valor propio, para determinar los valores propios, se deben obtener los escalares para los cuales la ecuación tiene soluciones no triviales ( recordar que el vector x debe ser diferente de cero). Análisis, el sistema sistema correspondiente a la ecuación es homogéneo de n ecuaciones y n variables. Si la matriz de coeficientes tiene inversa, el sistema tiene solución única, la trivial. Para que el sistema tenga soluciones adicionales a la trivial, la matriz de coeficientes del sistema no debe ser invertible. Para una matriz no invertible su determinante es cero. Conclusión, para que la ecuación tenga soluciones no triviales se debe cumplir que La obtención de los valores propios de una matriz requiere de la evaluación de un determinante.

15 Ejemplo: determinar los valores propios y los vectores propios correspondiente para la matriz Primero los valores propios con la ecuación Ya que, entonces. Los valores propios son 3 y -7. Los vectores propios se obtienen resolviendo la ecuación matricial para cada valor propio. Para el valor propio 3, resolver La solución es, con como variable libre, La solución en forma vectorial es Los vectores propios correspondientes al valor propio 3, son los múltiplos escalares de Comprobar y obtener los vectores para el valor -7 Ejercicios: Seccion 3.1: 1-4, 9-10, 15-18, 33-34, Seccion 3.2: 1-4, 5, 7, 9, 11, 12, 15-18, 39, 40

16

17

18

Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales Sistemas de Ecuaciones Lineales 1 Sistemas de ecuaciones y matrices Definición 1 Una ecuación lineal en las variables x 1, x 2,..., x n es una ecuación de la forma con a 1, a 2... y b números reales. a

Más detalles

MENORES, COFACTORES Y DETERMINANTES

MENORES, COFACTORES Y DETERMINANTES MENORES, COFACTORES Y DETERMINANTES 1. Introducción. 2. Determinante de una matriz de 3 x 3. 3. Menores y cofactores. 4. Determinante de una matriz de n x n. 5. Matriz triangular. 6. Determinante de una

Más detalles

Determinantes. Primera definición. Consecuencias inmediatas de la definición

Determinantes. Primera definición. Consecuencias inmediatas de la definición Determinantes Primera definición Para calcular el determinante de una matriz cuadrada de orden n tenemos que saber elegir n elementos de la matriz de forma que tomemos solo un elemento de cada fila y de

Más detalles

Determinante de una matriz

Determinante de una matriz 25 Matemáticas I : Preliminares Tema 3 Determinante de una matriz 31 Determinante de una matriz cuadrada Definición 67- Sea A una matriz cuadrada de orden n Llamaremos producto elemental en A al producto

Más detalles

Espacios Vectoriales www.math.com.mx

Espacios Vectoriales www.math.com.mx Espacios Vectoriales Definiciones básicas de Espacios Vectoriales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 007-009 Contenido. Espacios Vectoriales.. Idea Básica de Espacio Vectorial.................................

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES 1 SISTEMAS DE ECUACIONES LINEALES Una ecuación es un enunciado o proposición que plantea la igualdad de dos expresiones, donde al menos una de ellas contiene cantidades desconocidas llamadas variables

Más detalles

GUÍA DE ESTUDIO: MATEMÁTICAS POLINOMIOS

GUÍA DE ESTUDIO: MATEMÁTICAS POLINOMIOS GUÍA DE ESTUDIO: MATEMÁTICAS POLINOMIOS Esta guía de estudio está diseñada con ejercicios resueltos paso a paso con el fin de mostrar los procedimientos detallados para abordar cada uno de ellos. Las estrategias

Más detalles

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291)

Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) Combinación lineal, Independencia Lineal, y Vectores que generan (Sección 6.3 pág. 291) I. Combinación Lineal Definición: Sean v 1, v 2, v 3,, v n vectores en el espacio vectorial V. Entonces cualquier

Más detalles

Tema 2. Sistemas de ecuaciones lineales

Tema 2. Sistemas de ecuaciones lineales Tema 2. Sistemas de ecuaciones lineales Estructura del tema. Definiciones básicas Forma matricial de un sistema de ecuaciones lineales Clasificación de los sistemas según el número de soluciones. Teorema

