Matrices: Conceptos y Operaciones Básicas

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matrices: Conceptos y Operaciones Básicas"

Transcripción

1 Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas, CCIR/ITESM 8 de septiembre de 010 Índice 111 Introducción 1 11 Matriz Igualdad entre matrices 11 Matrices especiales Suma de matrices 116 Producto de un escalar por una matriz 117 Producto de una matriz por un vector Matriz de requerimiento Producto entre Matrices Matriz de requerimiento y producto de matrices Propiedades de las operaciones 9 111Notas Importantes Introducción En esta lectura veremos conceptos básicos sobre matrices, las operaciones de suma entre matrices, producto de un escalar por una matriz y el producto entre matrices 11 Matriz Definición 111 Una matriz A m n es un arreglo rectangular de m n números en forma de m renglones horizontales y n columnas verticales: a 11 a 1 a 1n a 1 a a n (1) a m1 a m a mn Nos referiremos al elemento que se encuentra en el renglón i y en la columna j como el elemento a ij de A o como el (i, j)-ésimo elemento de A La dimensión de A es el producto indicado del número de renglones por el número de columnas, así en este caso la dimensión de A es m n El i-ésimo renglón de A es: [ ai1 a i a in La j-ésima columna de A es: a 1j a j a mj

2 También podemos considerar que la matriz A es una secuencia de sus columnas a 1, a,, a n : A [a 1 a a n Ejemplo 111 Indique cuáles de las siguientes representaciones son matrices: 3 3,, Recuerde: Matriz es un arreglo rectangular; Por consiguiente, la única representación que corresponde a una matriz es la última Ejemplo 11 Para cada matriz, indique el número de renglones, el número de columnas y su dimensión: [ [ [ 6 [ [ tiene renglones y 1 columna: es 1; tiene 1 renglón y columnas: es 1, 3 tiene 3 renglones y 1 columna: es 3 1, tiene renglones y columnas: es, 5 tiene 1 renglón y 3 columnas: es 1 3, 6 tiene 3 renglones y 3 columnas: es 3 3, 7 tiene 3 renglones y columnsa: es 3, y 8 tiene renglones y 3 columnas: es 3 Ejemplo 113 Liste en orden los elementos (3, 1), (3, ), y (, ) de la matriz: El elemento (3, 1) está en el renglón 3 y en la columna 1: es -3 El elemento (3, ) está en el renglón 3 y en la columna : es 3 El elemento (, ) está en el renglón y en la columna : es Igualdad entre matrices Definición 11 Dos matrices se dicen matrices iguales si tienen la misma dimensión y además elemento por elemento son iguales

3 Ejemplo 11 Cuál debe ser el valor de x y de y para que las matrices sean iguales: [ [ 1 x 1 y x y x + y x 3 Se requiere que: x y x, que y x y que x+y 3 Resolviendo el sistema se obtiene que x 1 y que y Ejemplo 115 Cuál debe ser el valor de x y de y para que las matrices sean iguales: [ 1 y x 1 x x 3 y x + y 0 0 Como la matriz a la izquierda es y la de la derecha es 3 Las matrices no pueden ser iguales para ningún valor de x y de y 11 Matrices especiales Definición Una matriz 1 n se llama matriz renglón Una matriz m 1 se denomina una matriz columna o vector 3 Una matriz n n se llama matriz cuadrada Una matriz cuya totalidad de elementos es cero se llama matriz cero y se representa por 0 Sea A una matriz cuadrada: 1 A la colección de elementos a ii se le llama su diagonal principal Se dice matriz triangular superior si todos los elementos que están abajo de la diagonal principal son cero 3 Se dice matriz triangular inferior si todos los elementos que están arriba de la diagonal principal son cero Se dice matriz diagonal si todos los elementos que están por arriba y por abajo de la diagonal principal son cero 5 Se dice matriz escalar si es diagonal y todos los elementos de la diagonal principal son iguales Ejemplo 116 Clasifique las siguientes matrices: [ [ [ 0 0 [ [ 0 0 [ [ [