Más detalles

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE

GEOMETRIA ANALITICA- GUIA DE EJERCICIOS DE LA RECTA Y CIRCUNFERENCIA PROF. ANNA LUQUE Ejercicios resueltos de la Recta 1. Hallar la ecuación de la recta que pasa por el punto (4. - 1) y tiene un ángulo de inclinación de 135º. SOLUCION: Graficamos La ecuación de la recta se busca por medio

Más detalles

ARITMÉTICA Y ÁLGEBRA

ARITMÉTICA Y ÁLGEBRA ARITMÉTICA Y ÁLGEBRA 1.- Discutir el siguiente sistema, según los valores de λ: Resolverlo cuando tenga infinitas soluciones. Universidad de Andalucía SOLUCIÓN: Hay cuatro ecuaciones y tres incógnitas,

Más detalles

Valores y Vectores Propios

Valores y Vectores Propios Valores y Vectores Propios Departamento de Matemáticas, CSI/ITESM de abril de 9 Índice 9.. Definiciones............................................... 9.. Determinación de los valores propios.................................

Más detalles

Inversas Generalizadas

Inversas Generalizadas Inversas Generalizadas Departamento de Matemáticas, CSI/IESM 5 de abril de 2 Índice.. Inversas generalizadas..........................................2. Uso de la inversa generalizada.....................................

Más detalles

Sistemas de Ecuaciones y Matrices

Sistemas de Ecuaciones y Matrices Sistemas de Ecuaciones y Matrices 0.1 Sistemas de ecuaciones Consideremos las gráficas de dos funciones f y g como en la figura siguiente: P Q y = fx y = gx En la práctica, en ocasiones hay que encontrar

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

Notas del curso de Introducción a los métodos cuantitativos

Notas del curso de Introducción a los métodos cuantitativos Ecuación de segundo grado Una ecuación de segundo grado es aquella que puede reducirse a la forma, ax + bx + c = 0 en la que el coeficiente a debe ser diferente de cero. Sabemos que una ecuación es una

Más detalles

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A.

ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; (A ) = A. 2. La inversa de A 1 es A; (A 1 ) 1 = A. 3. (AB) = B A. ÁLGEBRA MATRICIAL. 1. La traspuesta de A es A; A = A. 2. La inversa de A 1 es A; A 1 1 = A. 3. AB = B A. 4. Las matrices A A y AA son simétricas. 5. AB 1 = B 1 A 1, si A y B son no singulares. 6. Los escalares

Más detalles

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3

ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2.3 ÁLGEBRA LINEAL II Algunas soluciones a la práctica 2. Transformaciones ortogonales (Curso 2010 2011) 1. Se considera el espacio vectorial euclídeo IR referido a una base ortonormal. Obtener la expresión

Más detalles

Proceso Selectivo para la XXII IMC, Bulgaria

Proceso Selectivo para la XXII IMC, Bulgaria Proceso Selectivo para la XXII IMC, Bulgaria Facultad de Ciencias UNAM Instituto de Matemáticas UNAM SUMEM Indicaciones Espera la indicación para voltear esta hoja. Mientras tanto, lee estas instrucciones

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

Determinantes. Profesores Omar Darío Saldarriaga Ortíz. Hernán Giraldo

Determinantes. Profesores Omar Darío Saldarriaga Ortíz. Hernán Giraldo Determinantes Profesores Omar Darío Saldarriaga Ortíz Iván Dario Gómez Hernán Giraldo 2009 Definición Sea A una matriz de tamaño m n, para 1 i m y 1 j n, definimos el ij-ésimo menor de A, al cual denotaremos

Más detalles

Un sistema formado por dos ecuaciones y dos incógnitas, se puede escribir como sigue:

Un sistema formado por dos ecuaciones y dos incógnitas, se puede escribir como sigue: MATEMÁTICAS EJERCICIOS RESUELTOS DE SISTEMAS LINEALES Juan Jesús Pascual SISTEMA DE ECUACIONES LINEALES A. Introducción teórica B. Ejercicios resueltos A. INTRODUCCIÓN TEÓRICA Sistemas de ecuaciones lineales