4 La matriz 1 por el elemento (, 1) no es ni triangular superior, ni diagonal, ni escalar Por el elemento (1, ) tampoco es triangular inferior La matriz por el elemento (, 1), no es triangular superior, ni diagonal ni escalar Por el lemento (1, ) tampoco es triangular inferior La matriz 3 es triangular superior, pero no diagonal ni escalar; no es triangular inferior La matriz es triangular superior y triangular inferior, diagonal pero no matriz escalar La matriz 5 es triangular inferior, pero no diagonal ni escalar; no es triangular superior La matriz 6 es triangular inferior, pero no diagonal ni escalar; no es triangular superior La matriz 7 es triangular inferior, triangular superior, matriz diagonal y matriz escalar La matriz 8 no es triangular inferior, ni triangular superior, ni matriz diagonal, ni matriz escalar 115 Suma de matrices Definición 11 Dos matrices de las mismas dimensiones se pueden sumar; la suma de dos matrices de diferente dimensión no La suma de dos matrices de las mismas dimensiones es una matriz de las misma dimensiones y se obtiene sumando sus elementos correspondientes: a 11 a 1n b 11 b 1n a 11 + b 11 a 1n + b 1n a 1 a n + b 1 b n a 1 + b 1 a n + b n a m1 a mn b m1 b mn a m1 + b m1 a mn + b mn Ejemplo 117 Realice la suma de las matrices: A y B Observamos que la suma sí se puede realizar porque las dimensiones de las matrices coinciden, así: ( 1) + ( 1) () + (0) (1) + (1) (1) + () (1) + () (1) + (1) Producto de un escalar por una matriz Definición 115 Sea A cualquier matriz y c un escalar cualquiera El producto escalar c A es una matriz que tiene las mismas dimensiones que la matriz A, y que en cada elemento contiene el elemento correspondiente de A multiplicado por c: a 11 a 1 a 1n c a 11 c a 1 c a 1n a 1 a a n c c a 1 c a c a n a m1 a m a mn c a m1 c a m c a mn Ejemplo 118 Realice el producto

5 Este producto siempre se puede realizar, y en este caso: 1 ( 3) ( 1) ( 3) () ( 3) (1) ( 3) (0) 1 ( 3) (1) ( 3) ( ) 117 Producto de una matriz por un vector Definición 116 Sea A una matriz m n y B una matriz columna n 1, el Producto Matricial A B es la una matriz C columna m 1 definida como: n a 11 a 1 a 1n b 1 j1 a 1j b j a 1 a a n n j1 a j b j b a m1 a m a mn b n n j1 a mj b j a 11 b 1 + a 1, b + + a 1n b n a 1 b 1 + a, b + + a n b n a m1 b 1 + a m, b + + a mn b n El producto no está definido cuando el número de columnas de A es diferente que el número de renglones de B Alternativamente, a 11 a 1 a 1n b 1 a 11 a 1 a 1n a 1 a a n b b a b a + + b a n n a m1 a m a mn b n Ejemplo 119 Realize el producto de acuerdo a ambas definiciones y compruebe la igualdad de resultados: [ a m1 Observamos que el producto sí se puede realizar porque el número de columnas de la matriz A coincide con el número de renglones de B De acuerdo a la definición del producto como producto punto de los renglones de A con b: [ a m [ () ( ) + (0) (5) + ( 1) ( 7) (3) ( ) + () (5) + ( ) ( 7) [ [ a mn 5

6 De acuerdo a la definición del producto como combinación lineal de las columnas de la matriz: [ ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1 Observamos que hay equivalencia entre una forma y otra para el cálculo de un producto de una matriz por un vector columna Ejemplo 1110 Suponga una fábrica con varias etapas de ensamble En la primera etapa se producen dos tipos de productos, digamos productos tipo X y tipo Y Estos productos están compuestos de partes que la fábrica denomina materia prima La fábrica opera utilizando tres tipos de partes del tipo materia prima; tipo a, tipo b, y tipo c Para armar una pieza del tipo X requiere piezas del tipo a, 3 del tipo b y 5 del tipo c Para armar una pieza del tipo Y requiere 5 del tipo a, del tipo b y 6 del tipo c Suponga que la planta desea armar 10 piezas del tipo X y 1 piezas del tipo Y Cuántas piezas a, b, y c necesita? La anterior composición podría ordenadamente presentarse por la siguiente tabla Requerimientos por armado un tipo X un tipo Y tipo a 5 tipo b 3 tipo c 5 6 Para ver que este problema se resuelve usando el producto de una matriz con un vector, desarrollemos los cálculos: (10) () + (1) (5) (10) (3) + (1) () (10) (5) + (1) (6) () (10) + (5) (1) (3) (10) + () (1) (5) (10) + (6) (1) [ 10 1 Por ello es que se requieren 15 del tipo as, 7 del tipo b, y 176 del tipo c Ejemplo 1111 Continuamos con la Empresa Ensambladora Suponga que en una siguiente etapa de ensamblado se prepan dos tipos de piezas; la pieza tipo M y la pieza tipo N Suponga que para la pieza tipo M requiere 8 piezas tipo X y 3 piezas tipo Y Mientras que para la pieza tipo N requiere piezas tipo X y piezas tipo Y Suponga que la planta desea armar 11 piezas del tipo M y 0 piezas del tipo N, cuántas piezas X y Y se necesita?

7 Diga entonces, cuántas piezas tipo a, b y c se requiere La información de la etapa se puede representar en forma de matriz como: Requerimientos por armado tipo M tipo N tipo X 8 tipo Y 3 Así, las piezas requeridas se pueden calcular [ [ [ 8 11 (8) (11) + () (0) 3 0 (3) (11) + () (0) [ Por ello es que para armar 11 piezas M y 0 piezas N se requieren 18 del tipo X y 113 del tipo Y otro lado, para saber cuántas piezas a, b y c se requieren hagamos: 5 [ () (18) + (5) (113) (3) (18) + () (113) (5) (18) + (6) (113) 1318 Por De donde concluimos que se requieren en total 1077 piezas a, 610 b y 1318 c 118 Matriz de requerimiento Para un proceso simplificado de entrada-salida que cumple las propiedades de aditividad y proporcionalidad donde a la materia prima se codifica como un vector de n componentes (el valor de n es el total de tipos diferentes de materia prima en el proceso) y a la salida se codifica como un vector de m componentes (el valor de m es el total de tipos diferentes de productos posibles a la salida del proceso): la matriz de requerimiento del proceso es una matriz A n m tal que para determinar el total de cada tipo de materia prima requerida para producir cantidades de productos codificados en el vector y se realiza el producto A y Note que el vector resultante tiene n componentes que son precisamente el número de materias primas disponibles La matriz de requerimiento tiene en cada columna el detalle de materia prima requerido para producir un artículo o una unidad de cada tipo de artículo a la salida: En la primera columna aparece el correspondiente al tipo de producto 1, y así sucesivamente En la primera etapa de la maquiladora del ejemplo anterior la matriz de requerimiento es simplemente la representación matricial de la información de la tabla: Requerimientos por armado un tipo X un tipo Y tipo a 5 tipo b 3 tipo c 5 6 matriz de requerimiento para la etapa de ensamble: A

8 119 Producto entre Matrices Definición 117 Sea A una matriz m n y B una matriz n k El producto A B es la matriz m k cuyas columnas son A b 1,A b,, A b k, donde b 1,b,, b k son las columnas de la matriz B A B A[b 1,, b k [A b 1, A b k () Equivalentemente, el elemento (i, j) del producto puede ser calculado haciendo el producto punto entre el renglón i de la matriz a la izquierda por la columna j de la matriz a la derecha Ejemplo 111 Realice el producto A por B si A [ y B Observamos que el número de columnas de A (3) coincide con el número de renglones de B (3) por lo cual el producto se puede efectuar Para la realización trabajemos sobre las columnas de B: A por columna 1 de B: A b 1 A por columna de B: A b A por columna 3 de B: A b 3 Por consiguiente el producto es: [ [ [ A B [A b 1 A b A b 3 [ () (3) + (0) ( ) + (1) (0) () (3) + (1) ( ) + () (0) [ () () + (0) () + (1) (3) () () + (1) () + () (3) [ () () + (0) (5) + (1) ( ) () () + (1) (5) + () ( ) [ Ejemplo 1113 Siguiendo con la situación de la empresa maquiladora, Cuál será matriz que da el cálculo de piezas a, b y c de la etapa 1 a la etapa? El producto de las matrices con ambas etapas respetando el orden es la respuesta: [ 8 3 () (8) + (5) (3) () () + (5) () (3) (8) + () (3) (3) () + () () (5) (8) + (6) (3) (5) () + (6) () 8 [ 6 [ 7 1 [ 6 9