Más detalles

P. A. U. LAS PALMAS 2005

P. A. U. LAS PALMAS 2005 P. A. U. LAS PALMAS 2005 OPCIÓN A: J U N I O 2005 1. Hallar el área encerrada por la gráfica de la función f(x) = x 3 4x 2 + 5x 2 y la rectas y = 0, x = 1 y x = 3. x 3 4x 2 + 5x 2 es una función polinómica

Más detalles

PRÁCTICA DE LABORATORIO 4 Programación Orientada a Objetos

PRÁCTICA DE LABORATORIO 4 Programación Orientada a Objetos ESCUELA DE INGENIERÍA DE SISTEMAS DEPARTAMENTO DE COMPUTACIÓN PROGRAMACIÓN 2 PRÁCTICA DE LABORATORIO 4 Programación Orientada a Objetos Contenido Introducción...1 Objeto...2 Atributo...2 Métodos...2 Clase...3

Más detalles

Diagonalización de matrices.

Diagonalización de matrices. Diagonalización de matrices. 1. Diagonalización de matrices. Definición 1.1 Sea A una matriz cuadrada,, decimos que es un autovalor de A si existe un vector no nulo tal que En esta situación decimos que

Más detalles

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos.

CONTINUIDAD DE FUNCIONES. SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. CAPÍTULO IV. CONTINUIDAD DE FUNCIONES SECCIONES A. Definición de función continua. B. Propiedades de las funciones continuas. C. Ejercicios propuestos. 121 A. DEFINICIÓN DE FUNCIÓN CONTINUA. Una función

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid Resueltos Isaac Musat Hervás 22 de mayo de 213 Capítulo 11 Año 21 11.1. Modelo 21 - Opción A Problema 11.1.1 3 puntos Dada la función: fx

Más detalles

Ecuaciones de primer grado

Ecuaciones de primer grado Ecuaciones de primer grado º ESO - º ESO Definición, elementos y solución de la ecuación de primer grado Una ecuación de primer grado es una igualdad del tipo a b donde a y b son números reales conocidos,

Más detalles

INTEGRACIÓN POR FRACCIONES PARCIALES

INTEGRACIÓN POR FRACCIONES PARCIALES IX INTEGRACIÓN POR FRACCIONES PARCIALES La integración por fracciones parciales es más un truco o recurso algebraico que algo nuevo que vaya a introducirse en el curso de Cálculo Integral. Es decir, en

Más detalles

TRA NSFORMACIO N ES LIN EA LES

TRA NSFORMACIO N ES LIN EA LES TRA NSFORMACIO N ES LIN EA LES C o m p uta c i ó n G r á fica Tipos de Datos Geométricos T Un punto se puede representar con tres números reales [x,y,z] que llamaremos vector coordenado. Los números especifican

Más detalles

Sistemas de Ecuaciones Lineales. Solución de Sistemas de Ecuaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.

Sistemas de Ecuaciones Lineales. Solución de Sistemas de Ecuaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com. Sistemas de Ecuaciones Lineales Solución de Sistemas de Ecuaciones Lineales www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2008 Contenido 1. Sistemas de Ecuaciones Lineales 2

Más detalles

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Matrices 2 11 Matrices cuadradas 3 12 Matriz transpuesta 4 13 Matriz identidad

Más detalles

Sistemas de ecuaciones lineales 4

Sistemas de ecuaciones lineales 4 4. SISTEMAS DE ECUACIONES LINEALES 4.1. DEFINICIONES Y CLASIFICACIÓN DE SISTEMAS. La ecuación de una recta en el plano tiene la forma ; su generalización a variables es:, y recibe el nombre de ecuación

Más detalles

POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las

POLINOMIOS. Un polinomio es una expresión algebraica (conjunto de. números y letras que representan números, conectados por las POLINOMIOS Teoría 1.- Qué es un polinomio? Un polinomio es una expresión algebraica (conjunto de números y letras que representan números, conectados por las operaciones de suma, resta, multiplicación,