9 [ Es fácil comprobar que esta matriz contiene en las columnas los requerimientos de piezas a, b y c para armar una pieza M y una pieza N 1110 Matriz de requerimiento y producto de matrices Es importante observar la bondad del producto de matrices respecto a las matrices de requerimiento: La matriz de requerimiento de un grupo de etapas de ensamble continuadas vistas como una sola etapa de ensamble es el producto de las matrices de requerimiento de las etapas involucradas justo en el mismo orden 1111 Propiedades de las operaciones Sean A, B y C matrices m n cualquiera, y sean a, b, y c escalares cualquiera Entonces son válidas las siguientes afirmaciones: 1 La suma de matrices es asociativa: (A + B) + C A + (B + C) La suma de matrices es conmutativa: A + B B + A 3 La matriz 0 es el neutro bajo la suma: A A A Cada matriz tiene un inverso aditivo y este es precisamente el escalar 1 por la matriz: A + ( 1 A) ( 1 A) + A 0 5 El producto por escalares se distribuye sobre la suma de matrices: c (A + B) c A + c B 6 La suma de escalares se distribuye sobre la multiplicación por matrices: (a + b) A a A + b A 7 La multiplicación por escalares es asociativa: (a b) A a (b A) 8 El escalar 1 multiplicado por una matriz da como resultado la matriz inicial: 1 A A 9 El escalar cero por una matriz da la matriz de ceros: 0 A 0 10 La multiplicación de matrices es asociativa: A (B C) (A B) C 11 La multiplicación de matrices se distribuye sobre la suma de matrices: a) A (B + C) A B + A C, y b) (A + B) C A C + B C 9

10 1 Movilidad de los escalares en una multiplicación: a (A B) (a A) B A (a B) 13 La matriz cuadrada con sólo unos en la diagonal I n es la identidad multiplicativa: I m A A I n A 1 El resultado de multiplicar la matriz cero, de la dimensión adecuada, por cualquier matriz da como resultado la matriz cero: 0 A A Notas Importantes El producto de matrices sólo está definido en el caso cuando el número de columnas de la primera matriz es igual al número de renglones de la segunda matriz En cualquier otro caso se dice que está indefinido o que es irrealizable El producto matricial no es conmutativo: en general A B B A Por ejemplo si [ [ A, B 1 1 se tiene A B [ B A [

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx

Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2008 Contenido 1 Matrices 2 11 Matrices cuadradas 3 12 Matriz transpuesta 4 13 Matriz identidad

Más detalles

Matemáticas Discretas TC1003

Matemáticas Discretas TC1003 Matemáticas Discretas TC13 Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas ITESM Matrices: Conceptos y Operaciones Básicas Matemáticas Discretas - p. 1/25 Una matriz A m n es un arreglo

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Sistemas de Ecuaciones Lineales y Matrices Oscar G Ibarra-Manzano, DSc Departamento de Area Básica - Tronco Común DES de Ingenierías Facultad de Ingeniería, Mecánica, Eléctrica y Electrónica Trimestre

Más detalles

Vectores en R n y producto punto

Vectores en R n y producto punto Vectores en R n y producto punto Departamento de Matemáticas, CCIR/ITESM 10 de enero de 011 Índice 4.1. Introducción............................................... 1 4.. Vector..................................................

Más detalles

Matrices y sus operaciones

Matrices y sus operaciones Capítulo 1 Matrices y sus operaciones 1.1. Definiciones Dados dos enteros m, n 1 y un cuerpo conmutativo IK, llamamos matriz de m filas y n columnas con coeficientes en IK a un conjunto ordenado de n vectores

Más detalles

Las matrices Parte 1-2 o bachillerato

Las matrices Parte 1-2 o bachillerato Parte 1-2 o bachillerato wwwmathandmatesurlph 2014 1 Introducción Generalidades 2 Definición Ejercicio 1 : Suma de dos matrices cuadradas 2x2 Ejercicio 2 : Suma de dos matrices cuadradas 3x3 Propiedades

Más detalles

Álgebra Lineal Ma1010

Álgebra Lineal Ma1010 Álgebra Lineal Ma1010 es en R n y producto punto Departamento de Matemáticas ITESM es en R n y producto punto Álgebra Lineal - p. 1/40 En este apartado se introduce el concepto de vectores en el espacio

Más detalles

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES Ana Morata Gasca 1 DEFINICIÓN DE VECTOR Un vector es todo segmento de recta dirigido en el espacio. CARACTERÍSTICAS DE UN VECTOR Origen o Punto de aplicación:

Más detalles

Lección 9: Polinomios

Lección 9: Polinomios LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios

Más detalles

Ahora podemos comparar fácilmente las cantidades de cada tamaño que se vende. Estos valores de la matriz se denominan elementos.

Ahora podemos comparar fácilmente las cantidades de cada tamaño que se vende. Estos valores de la matriz se denominan elementos. Materia: Matemática de 5to Tema: Definición y Operaciones con Matrices 1) Definición Marco Teórico Una matriz consta de datos que se organizan en filas y columnas para formar un rectángulo. Por ejemplo,

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Problemas teóricos Sistemas de ecuaciones lineales con parámetros En los siguientes problemas hay que resolver el sistema de ecuaciones lineales para todo valor del parámetro

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES CÁRDENAS ESPINOSA CÉSAR OCTAVIO racsec_05@hotmail.com Boleta: 2009350122 CASTILLO GUTIÉRREZ

Más detalles

Espacios generados, dependencia lineal y bases

Espacios generados, dependencia lineal y bases Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................

Más detalles

Matrices invertibles. La inversa de una matriz

Matrices invertibles. La inversa de una matriz Matrices invertibles. La inversa de una matriz Objetivos. Estudiar la definición y las propiedades básicas de la matriz inversa. Más adelante en este curso vamos a estudiar criterios de invertibilidad

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior. Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 49 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

Apéndice A. Repaso de Matrices

Apéndice A. Repaso de Matrices Apéndice A. Repaso de Matrices.-Definición: Una matriz es una arreglo rectangular de números reales dispuestos en filas y columnas. Una matriz com m filas y n columnas se dice que es de orden m x n de

Más detalles

Curso cero Matemáticas en informática :

Curso cero Matemáticas en informática : y Curso cero Matemáticas en informática : y Septiembre 2007 y y Se llama matriz de orden m n a cualquier conjunto de elementos dispuestos en m filas y n columnas: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n

Más detalles

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades: Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición

Más detalles

Matriz identidad y su propiedad principal

Matriz identidad y su propiedad principal Matriz identidad y su propiedad principal Objetivos Dar la definición de la matriz identidad y establecer su propiedad principal Requisitos Notación para entradas de matrices, producto de matrices, la

Más detalles

Álgebra II, licenciatura. Examen parcial I. Variante α.

Álgebra II, licenciatura. Examen parcial I. Variante α. Engrape aqu ı No doble Álgebra II, licenciatura. Examen parcial I. Variante α. Operaciones con matrices. Sistemas de ecuaciones lineales. Nombre: Calificación ( %): examen escrito tarea 1 tarea 2 asist.+

Más detalles

2 Matrices. 1. Tipos de matrices. Piensa y calcula. Aplica la teoría

2 Matrices. 1. Tipos de matrices. Piensa y calcula. Aplica la teoría 2 Matrices 1. Tipos de matrices Piensa y calcula Escribe en forma de tabla el siguiente enunciado: «Una familia gasta en enero 400 en comida y 150 en vestir; en febrero, 500 en comida y 100 en vestir;

Más detalles

Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 2012

Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 2012 Grupo: Matrícula: Nombre: Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 22. (pts) Sea A una matriz cuadrada. Indique validez a cada una de las siguientes

Más detalles

SISTEMAS DE ECUACIONES LINEALES Y MATRICES

SISTEMAS DE ECUACIONES LINEALES Y MATRICES y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015 1 Visita http://sergiosolanosabie.wikispaces.com y SISTEMAS DE ECUACIONES ES Y MATRICES Sergio Stive Solano 1 Febrero de 2015

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Un grupo de variables representadas por letras junto con un conjunto de números combinados con operaciones de suma, resta, multiplicación, división, potencia o etracción de raíces

Más detalles

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Ejercicio 1 Escribe las siguientes matrices en forma normal de Hermite: 2 4 3 1 2 3 2 4 3 1 2 3 1. 1 2 3 2. 2 1 1 3. 1 2 3 4. 2

Más detalles

Producto Interno y Ortogonalidad

Producto Interno y Ortogonalidad Producto Interno y Ortogonalidad Departamento de Matemáticas, CSI/ITESM 15 de octubre de 2009 Índice 8.1. Contexto................................................ 1 8.2. Introducción...............................................

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 3 espacios vectoriales Objetivos: Al inalizar la unidad, el alumno: Describirá las características de un espacio vectorial. Identiicará las propiedades de los subespacios vectoriales. Ejempliicará

Más detalles

Valores propios y vectores propios

Valores propios y vectores propios Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES Capítulo 7 SISTEMAS DE ECUACIONES LINEALES 7.1. Introducción Se denomina ecuación lineal a aquella que tiene la forma de un polinomio de primer grado, es decir, las incógnitas no están elevadas a potencias,

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Capítulo 6 MATRICES Y DETERMINANTES 6.. Introducción Las matrices y los determinantes son herramientas del álgebra que facilitan el ordenamiento de datos, así como su manejo. Los conceptos de matriz y

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

Determinantes y Desarrollo por Cofactores

Determinantes y Desarrollo por Cofactores Determinantes y Desarrollo por Cofactores Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 11.1.Introducción............................................... 1 11.2.El determinate de una