Más detalles

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A

IES Francisco Ayala Modelo 1 (Septiembre) de 2007 Solución Germán Jesús Rubio Luna. Opción A IES Francisco Ayala Modelo (Septiembre) de 7 Germán Jesús Rubio Luna Opción A Ejercicio n de la opción A de septiembre, modelo de 7 3x+ Sea f: (,+ ) R la función definida por f(x)= x. [ 5 puntos] Determina

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Sistemas de Ecuaciones Lineales y Matrices Oscar G Ibarra-Manzano, DSc Departamento de Area Básica - Tronco Común DES de Ingenierías Facultad de Ingeniería, Mecánica, Eléctrica y Electrónica Trimestre

Más detalles

7 Sistemas de ecuaciones

7 Sistemas de ecuaciones 89485 _ 0309-0368.qxd 1/9/0 15:3 Página 31 Sistemas de ecuaciones INTRODUCCIÓN Aunque no es el objetivo de este curso, los alumnos deben ser capaces de reconocer ecuaciones con dos incógnitas y obtener

Más detalles

Ecuaciones de segundo grado

Ecuaciones de segundo grado Ecuaciones de segundo grado 11 de noviembre 009 Ecuaciones de segundo grado con una incógnita método de solución, formula general e incompletas Algebra Ecuaciones de segundo grado con una incógnita Las

Más detalles

cuadrada de 3 filas y tres columnas cuyo determinante vale 2.

cuadrada de 3 filas y tres columnas cuyo determinante vale 2. PROBLEMAS DE SELECTIVIDAD. BLOQUE ÁLGEBRA MATEMÁTICAS II 0 2 0. Se dan las matrices A, I y M, donde M es una matriz de dos 3 0 filas y dos columnas que verifica M 2 = M. Obtener razonadamente: a) Todos

Más detalles

Espacios vectoriales con producto interior

Espacios vectoriales con producto interior Espacios vectoriales con producto interior Longitud, norma o módulo de vectores y distancias entre puntos Generalizando la fórmula pitagórica de la longitud de un vector de R 2 o de R 3, definimos la norma,

Más detalles

Algebra Lineal XXI: Existencia de la Función Determinante, Expansión de Cofactores.

Algebra Lineal XXI: Existencia de la Función Determinante, Expansión de Cofactores. Algebra Lineal XXI: Existencia de la Función Determinante, Expansión de Cofactores. José María Rico Martínez Departamento de Ingeniería Mecánica Facultad de Ingeniería Mecánica Eléctrica y Electrónica

Más detalles

CAPITULO 2: MATRICES Y DETERMINANTES

CAPITULO 2: MATRICES Y DETERMINANTES CAPITULO : MATRICES Y DETERMINANTES Cuando los sistemas de ecuaciones lineales son extensos, mayormente se utiliza matrices por su facilidad de manejo. Las matrices son ordenamientos de datos y se usan

Más detalles

UNIDAD V: ARR R EGL G OS O BIDI D MENS N IONALE L S

UNIDAD V: ARR R EGL G OS O BIDI D MENS N IONALE L S UNIDAD V: ARREGLOS BIDIMENSIONALES DIMENSIONALES UNIDAD V: ARREGLOS BIDIMENSIONALES 1.1 GENERALIDADES: Las matrices son una colección finita, homogénea y ordenada de datos. Su información está organizada

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidad 1: Números reales. 1 Unidad 1: Números reales. 1.- Números racionales e irracionales Números racionales: Son aquellos que se pueden escribir como una fracción. 1. Números enteros 2. Números decimales

Más detalles

TEMA 4: Espacios y subespacios vectoriales

TEMA 4: Espacios y subespacios vectoriales TEMA 4: Espacios y subespacios vectoriales 1. Espacios vectoriales Sea K un cuerpo. Denominaremos a los elementos de K escalares. Definición 1. Un espacio vectorial sobre K es un conjunto V cuyos elementos