Más detalles

Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Antonio Francisco Roldán López de Hierro * Convocatoria

Más detalles

1. INVERSA DE UNA MATRIZ REGULAR

1. INVERSA DE UNA MATRIZ REGULAR . INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz

Más detalles

3. Equivalencia y congruencia de matrices.

3. Equivalencia y congruencia de matrices. 3. Equivalencia y congruencia de matrices. 1 Transformaciones elementales. 1.1 Operaciones elementales de fila. Las operaciones elementales de fila son: 1. H ij : Permuta la fila i con la fila j. 2. H

Más detalles

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR} Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar

Más detalles

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o. ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario) Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES

Más detalles

NOCIONES BÁSICAS DE LA GEOMETRÍA ANALÍTICA

NOCIONES BÁSICAS DE LA GEOMETRÍA ANALÍTICA . NOCIONES BÁSICAS DE LA GEOETRÍA ANALÍTICA NOCIONES BÁSICAS DE LA GEOETRÍA ANALÍTICA CONTENIDO Sistema de coordenadas rectangulares o cartesianas Coordenadas cartesianas de un punto Distancia entre dos

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Primeras definiciones Una aplicación lineal de un K-ev de salida E a un K-ev de llegada F es una aplicación f : E F tal que f(u + v) = f(u) + f(v) para todos u v E f(λ u) = λ f(u)

Más detalles

ÁLGEBRA Tema 1) MATRICES

ÁLGEBRA Tema 1) MATRICES MTEMÁTICS PLICDS LS CIENCIS SOCILES II ÁLGER Tema ) MTRICES Orientaciones para la PRUE DE CCESO L UNIVERSIDD en relación con este tema: Conocer el vocabulario básico para el estudio de matrices: elemento

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Concepto de aplicación lineal T : V W Definición: Si V y W son espacios vectoriales con los mismos escalares (por ejemplo, ambos espacios vectoriales reales o ambos espacios vectoriales

Más detalles

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1.

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1. ÍNDICE 9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES....................... 189 9.2. OPERACIONES CON MATRICES..................... 190 9.3. MATRICES CUADRADAS.......................... 192 9.3.1. Matrices

Más detalles

Álgebra matricial. 2.1. Adición y trasposición

Álgebra matricial. 2.1. Adición y trasposición Capítulo 2 Álgebra matricial Estas notas están basadas en las realizadas por el profesor Manuel Jesús Gago Vargas para la asignatura Métodos matemáticos: Álgebra lineal de la Licenciatura en Ciencias y

Más detalles

Formas bilineales y cuadráticas.

Formas bilineales y cuadráticas. Tema 4 Formas bilineales y cuadráticas. 4.1. Introducción. Conocidas las nociones de espacio vectorial, aplicación lineal, matriz de una aplicación lineal y diagonalización, estudiaremos en este tema dos

Más detalles

4 APLICACIONES LINEALES. DIAGONALIZACIÓN

4 APLICACIONES LINEALES. DIAGONALIZACIÓN 4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos

Más detalles

CAPÍTULO II. 2 El espacio vectorial R n

CAPÍTULO II. 2 El espacio vectorial R n CAPÍTULO II 2 El espacio vectorial R n A una n upla (x 1, x 2,..., x n ) de números reales se le denomina vector de n coordenadas o, simplemente, vector. Por ejemplo, el par ( 3, 2) es un vector de R 2,

Más detalles

Valores y vectores propios de una matriz. Juan-Miguel Gracia

Valores y vectores propios de una matriz. Juan-Miguel Gracia Juan-Miguel Gracia Índice 1 Valores propios 2 Polinomio característico 3 Independencia lineal 4 Valores propios simples 5 Diagonalización de matrices 2 / 28 B. Valores y vectores propios Definiciones.-

Más detalles

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n. Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS 1.1. LEY DE COMPOSICIÓN INTERNA Definición 1.1.1. Sea E un conjunto, se llama ley de composición interna en E si y sólo si a b = c E, a, b E. Observación 1.1.1. 1. también se llama

Más detalles

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra)

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra) MATEMÁTICAS II 1 José M. Ramos González Este libro es totalmente gratuito y solo vale la tinta y el papel en que se imprima. Es de libre divulgación y no está sometido a ningún copyright. Tan solo se

Más detalles

Al consejero A no le gusta ninguno de sus colegas como presidente. Dos consejeros (C y E) están de acuerdo en los mismos candidatos (B, C y D).

Al consejero A no le gusta ninguno de sus colegas como presidente. Dos consejeros (C y E) están de acuerdo en los mismos candidatos (B, C y D). ÁLGEBRA DE MATRICE Página 48 Ayudándote de la tabla... De la tabla podemos deducir muchas cosas: Al consejero A no le gusta ninguno de sus colegas como presidente. B solo tiene un candidato el C. Dos consejeros

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales Problemas teóricos Muchos de estos problemas me los han enseñado mis colegas: profesores Flor de María Correa Romero, Carlos Domínguez Albino, Sergio González Govea, Myriam Rosalía

Más detalles

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro

Más detalles

Iniciación a las Matemáticas para la ingenieria

Iniciación a las Matemáticas para la ingenieria Iniciación a las Matemáticas para la ingenieria Los números naturales 8 Qué es un número natural? 11 Cuáles son las operaciones básicas entre números naturales? 11 Qué son y para qué sirven los paréntesis?

Más detalles

3.- DETERMINANTES. a 11 a 22 a 12 a 21

3.- DETERMINANTES. a 11 a 22 a 12 a 21 3.- DETERMINANTES. 3.1. -DEFINICIÓN Dada una matriz cuadrada de orden n, se llama determinante de esta matriz (y se representa por A o deta al polinomio cuyos términos son todos los productos posibles

Más detalles

VII. Estructuras Algebraicas

VII. Estructuras Algebraicas VII. Estructuras Algebraicas Objetivo Se analizarán las operaciones binarias y sus propiedades dentro de una estructura algebraica. Definición de operación binaria Operaciones como la suma, resta, multiplicación

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales

Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales Matemáticas I: Hoa 3 Espacios vectoriales y subespacios vectoriales Eercicio 1. Demostrar que los vectores v 1, v 2, v 3, v 4 expresados en la base canónica forman una base. Dar las coordenadas del vector

Más detalles

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES Aplicaciones lineales. Matriz de una aplicación lineal 2 2. APLICACIONES LINEALES. MATRIZ DE UNA APLICACIÓN LINEAL El efecto que produce el cambio de coordenadas sobre una imagen situada en el plano sugiere

Más detalles

E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid. Grado en Ingeniería en Tecnologías Industriales. Grado en Ingeniería Química

E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid. Grado en Ingeniería en Tecnologías Industriales. Grado en Ingeniería Química E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid Grado en Ingeniería en Tecnologías Industriales Grado en Ingeniería Química Apuntes de Álgebra ( Curso 2014/15) Departamento de Matemática

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 7 transformaciones lineales Objetivos: Al inalizar la unidad, el alumno: Comprenderá los conceptos de dominio e imagen de una transformación. Distinguirá cuándo una transformación es lineal. Encontrará

Más detalles

TEMA 4 FRACCIONES MATEMÁTICAS 1º ESO

TEMA 4 FRACCIONES MATEMÁTICAS 1º ESO TEMA 4 FRACCIONES Criterios De Evaluación de la Unidad 1 Utilizar de forma adecuada las fracciones para recibir y producir información en actividades relacionadas con la vida cotidiana. 2 Leer, escribir,

Más detalles

1 Espacios y subespacios vectoriales.

1 Espacios y subespacios vectoriales. UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto

Más detalles

Tronco común 1 Semestre

Tronco común 1 Semestre Tronco común 1 Semestre Programa de la asignatura: Álgebra lineal Universidad Abierta y a Distancia de México Tronco Común 1 Índice... 3 Presentación de la unidad... 3 Propósitos... 3 Competencia específica...

Más detalles

Espacios vectoriales. Bases. Coordenadas

Espacios vectoriales. Bases. Coordenadas Capítulo 5 Espacios vectoriales. Bases. Coordenadas OPERACIONES ENR n Recordemos que el producto cartesiano de dos conjuntos A y B consiste en los pares ordenados (a,b) tales que a A y b B. Cuando consideramos

Más detalles

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla.