Más detalles

INSTITUCION EDUCATIVA LA PRESENTACION

INSTITUCION EDUCATIVA LA PRESENTACION INSTITUCION EDUCATIVA LA PRESENTACION Nombre de la alumna: Área: MATEMATICAS Asignatura: Matemáticas Docente: Luis López Zuleta Tipo de Guía: Conceptual PERIODO GRADO FECHA DURACION DOS 7º 13 de agosto

Más detalles

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES Ana Morata Gasca 1 DEFINICIÓN DE VECTOR Un vector es todo segmento de recta dirigido en el espacio. CARACTERÍSTICAS DE UN VECTOR Origen o Punto de aplicación:

Más detalles

NOCIONES PRELIMINARES (*) 1

NOCIONES PRELIMINARES (*) 1 CONJUNTOS NOCIONES PRELIMINARES (*) 1 Conjunto no es un término definible, pero da idea de una reunión de cosas ( elementos ) que tienen algo en común. En matemática los conjuntos se designan con letras

Más detalles

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás

Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás Problemas de Selectividad de Matemáticas II Comunidad de Madrid (Resueltos) Isaac Musat Hervás 6 de julio de 2016 2 Índice general 1. Álgebra 5 1.1. Año 2000............................. 5 1.2. Año 2001.............................

Más detalles

DETERMINANTES página 251 DETERMINANTES. Por ejemplo: 2 1 8 es un determinante de tres filas y tres columnas.

DETERMINANTES página 251 DETERMINANTES. Por ejemplo: 2 1 8 es un determinante de tres filas y tres columnas. DETERMINANTES página 251 DETERMINANTES 13.1 Un determinante es un arreglo numérico en igual número de filas que de columnas del que, a partir de ciertas reglas, se forma un polinomio. El símbolo es un

Más detalles

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x)

Tabla de Derivadas. Función Derivada Función Derivada. f (x) n+1. f (x) y = f (x) y = ln x. y = cotg f (x) y = ( 1 cotg 2 f (x)) f (x) = f (x) Matemáticas aplicadas a las CCSS - Derivadas Tabla de Derivadas Función Derivada Función Derivada y k y 0 y y y y y f ) y f ) f ) y n y n n y f ) n y n f ) n f ) y y n y y f ) y n n+ y f ) n y f ) f )

Más detalles

Cambio de representaciones para variedades lineales.

Cambio de representaciones para variedades lineales. Cambio de representaciones para variedades lineales 18 de marzo de 2015 ALN IS 5 Una variedad lineal en R n admite dos tipos de representaciones: por un sistema de ecuaciones implícitas por una familia

Más detalles

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades: Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición

Más detalles

Subespacios Vectoriales

Subespacios Vectoriales Subespacios Vectoriales Prof. Apuntes del Postgrado en Ingeniería 31 Mayo 2008 Subespacio Definición de Subespacio y Ejemplos. Definición Sea H un subconjunto no vacio de un espacio vectorial V(K). Si

Más detalles

Profr. Efraín Soto Apolinar. Productos notables

Profr. Efraín Soto Apolinar. Productos notables Productos notables Cuando realizamos operaciones entre polinomios con el fin de resolver problemas, es muy frecuente encontrar algunas operaciones que por su naturaleza, aparecen en muchos fenómenos. Debido

Más detalles

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla.

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla. ÁLGEBRA LINEAL Apuntes elaborados por Juan González-Meneses López. Curso 2008/2009 Departamento de Álgebra. Universidad de Sevilla. Índice general Tema 1. Matrices. Determinantes. Sistemas de ecuaciones

Más detalles

Las matrices Parte 1-2 o bachillerato

Las matrices Parte 1-2 o bachillerato Parte 1-2 o bachillerato wwwmathandmatesurlph 2014 1 Introducción Generalidades 2 Definición Ejercicio 1 : Suma de dos matrices cuadradas 2x2 Ejercicio 2 : Suma de dos matrices cuadradas 3x3 Propiedades

Más detalles

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas

lasmatemáticas.eu Pedro Castro Ortega materiales de matemáticas º ESO 1. Expresiones algebraicas En matemáticas es muy común utilizar letras para expresar un resultado general. Por ejemplo, el área de un b h triángulo es base por altura dividido por dos y se expresa

Más detalles

GEOMETRÍA ANALÍTICA: CÓNICAS

GEOMETRÍA ANALÍTICA: CÓNICAS GEOMETRÍA ANALÍTICA: CÓNICAS 1.- GENERALIDADES Se define lugar geométrico como el conjunto de puntos que verifican una propiedad conocida. Las cónicas que estudiaremos a continuación se definen como lugares

Más detalles

SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS

SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS SEGMENTOS RECTILÍNEOS: DIRIGIDOS Y NO DIRIGIDOS A la porción de una línea recta comprendida entre dos de sus puntos se llama segmento rectilíneo o simplemente segmento. Los dos puntos se llaman extremos

Más detalles

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra)

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra) MATEMÁTICAS II 1 José M. Ramos González Este libro es totalmente gratuito y solo vale la tinta y el papel en que se imprima. Es de libre divulgación y no está sometido a ningún copyright. Tan solo se

Más detalles

Tema 7: Valores y vectores propios

Tema 7: Valores y vectores propios Tema 7: es y clausura s Espacios y Permutaciones es y clausura Una permutación p = {p 1, p 2,..., p n } de los números {1, 2,..., n} es una nueva ordenación de los elementos {1, 2,..., n}, es decir, un

Más detalles

Lección 8: Potencias con exponentes enteros

Lección 8: Potencias con exponentes enteros GUÍA DE MATEMÁTICAS III Lección 8: Potencias con exponentes enteros Cuando queremos indicar productos de factores iguales, generalmente usamos la notación exponencial. Por ejemplo podemos expresar x, como

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES. Unidad didáctica 4. Números reales y números complejos NÚMEROS REALES Como se ha señalado anteriormente la necesidad de resolver diversos problemas de origen aritmético y geométrico lleva a ir ampliando sucesivamente los conjuntos numéricos, N Z Q, y a definir

Más detalles

Valores propios y vectores propios

Valores propios y vectores propios Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas

Más detalles

ORGANIZACIÓN DE DATOS

ORGANIZACIÓN DE DATOS CAPÍTULO 13 ORGANIZACIÓN DE DATOS Siendo el dato el material que se debe procesar, es decir, la materia prima de la estadística, el primer paso es entonces la recolección de datos, para lo cual se emplean

Más detalles

TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES.

TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES. TEMA 4 Ejercicios / 1 TEMA 4: RESOLUCIÓN DE SISTEMAS MEDIANTE DETERMINANTES. 1. Tenemos un sistema homogéneo de 5 ecuaciones y 3 incógnitas: a. Es posible que sea incompatible?. Por qué? b. Es posible

Más detalles

2. SISTEMAS DE ECUACIONES LINEALES. Introducción

2. SISTEMAS DE ECUACIONES LINEALES. Introducción 2. SISTEMAS DE ECUACIONES LINEALES Introducción El presente curso trata sobre álgebra lineal. Al buscarla palabra lineal en un diccionario se encuentra, entre otras definiciones la siguiente: lineal, perteneciente

Más detalles

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO.

POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 1. LOS NÚMEROS NATURALES POTENCIAS. MÚLTIPLOS Y DIVISORES. MÁXIMO COMÚN DIVISOR Y MÍNIMO COMÚN MÚLTIPLO. 2. LOS NÚMEROS ENTEROS. VALOR ABSOLUTO DE UN NÚMERO ENTERO. REPRESENTACIÓN GRÁFICA. OPERACIONES.

Más detalles

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a)

Ejercicio 1: Realiza las siguientes divisiones por el método tradicional y por Ruffini: a) Tema 2: Ecuaciones, Sistemas e Inecuaciones. 2.1 División de polinomios. Regla de Ruffini. Polinomio: Expresión algebraica formada por la suma y/o resta de varios monomios. Terminología: o Grado del polinomio:

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Capítulo 1 Sistemas de ecuaciones lineales 1.1. Sistemas de ecuaciones lineales En el libro de Meyer [2] se recuerda la siguiente antiquísima cita. Tres gavillas de buen cereal, dos de mediocre y una de

Más detalles

EJERCICIOS RESUELTOS DE GEOMETRÍA ANALÍTICA

EJERCICIOS RESUELTOS DE GEOMETRÍA ANALÍTICA MATEMÁTICAS EJERCICIOS RESUELTOS DE GEOMETRÍA ANALÍTICA GEOMETRÍA ANALÍTICA A Introducción teórica A Módulo y argumento de un vector A Producto escalar A3 Punto medio de un segmento A4 Ecuaciones de la

Más detalles

Tema 5. Derivación Matricial.

Tema 5. Derivación Matricial. Tema 5. Derivación Matricial. Análisis Matemático I 1º Estadística Universidad de Granada Noviembre 2012 1 / 24 Producto de Kronecker Definición Dadas dos matrices A M m n y B M p q, el producto de Kronecker

Más detalles

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola.

JUNIO 2010. Opción A. 1 1.- Dada la parábola y = 3 área máxima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola. Junio 00 (Prueba Específica) JUNIO 00 Opción A.- Dada la parábola y 3 área máima que tiene un lado en la recta y los otros dos vértices en la gráfica de la parábola., y la recta y 9, hallar las dimensiones

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

UNIDAD IV. LEYES DE SENOS Y COSENOS.

UNIDAD IV. LEYES DE SENOS Y COSENOS. UNIDAD IV. LEYES DE SENOS Y COSENOS. OBJETIVO. El estudiante resolverá problemas leyes de senos y cosenos, teóricos o prácticos de distintos ámbitos, mediante la aplicación las leyes y propiedades de Senos

Más detalles

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes

Matemáticas. Tercero ESO. Curso 2012-2013. Exámenes Matemáticas. Tercero ESO. Curso 0-03. Exámenes . 9 de octubre de 0 Ejercicio. Calcular: 3 5 4 + 3 0 3 7 8 5 3 5 4 + 3 0 5 + 6 0 3 0 3 7 8 5 3 56 0 3 8 0 84 74 5 5 5 Ejercicio. Calcular: 5 6 [ ( 3 3 3 )]

Más detalles

En efecto, todo natural, todo número entero, acepta una escritura en forma de fracción:

En efecto, todo natural, todo número entero, acepta una escritura en forma de fracción: Conjuntos Numerícos página 1 Números Racionales domingo, 21 de febrero de 2016 05:33 p.m. En líneas generales, el Conjunto de los Números Racionales, son todos los números que aceptan una escritura en

Más detalles

Circunferencia que pasa por tres puntos

Circunferencia que pasa por tres puntos Circunferencia que pasa por tres puntos En la sección Ecuaciones de las rectas notables del triángulo calculamos el punto donde se intersectan las tres mediatrices de los lados de un triángulo. Este punto,

Más detalles

1. INVERSA DE UNA MATRIZ REGULAR

1. INVERSA DE UNA MATRIZ REGULAR . INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz

Más detalles

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial.

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial. Espacios vectoriales Espacios y subespacios R n es el conjunto de todos los vectores columna con n componentes. Además R n es un espacio vectorial. Ejemplo Dados dos vectores de R por ejemplo u = 5 v =

Más detalles

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de E.T.S. DE INGENIERÍA INFORMÁTICA Apuntes de ÁLGEBRA LINEAL para la titulación de INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN Fco. Javier Cobos Gavala Amparo Osuna Lucena Rafael Robles Arias Beatriz Silva

Más detalles

IES Fco Ayala de Granada Junio de 2011 (Específico 2 Modelo 1) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Junio de 2011 (Específico 2 Modelo 1) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD MATEMÁTICAS II DE ANDALUCÍA CURSO 010-011 Opción A Ejercicio 1, Opción A, Modelo especifico de Junio de 011 [ 5 puntos] Una ventana normanda consiste en un rectángulo

Más detalles

MATEMÁTICAS - 6º curso

MATEMÁTICAS - 6º curso MATEMÁTICAS 6º curso TEMA 1. OPERACIONES CON NÚMEROS NATURALES 1. Realizar sumas y restas dadas. 2. Efectuar multiplicaciones dadas. 3. Realizar divisiones dadas. 4. Clasificar las divisiones en exactas

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Definición de monomio. Expresión algebraica formada por el producto de un número finito de constantes y variables con exponente natural. Al producto de las constantes

Más detalles

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R.

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R. ALGEBRA LINEAL Héctor Jairo Martínez R. Ana María Sanabria R. SEGUNDO SEMESTRE 8 Índice general. SISTEMAS DE ECUACIONES LINEALES.. Introducción................................................ Conceptos

Más detalles

Demostración de la Transformada de Laplace

Demostración de la Transformada de Laplace Transformada de Laplace bilateral Demostración de la Transformada de Laplace Transformada Inversa de Laplace En el presente documento trataremos de demostrar matemáticamente cómo puede obtenerse la Transformada

Más detalles

VECTORES COORDENADOS (R n )

VECTORES COORDENADOS (R n ) VECTORES COORDENADOS (R n ) Cómo puede ser representado un número Real? Un número real puede ser representado como: Un punto de una línea recta. Una pareja de números reales puede ser representado por

Más detalles

Límite de una función

Límite de una función Límite de una función El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es decir el valor al que tienden

Más detalles

1 Espacios y subespacios vectoriales.

1 Espacios y subespacios vectoriales. UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto

Más detalles

1. El sistema de los números reales

1. El sistema de los números reales 1. El sistema de los números reales Se iniciará definiendo el conjunto de números que conforman a los números reales, en la siguiente figura se muestra la forma en la que están contenidos estos conjuntos

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

DESCRIPCIÓN DE FUNCIONES 1.1.2 y 1.1.3

DESCRIPCIÓN DE FUNCIONES 1.1.2 y 1.1.3 Capítulo DESCRIPCIÓN DE FUNCIONES..2..3 El objetivo principal de estas lecciones consiste en que los alumnos puedan describir totalmente los elementos esenciales del gráfico de una función. Para describir

Más detalles

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior. Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas

Más detalles

Tema 2. Aplicaciones lineales y matrices.

Tema 2. Aplicaciones lineales y matrices. Tema 2 Aplicaciones lineales y matrices. 1 Índice general 2. Aplicaciones lineales y matrices. 1 2.1. Introducción....................................... 2 2.2. Espacio Vectorial.....................................

Más detalles

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Ejercicio 1 Escribe las siguientes matrices en forma normal de Hermite: 2 4 3 1 2 3 2 4 3 1 2 3 1. 1 2 3 2. 2 1 1 3. 1 2 3 4. 2

Más detalles

PRÁCTICAS PARA EL USO DE LA CALCULADORA CASIO MODELOS FX-570MS, FX-100MS

PRÁCTICAS PARA EL USO DE LA CALCULADORA CASIO MODELOS FX-570MS, FX-100MS C A LC U L O C O N M A T R I C E S OPERACIONES BASICAS CON MATRICES Para el us de Matrices presinar tres veces la tecla MODE, hasta que aparezca la Para crear una matriz, presine SHIFT + MAT + 1+ (DIM)

Más detalles

CENTRO DE BACHILLERATO DEPARTAMENTO DE MATEMATICAS

CENTRO DE BACHILLERATO DEPARTAMENTO DE MATEMATICAS CENTRO DE BACHILLERATO DEPARTAMENTO DE MATEMATICAS Al concluir la unidad, el alumno conocerá y aplicará las propiedades relacionadas con el lugar geométrico llamado circunferencia, determinando los distintos

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS 2 Í N D I C E CAPÍTULO MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES MATRICES. MATRIZ. DEFINICIÓN 2. ALGUNOS

Más detalles

TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD

TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD Un número es divisible por: TEORIA DE NUMEROS (I) REGLAS DE DIVISIBILIDAD - 2 Si es PAR. - 3 Si la suma de sus cifras es divisible por 3. - 4 Si el número formado por sus dos últimas cifras es divisible

Más detalles