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla. ÁLGEBRA LINEAL Apuntes elaborados por Juan González-Meneses López. Curso 2008/2009 Departamento de Álgebra. Universidad de Sevilla. Índice general Tema 1. Matrices. Determinantes. Sistemas de ecuaciones

Más detalles

9.1 Primeras definiciones

9.1 Primeras definiciones Tema 9- Grupos Subgrupos Teorema de Lagrange Operaciones 91 Primeras definiciones Definición 911 Una operación binaria en un conjunto A es una aplicación α : A A A En un lenguaje más coloquial una operación

Más detalles

1. MANEJO DE SUMATORIOS. PROPIEDADES Y EJERCICIOS.

1. MANEJO DE SUMATORIOS. PROPIEDADES Y EJERCICIOS. 1. MANEJO DE SUMATORIOS. PROPIEDADES Y EJERCICIOS. El sumatorio o sumatoria) es un operador matemático, representado por la letra griega sigma mayúscula Σ) que permite representar de manera abreviada sumas

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 gramos del primer elemento y 1 gramo del segundo; un kilo

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

Geometría Tridimensional

Geometría Tridimensional Capítulo 4 Geometría Tridimensional En dos dimensiones trabajamos en el plano mientras que en tres dimensiones trabajaremos en el espacio, también provisto de un sistema de coordenadas. En el espacio,

Más detalles

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión:

Usamos que f( p) = q y que, por tanto, g( q) = g(f( p)) = h( p) para simplificar esta expresión: Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Propiedades de las funciones diferenciables. 1. Regla de la cadena Después de la generalización que hemos

Más detalles

Tema 2. Aplicaciones lineales y matrices.

Tema 2. Aplicaciones lineales y matrices. Tema 2 Aplicaciones lineales y matrices. 1 Índice general 2. Aplicaciones lineales y matrices. 1 2.1. Introducción....................................... 2 2.2. Espacio Vectorial.....................................

Más detalles

IES Fco Ayala de Granada Septiembre de 2011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Septiembre de 011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD SEPTIEMBRE 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

x : N Q 1 x(1) = x 1 2 x(2) = x 2 3 x(3) = x 3

x : N Q 1 x(1) = x 1 2 x(2) = x 2 3 x(3) = x 3 3 Sucesiones - Fernando Sánchez - - Cálculo I de números racionales 03 10 2015 Los números reales son aproximaciones que se van haciendo con números racionales. Estas aproximaciones se llaman sucesiones

Más detalles

Grupos. Subgrupos. Teorema de Lagrange. Operaciones.

Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1 Tema 1.-. Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1.1. Primeras definiciones Definición 1.1.1. Una operación binaria en un conjunto A es una aplicación α : A A A. En un lenguaje más coloquial

Más detalles

CURSO BÁSICO DE FÍSICA MECÁNICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA

CURSO BÁSICO DE FÍSICA MECÁNICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA UNICOMFACAUCA TU DE VIDA Tabla de contenido... 2 PARTES DE UN VECTOR... 3 Notación... 5 Tipos de vectores... 5 Componentes de un vector... 6 Operaciones con vectores... 7 Suma de vectores... 7 Resta de

Más detalles

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales:

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales: ADICIÓN Y RESTA DE NUMEROS REALES ADICIÓN L a adición o suma de números reales se representa mediante el símbolo más (+) y es considerada una operación binaria porque se aplica a una pareja de números,

Más detalles

Te damos los elementos básicos de los vectores para que puedas entender las operaciones básicas.

Te damos los elementos básicos de los vectores para que puedas entender las operaciones básicas. 4 año secundario Vectores, refrescando conceptos adquiridos Te damos los elementos básicos de los vectores para que puedas entender las operaciones básicas. El término vector puede referirse al: concepto

Más detalles

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R.

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R. ALGEBRA LINEAL Héctor Jairo Martínez R. Ana María Sanabria R. SEGUNDO SEMESTRE 8 Índice general. SISTEMAS DE ECUACIONES LINEALES.. Introducción................................................ Conceptos

Más detalles

martilloatomico@gmail.com

martilloatomico@gmail.com Titulo: OPERACIONES CON POLINOMIOS (Reducción de términos semejantes, suma y resta de polinomios, signos de agrupación, multiplicación y división de polinomios) Año escolar: 2do: año de bachillerato Autor:

Más detalles

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases. Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal

Más detalles

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1 1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1.1. ESPACIOS VECTORIALES 1. Analizar cuáles de los siguientes subconjuntos de R 3 son subespacios vectoriales. a) A = {(2x, x, 7x)/x R} El conjunto A es una

Más detalles

Tema 7: Valores y vectores propios

Tema 7: Valores y vectores propios Tema 7: es y clausura s Espacios y Permutaciones es y clausura Una permutación p = {p 1, p 2,..., p n } de los números {1, 2,..., n} es una nueva ordenación de los elementos {1, 2,..., n}, es decir, un

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES 1 1. ESPACIOS VECTORIALES 1.1. ESPACIOS VECTORIALES. SUBESPACIOS VECTORIALES Denición 1. (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo K, o K-espacio vectorial,

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles