x : N Q 1 x(1) = x 1 2 x(2) = x 2 3 x(3) = x 3

Tamaño: px
Comenzar la demostración a partir de la página:

Download "x : N Q 1 x(1) = x 1 2 x(2) = x 2 3 x(3) = x 3"

Transcripción

1 3 Sucesiones - Fernando Sánchez - - Cálculo I de números racionales Los números reales son aproximaciones que se van haciendo con números racionales. Estas aproximaciones se llaman sucesiones y van a permitir definir los números reales. Para ello se necesita definir qué son sucesiones convergentes y cómo a partir de ellas se puede definir el conjunto R de números reales. Definición. Una sucesión en Q es una aplicación x : N Q 1 x(1) = x 1 2 x(2) = x 2 3 x(3) = x 3 - Fernando Sánchez - - Se suele representar mediante sus imágenes x = (x 1, x 2, x 3,...) = (x n ) n N = (x n ) n = (x n ). En adelante, se utilizará cualquiera de estas notaciones. Se designa por {x n : n N} al conjunto de valores que toman los términos de la sucesión. Por ejemplo, si (x n ) = (0, 1, 0, 1, 0, 1,...) entonces el conjunto de valores es {x n : n N} = {0, 1}, un conjunto de dos elementos. Para las sucesiones (1, 2, 3,...) y (1, 1, 2, 2, 3, 3,...) el conjunto de valores es N. Al conjunto de todas las sucesiones de números racionales se le designará por S. A partir de las operaciones en Q es posible definir ciertas operaciones en S : Suma: (x n ) + (y n ) = (x n + y n ), es decir, las sucesiones se suman haciendo las sumas término a término. Producto: (x n ) (y n ) = (x n y n ), las sucesiones se multiplican haciéndolo término a término. Producto por escalares: α (x n ) = (α x n ), para α Q y (x n ) S. Se puede comprobar fácilmente que la suma es asociativa, conmutativa, tiene a la sucesión cero (0) = (0, 0, 0,...) como elemento neutro y todo elemento tiene opuesto: (x n ) = ( x n ). El producto es asociativo, conmutativo y tiene elemento unidad 3. Sucesiones de números racionales 1

2 - Fernando Sánchez - - (1) = (1, 1, 1,...). Sin embargo no toda sucesión no nula tiene elemento inverso. El inverso de una sucesión (x n ) es (x n ) 1 = (x 1 n ), que existe si todos los términos x n son no nulos. Así, (S, +, ) es un anillo conmutativo unitario y no es un cuerpo. Se dice que es un anillo con divisores de cero, ya que puede haber elementos no nulos cuyo producto es cero: (1, 0, 1, 0, 1, 0,...) (0, 1, 0, 2, 0, 3, 0, 4,...) = (0) La definición de sucesión convergente es esencial en el Cálculo. Es necesario insistir en la importancia de entender correctamente esta forma de escribir un concepto que puede resultar más o menos intuitivo. Definición. Se dice que una sucesión (x n ) de números racionales converge a a Q, y se escribe (x n ) a o también a = lím n (x n ), si ε > 0 ν N : n > ν x n a < ε. Dado cualquier valor ε > 0 todo lo pequeño que uno quiera (para valores grandes no se llega a nada importante), todos los términos x n con n > ν están en el intervalo (a ε, a + ε), o lo que es lo mismo, x n a < ε. ( ) - Fernando Sánchez - - Por ejemplo, es fácil probar que toda sucesión constante es convergente, y su ĺımite es el término general de la sucesión. Si (x n ) = (a, a, a,...) entonces x n a < ε para cualquier valor n N. Sin embargo, una sucesión como (x n ) = (1, 0, 1, 0, 1, 0,...) no puede ser convergente. Utilizando la propiedad arquimediana es fácil comprobar que lím n 1 n = 0 En la definición de convergencia aparece el valor absoluto como distancia entre números: a b es la distancia entre a y b. Este valor absoluto se define para cada número a Q como a si a 0 a = máx{a, a} = a si a < 0 y tiene las siguientes propiedades (para a, b Q) 1. a 0 y a = 0 a = 0 2. a + b a + b (desigualdad triangular) 3. a b = a b. Por tanto a = a, a 1 = a 1 a si a 0, y = a b b si b 0 3. Sucesiones de números racionales 2

3 4. a b a ± b - Fernando Sánchez - - El valor absoluto indica la distancia entre dos números. Resulta útil a veces para comparar números a y b, ya que a b < ε ε > 0 a = b Por ejemplo, a = = 1 Û 9 y b = 2 verifican a b < ε sea cual sea el valor ε > 0. Por tanto a = b. Definición (conjunto acotado). Un Conjunto A Q es acotado si existe M > 0 tal que x M para todo x A, es decir, si A [ M, M]. Una sucesión (x n ) se dice que está acotada si todos los términos están contenidos en algún intervalo: existe M > 0 que verifica x n [ M, M] para n = 1, 2, 3,... Proposición. Toda sucesión convergente está acotada. Demostración. Se considera una sucesión convergente (x n ) a. Dado ε = 1 existe ν N tal que x n a < 1 para n > ν. Por tanto x n < 1 + a para esos valores n > ν. Así, M = máx{ x 1,..., x ν, 1 + a } es una cota máxima para la sucesión. Proposición. La suma (respectivamente el producto) de sucesiones convergentes es una sucesión convergente y su ĺımite es la suma (resp. el producto) de sus ĺımites. Así, si dos sucesiones (x n ) y (y n ) son convergentes entonces (x n + y n ) y (x n y n ) también lo son y se cumple lím (x n + y n ) = lím n n (x n ) + n lím (y n ) lím (x n y n ) n - Fernando Sánchez - - = lím n (x n ) lím n (y n ). Demostración. Sean (x n ) a, (y n ) b. Entonces, dado ε > 0 existe ν 1 tal que x n a < ε/2 si n > ν 1 y existe ν 2 tal que y n b < ε/2 si n > ν 2. Por tanto, si ν = máx{ν 1, ν 2 } se tiene (x n + y n ) (a + b) x n a + y n b < ε/2 + ε/2 = ε para n > ν, lo que prueba que (x n + y n ) a + b. El argumento para el producto es similar. Como las sucesiones son convergentes también son acotadas. Como ambas sucesiones son acotadas, se puede encontrar M > 0 que verifique a < M, b < M, x n < M, y n < M para todo n. Dado ε > 0 existen ν 1, ν 2 N tales que x n a < ε/2m si n > ν 1 y y n b < ε/2m si n > ν 2. Así x n y n a b = x n y n ay n + ay n ab x n y n ay n + ay n ab = x n a y n + a y n b < ε/2 + ε/2 = ε para n > máx{ν 1, ν 2 }. Ejercicio. Es fácil probar que las tres sentencias siguientes son equivalentes: 3. Sucesiones de números racionales 3

4 (x n ) a, (x n a) 0, ( x n a ) 0. - Fernando Sánchez - - Además, si (y n ) es acotada y (x n ) a entonces Ä y n (x n a) ä 0. Con este ejercicio se podría haber probado de otra forma la segunda parte de la proposición anterior. Sin embargo, cuando alguna de las sucesiones no es convergente, con la suma y el producto puede resultar una sucesión convergente o no, por ejemplo (n) no es convergente, ( n) no es convergente, pero la suma sí lo es (1, 0, 1, 0,...) no es convergente, (0, 7, 0, 7,...) no es convergente, y el producto sí es convergente (n) no es convergente, (1/n 2 ) es convergente, y el producto sí es convergente (n 2 ) no es convergente, (1/n) es convergente, y el producto no es convergente Definición. Se dice que una sucesión (x n ) de números racionales es de Cauchy si ε > 0 ν N : n, m > ν x n x m < ε. Dado cualquier valor ε > 0 todo lo pequeño que uno quiera (para valores grandes no se llega a nada importante), todos los términos x n y x m con n, m > ν están muy próximos entre sí, como mucho a distancia ε. Proposición. Toda sucesión convergente es de Cauchy. Demostración. Sea (x n ) a. Dado ε > 0 existe ν N tal que x n a < ε/2 si n > ν. Por tanto, si p, q > ν se tiene x p x q x p a + x q a < ε. - Fernando Sánchez - - Sin embargo, existen sucesiones de Cauchy en Q que no son convergentes. Por ejemplo, se puede considerar la sucesión (x n ) = (1, 1 4, 1 41, 1 414, ,...) cuyos términos verifican (x 2 n) 2. Esta sucesión es de Cauchy ya que sus términos verifican x p x q < 1/10 ( p, q > 1) x p x q < 1/10 2 ( p, q > 2) x p x q < 1/10 3 ( p, q > 3)... También es de Cauchy la sucesión (x 2 n), ya que es convergente y converge a 2. Sin embargo (x n ) no converge en Q, ya que su único posible ĺımite es un número cuyo cuadrado es 2, y ese número no existe en Q. El conjunto C de sucesiones de Cauchy en Q, o el conjunto C o de sucesiones convergentes y el conjunto A de sucesiones acotadas, con las operaciones usuales de suma y multiplicación son subanillos del anillo S de todas las sucesiones en Q. Además, se tienen las inclusiones (todas son estrictas) C o C A S Proposición. Toda sucesión de Cauchy es acotada. 3. Sucesiones de números racionales 4

5 - Fernando Sánchez - - Demostración. Si (x n ) es de Cauchy, dado ε = 1 existe ν N tal que x n x m < ε = 1 para n, m ν. Por tanto, x n < 1 + x ν para n > ν y la sucesión está acotada por M = máx{ x 1,..., x ν, 1 + x ν }. Ejercicio. Probar que si (x n ) no está acotada, es posible encontrar términos n 1 < n 2 < n 3 <... tales que x n1 > 1000, x n2 > 2000, x n3 > 3000,... Esto hace que una sucesión así no pueda ser de Cauchy ni convergente. Con este ejercicio se podría haber probado la proposición anterior, utilizando el contrarrecíproco. Proposición. La suma y producto de sucesiones de Cauchy es una sucesión de Cauchy. Demostración. Sean (x n ) e (y n ) sucesiones de Cauchy. Dado ε > 0 existen ν 1 y ν 2 tales que x n x m < ε/2 y y p y q < ε/2 para m, n > ν 1 y p, q > ν 2. Por tanto para valores n, m > máx{ν 1, ν 2 } se tiene x n + y n (x m + y m ) x n x m + y n y m < ε y la sucesión (x n + y n ) es de Cauchy. Para el producto es similar. Al ser sucesiones de Cauchy son acotadas: x n N y y n M para todo n N y se puede escribir x n y n x m y m = x n y n x m y n + x m y n x m y m x n x m y n + y n y m x m x n x m M + y n y m N de donde se obtiene que (x n y n ) es de Cauchy. Definición. Dos sucesiones de Cauchy de números racionales (x n ) e (y n ) se dice que son equivalentes, y se escribe (x n ) (y n ), si (x n y n ) 0. - Fernando Sánchez - - Es fácil comprobar que esta relación es de equivalencia: reflexiva, simétrica y transitiva. Por tanto induce una clasificación C / es el conjunto de sucesiones de Cauchy. A este conjunto cociente se le llama conjunto de los números reales y se denota R: R = C / Cada número real es una clase de sucesiones Cauchy equivalentes de números racionales. 3. Sucesiones de números racionales 5

Análisis de una variable real I. Tijani Pakhrou

Análisis de una variable real I. Tijani Pakhrou Análisis de una variable real I Tijani Pakhrou Índice general 1. Introducción axiomática de los números 1 1.1. Números naturales............................ 1 1.1.1. Axiomas de Peano........................

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

TEMA 2: FUNCIONES CONTINUAS DE VARIAS VARIABLES

TEMA 2: FUNCIONES CONTINUAS DE VARIAS VARIABLES TEMA 2: FUNCIONES CONTINUAS DE VARIAS VARIABLES ÍNDICE 1. Funciones de varias variables 1 2. Continuidad 2 3. Continuidad y composición de funciones 4 4. Continuidad y operaciones algebraicas 4 5. Carácter

Más detalles

El anillo de polinomios sobre un cuerpo

El anillo de polinomios sobre un cuerpo Capítulo 2 El anillo de polinomios sobre un cuerpo En este capítulo pretendemos hacer un estudio sobre polinomios paralelo al que hicimos en el capítulo anterior sobre los números enteros. Para esto, es

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

(x + y) + z = x + (y + z), x, y, z R N.

(x + y) + z = x + (y + z), x, y, z R N. TEMA 1: EL ESPACIO R N ÍNDICE 1. El espacio vectorial R N 1 2. El producto escalar euclídeo 2 3. Norma y distancia en R N 4 4. Ángulo y ortogonalidad en R N 6 5. Topología en R N 7 6. Nociones topológicas

Más detalles

Series y Probabilidades.

Series y Probabilidades. Series y Probabilidades Alejandra Cabaña y Joaquín Ortega 2 IVIC, Departamento de Matemática, y Universidad de Valladolid 2 CIMAT, AC Índice general Sucesiones y Series Numéricas 3 Sucesiones 3 2 Límites

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

1 Sucesiones de números reales

1 Sucesiones de números reales 1 Sucesiones de números reales 1.1 Números reales En el conjunto de los números reales tenemos definidas dos operaciones binarias, suma y producto, y una relación de orden (a, b) a + b (a, b) ab a b. Ellos

Más detalles

AMPLIACIÓN DE MATEMÁTICAS. REPASO DE MATEMÁTICAS DISCRETA. CONGRUENCIAS. En el conjunto de los números enteros

AMPLIACIÓN DE MATEMÁTICAS. REPASO DE MATEMÁTICAS DISCRETA. CONGRUENCIAS. En el conjunto de los números enteros AMPLIACIÓN DE MATEMÁTICAS REPASO DE MATEMÁTICAS DISCRETA. CONGRUENCIAS. En el conjunto de los números enteros Z = {..., n,..., 2, 1, 0, 1, 2, 3,..., n, n + 1,...} tenemos definidos una suma y un producto

Más detalles

1. Limite de Funciones

1. Limite de Funciones 1. Limite de Funciones 1.1. Introducción. Consideremos la función f() = { 1+ 2 si > 0 1 2 si < 0 Se observa que la función no está definida en 0 = 0. Sin embargo, se observa que cuando se consideran valores

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS Fundamentos de la Matemática 1 Operaciones Binarias Dado un conjunto A, A, decimos que es una operación binaria en A si, y sólo si, : A A A es una función. Investigar si los siguientes son ejemplos de

Más detalles

1-Comportamiento de una función alrededor de un punto:

1-Comportamiento de una función alrededor de un punto: Matemática II 7 Modulo Límites continuidad En esta sección desarrollaremos el concepto de límite, una de las nociones fundamentales del cálculo. A partir de este concepto se desarrollan también los conceptos

Más detalles

Álgebra Básica. Departamento de Álgebra. http://www.departamento.us.es/da. Notas de teoría. Departamento de Álgebra, Universidad de Sevilla

Álgebra Básica. Departamento de Álgebra. http://www.departamento.us.es/da. Notas de teoría. Departamento de Álgebra, Universidad de Sevilla Álgebra Básica Notas de teoría Departamento de Álgebra, Universidad de Sevilla El contenido de estas notas ha sido diseñado y redactado por el profesorado de la asignatura y está registrado bajo una licencia

Más detalles

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1.

9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES... 189 9.2. OPERACIONES CON MATRICES... 190 9.3. MATRICES CUADRADAS... 192 9.3.1. ÍNDICE 9. MATRICES 189 9.1. DEFINICIÓN Y NOTACIONES....................... 189 9.2. OPERACIONES CON MATRICES..................... 190 9.3. MATRICES CUADRADAS.......................... 192 9.3.1. Matrices

Más detalles

Análisis III. Joaquín M. Ortega Aramburu

Análisis III. Joaquín M. Ortega Aramburu Análisis III Joaquín M. Ortega Aramburu Septiembre de 1999 Actualizado en julio de 2001 2 Índice General 1 Continuidad en el espacio euclídeo 5 1.1 El espacio euclídeo R n...............................

Más detalles

Grupos, anillos y cuerpos

Grupos, anillos y cuerpos Grupos, anillos y cuerpos Manuel Palacios Departamento de Matemática Aplicada Centro Politécnico Superior Universidad de Zaragoza Otoño 2002 Contents 1 Grupos 2 1.1 Subgrupos.... 5 1.2 Clases o cogrupos.......

Más detalles

Conjuntos Numéricos. Las dos operaciones en que se basan los axiomas son la Adición y la Multiplicación.

Conjuntos Numéricos. Las dos operaciones en que se basan los axiomas son la Adición y la Multiplicación. Conjuntos Numéricos Axiomas de los números La matemática se rige por ciertas bases, en la que descansa toda la matemática, estas bases se llaman axiomas. Cuántas operaciones numéricas conocen? La suma

Más detalles

Elementos de topología usados en Cálculo. R. Parte II: SUCESIONES

Elementos de topología usados en Cálculo. R. Parte II: SUCESIONES Elementos de topología usados en Cálculo. R. Parte II: SUCESIONES Eleonora Catsigeras Versión preliminar: 25 de marzo de 2004 Nota: Las partes del texto comprendidas entre dos marcas son esenciales y las

Más detalles

Operaciones lineales en R 3 y sus propiedades

Operaciones lineales en R 3 y sus propiedades Operaciones lineales en R 3 y sus propiedades Ejercicios Objetivos. Aprender a demostrar propiedades de las operaciones lineales en R 3. Requisitos. Conjunto de los números reales R, propiedades de las

Más detalles

Análisis Real: Primer Curso. Ricardo A. Sáenz

Análisis Real: Primer Curso. Ricardo A. Sáenz Análisis Real: Primer Curso Ricardo A. Sáenz Índice general Introducción v Capítulo 1. Espacios Métricos 1 1. Métricas 1 2. Métricas en espacios vectoriales 4 3. Topología 9 Ejercicios 17 Capítulo 2.

Más detalles

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA http:/// CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA DESARROLLA EN FORMA RESUMIDA CADA UNIDAD CON: I. GUIONES DE CONFERENCIAS II. FICHAS DE ESTUDIO III. LABORATORIOS DE EJERCICIOS Trata las unidades siguientes:

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

Límites y Continuidad de funciones

Límites y Continuidad de funciones CAPITULO Límites y Continuidad de funciones Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Revista digital Matemática, educación e internet (www.cidse.itcr.ac.cr)

Más detalles

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d Relaciones binarias En esta sección estudiaremos formalmente las parejas de objetos que comparten algunas características o propiedades en común. La estructura matemática para agrupar estas parejas en

Más detalles

REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS

REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS SUMA REPASO NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES (N) 1. Características: Axiomas de Giuseppe Peano (*): El 1 es un número natural. Si n es un número natural, entonces el sucesor (el siguiente

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles

TEMA 4 FRACCIONES MATEMÁTICAS 1º ESO

TEMA 4 FRACCIONES MATEMÁTICAS 1º ESO TEMA 4 FRACCIONES Criterios De Evaluación de la Unidad 1 Utilizar de forma adecuada las fracciones para recibir y producir información en actividades relacionadas con la vida cotidiana. 2 Leer, escribir,

Más detalles

1. Suma y producto de polinomios. Propiedades

1. Suma y producto de polinomios. Propiedades ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Resumen teoría Prof. Alcón 1. Suma y producto de polinomios. Propiedades Sea (A, +,.) un anillo conmutativo. Llamamos polinomio en una indeterminada x con coeficientes

Más detalles

Anillos Especiales. 8.1 Conceptos Básicos. Capítulo

Anillos Especiales. 8.1 Conceptos Básicos. Capítulo Capítulo 8 Anillos Especiales 8.1 Conceptos Básicos En este capítulo nos dedicaremos al estudio de algunos anillos especiales que poseen ciertas condiciones adicionales, aparte de las propias de la definición,

Más detalles

Para hallar el límite de una sucesión podemos utilizar algunas técnicas como: El concepto de límite de una función:

Para hallar el límite de una sucesión podemos utilizar algunas técnicas como: El concepto de límite de una función: Tema 3 Sucesiones y Series 3.1. Sucesiones de números reales Definición 3.1.1 Una sucesión de números reales { } es una aplicación que asigna a cad N un número real: : N R a 1, a 2, a 3... son los términos

Más detalles

E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid. Grado en Ingeniería en Tecnologías Industriales. Grado en Ingeniería Química

E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid. Grado en Ingeniería en Tecnologías Industriales. Grado en Ingeniería Química E. T. S. de Ingenieros Industriales Universidad Politécnica de Madrid Grado en Ingeniería en Tecnologías Industriales Grado en Ingeniería Química Apuntes de Álgebra ( Curso 2014/15) Departamento de Matemática

Más detalles

UNIVERSIDAD DE SANTIAGO DE CHILE. Segunda Versión

UNIVERSIDAD DE SANTIAGO DE CHILE. Segunda Versión UNIVERSIDAD DE SANTIAGO DE CHILE FACULTAD DE CIENCIA Departamento de Matemática y Ciencia de la Computación CÁLCULO Segunda Versión Gladys Bobadilla A. y Rafael Labarca B. Santiago de Chile 004 Prefacio

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida

Más detalles

Índice Introducción Números Polinomios Funciones y su Representación. Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones

Índice Introducción Números Polinomios Funciones y su Representación. Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones Curso 0: Matemáticas y sus Aplicaciones Tema 1. Números, Polinomios y Funciones Leandro Marín Dpto. de Matemática Aplicada Universidad de Murcia 2012 1 Números 2 Polinomios 3 Funciones y su Representación

Más detalles

EL MÉTODO DE LA BISECCIÓN

EL MÉTODO DE LA BISECCIÓN EL MÉTODO DE LA BISECCIÓN Teorema de Bolzano Sea f : [a, b] IR IR una función continua en [a, b] tal que f(a) f(b) < 0, es decir, que tiene distinto signo en a y en b. Entonces, existe c (a, b) tal que

Más detalles

Polinomios y Fracciones Algebraicas

Polinomios y Fracciones Algebraicas Tema 4 Polinomios y Fracciones Algebraicas En general, a lo largo de este tema trabajaremos con el conjunto de los números reales y, en casos concretos nos referiremos al conjunto de los números complejos.

Más detalles

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de E.T.S. DE INGENIERÍA INFORMÁTICA Apuntes de ÁLGEBRA LINEAL para la titulación de INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN Fco. Javier Cobos Gavala Amparo Osuna Lucena Rafael Robles Arias Beatriz Silva

Más detalles

Parte I. Iniciación a los Espacios Normados

Parte I. Iniciación a los Espacios Normados Parte I Iniciación a los Espacios Normados Capítulo 1 Espacios Normados Conceptos básicos Sea E un espacio vectorial sobre un cuerpo K = R ó C indistintamente. Una norma sobre E es una aplicación de E

Más detalles

Iniciación a las Matemáticas para la ingenieria

Iniciación a las Matemáticas para la ingenieria Iniciación a las Matemáticas para la ingenieria Los números naturales 8 Qué es un número natural? 11 Cuáles son las operaciones básicas entre números naturales? 11 Qué son y para qué sirven los paréntesis?

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

Congruencias de Grado Superior

Congruencias de Grado Superior Congruencias de Grado Superior Capítulo 3 3.1 Introdución En el capítulo anterior vimos cómo resolver congruencias del tipo ax b mod m donde a, b y m son enteros m > 1, y (a, b) = 1. En este capítulo discutiremos

Más detalles

Diferenciabilidad de funciones de R n en R m

Diferenciabilidad de funciones de R n en R m Diferenciabilidad de funciones de R n en R m Cálculo II (2003) En este capítulo generalizamos la noción de diferenciabilidad para funciones vectoriales de variable vectorial, que también llamamos aplicaciones.

Más detalles

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior. Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas

Más detalles

CAPÍTULO II. 5 El grupo ortogonal

CAPÍTULO II. 5 El grupo ortogonal CAPÍTULO II 5 El grupo ortogonal Desde el punto de vista afín, no existen discriminaciones entre el sistema de referencia canónico y otro sistema de referencia arbitrario. Ello se debe a que uno puede

Más detalles

Variable Compleja. José Darío Sánchez Hernández Bogotá -Colombia - abril 2005 danojuanos@hotmail.com danojuanos@tutopia.com

Variable Compleja. José Darío Sánchez Hernández Bogotá -Colombia - abril 2005 danojuanos@hotmail.com danojuanos@tutopia.com Variable Compleja José Darío Sánchez Hernández Bogotá -Colombia - abril 2005 danojuanos@hotmail.com danojuanos@tutopia.com El objeto de estas notas es brindar al lector un modelo de aprendizaje. A continuación

Más detalles

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,

Más detalles

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo POLINOMIOS 1.1. DEFINICIONES Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo p(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n + ; a i, x K; n N

Más detalles

UNIDAD 1: LÍMITES DE FUNCIONES. CONTINUIDAD

UNIDAD 1: LÍMITES DE FUNCIONES. CONTINUIDAD UNIDAD : LÍMITES Y CONTINUIDAD UNIDAD : LÍMITES DE FUNCIONES CONTINUIDAD ÍNDICE DE LA UNIDAD - INTRODUCCIÓN - LÍMITE DE UNA FUNCIÓN EN UN PUNTO LÍMITES LATERALES - LÍMITES EN EL INFINITO 5 4- ÁLGEBRA DE

Más detalles

Deseamos, pues, al alumno el mayor de los éxitos en su intento.

Deseamos, pues, al alumno el mayor de los éxitos en su intento. INTRODUCCIÓN Todo debería hacerse tan sencillo como sea posible, pero no más Albert Einstein, físico Cuanto más trabajo y practico, más suerte parezco tener Gary Player, jugador profesional de golf E studiar

Más detalles

Tema 7. Límites y continuidad de funciones

Tema 7. Límites y continuidad de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está

Más detalles

Propiedades de les desigualdades.

Propiedades de les desigualdades. Desigualdades Inecuaciones Diremos que a < b a es menor que b si b a es un número positivo. Gráficamente, a queda a l esquerra de b. Diremos que a > b a mayor que b si a b es un número positivo. Gráficamente,

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA. Escuela de Formación Básica - Departamento de Matemática. Álgebra y Geometría I.

FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA. Escuela de Formación Básica - Departamento de Matemática. Álgebra y Geometría I. FACULTAD DE CIENCIAS EXACTAS, INGENIERÍA Y AGRIMENSURA Escuela de Formación Básica - Departamento de Matemática Álgebra y Geometría I Vectores Raúl D. Katz 2010 1. Introducción Este material es una ampliación

Más detalles

NÚMERO REAL. 1. Axiomas de cuerpo y propiedades operatorias. Axioma 2 La suma es asociativa:

NÚMERO REAL. 1. Axiomas de cuerpo y propiedades operatorias. Axioma 2 La suma es asociativa: NÚMERO REAL El conjunto de los números racionales se nos hace insuficiente a la hora de representar con exactitud magnitudes tan reales como la diagonal de un cuadrado cuyo lado mida 1, por ejemplo, o

Más detalles

3FUNCIONES LOGARÍTMICAS

3FUNCIONES LOGARÍTMICAS 3FUNCIONES LOGARÍTMICAS Problema 1 Si un cierto día, la temperatura es de 28, y hay mucha humedad, es frecuente escuchar que la sensación térmica es de, por ejemplo, 32. La sensación térmica depende de

Más detalles

Notaciones y Pre-requisitos

Notaciones y Pre-requisitos Notaciones y Pre-requisitos Símbolo Significado N Conjunto de los números naturales. Z Conjunto de los números enteros. Q Conjunto de los números enteros. R Conjunto de los números enteros. C Conjunto

Más detalles

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función

3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función TEMA 3 FUNCIONES 3.1. Concepto de función. Dominio, recorrido y gráfica. 3.1.1. Concepto de función Una función es una relación establecida entre dos variables que asocia a cada valor de la primera variable

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 7 Funciones reales de una variable real Elaborado por la Profesora Doctora

Más detalles

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla.

ÁLGEBRA LINEAL. Apuntes elaborados por. Juan González-Meneses López. Curso 2008/2009. Departamento de Álgebra. Universidad de Sevilla. ÁLGEBRA LINEAL Apuntes elaborados por Juan González-Meneses López. Curso 2008/2009 Departamento de Álgebra. Universidad de Sevilla. Índice general Tema 1. Matrices. Determinantes. Sistemas de ecuaciones

Más detalles

Semana 08 [1/15] Axioma del Supremo. April 18, 2007. Axioma del Supremo

Semana 08 [1/15] Axioma del Supremo. April 18, 2007. Axioma del Supremo Semana 08 [1/15] April 18, 2007 Acotamiento de conjuntos Semana 08 [2/15] Cota Superior e Inferior Antes de presentarles el axioma del supremo, axioma de los números reales, debemos estudiar una serie

Más detalles

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

Apuntes de cálculo diferencial en una y varias variables reales. Eduardo Liz Marzán

Apuntes de cálculo diferencial en una y varias variables reales. Eduardo Liz Marzán Apuntes de cálculo diferencial en una y varias variables reales Eduardo Liz Marzán Diciembre de 2013 Índice general 1 Preliminares 1 11 Introducción 1 12 La relación de orden en el conjunto de los números

Más detalles

n=1 2. Sea Ω un conjunto cualquiera con al menos dos puntos, x, y y sea C = P(Ω). Definimos

n=1 2. Sea Ω un conjunto cualquiera con al menos dos puntos, x, y y sea C = P(Ω). Definimos Capítulo 2 Espacios de Medida 2.1. Funciones Aditivas de Conjunto Definición 2.1 Sea µ : C R = R {, + } una función definida sobre una colección de conjuntos C. Decimos que µ es finitamente aditiva si

Más detalles

CÁLCULO ALGEBRAICO. Dra. Patricia Kisbye Dr. David Merlo

CÁLCULO ALGEBRAICO. Dra. Patricia Kisbye Dr. David Merlo CÁLCULO ALGEBRAICO Dra. Patricia Kisbye Dr. David Merlo INTRODUCCIÓN Estas notas han sido elaboradas con el fin de ofrecer al ingresante a las carreras de la FaMAF herramientas elementales del cálculo

Más detalles

Integrales paramétricas e integrales dobles y triples.

Integrales paramétricas e integrales dobles y triples. Integrales paramétricas e integrales dobles y triples. Eleonora Catsigeras * 19 de julio de 2006 PRÓLOGO: Notas para el curso de Cálculo II de la Facultad de Ingeniería. Este texto es complementario al

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

CAPÍTULO XVI. NÚMEROS COMPLEJOS. SECCIONES A. Definición. Primeras propiedades. B. Potencia y raíz de números complejos. C. Ejercicios propuestos.

CAPÍTULO XVI. NÚMEROS COMPLEJOS. SECCIONES A. Definición. Primeras propiedades. B. Potencia y raíz de números complejos. C. Ejercicios propuestos. CAPÍTULO XVI. NÚMEROS COMPLEJOS SECCIONES A. Definición. Primeras propiedades. B. Potencia y raíz de números complejos. C. Ejercicios propuestos. 73 A. DEFINICIÓN. PRIMERAS PROPIEDADES. Un número complejo

Más detalles

3. Equivalencia y congruencia de matrices.

3. Equivalencia y congruencia de matrices. 3. Equivalencia y congruencia de matrices. 1 Transformaciones elementales. 1.1 Operaciones elementales de fila. Las operaciones elementales de fila son: 1. H ij : Permuta la fila i con la fila j. 2. H

Más detalles

Propiedades de la adición de vectores y la multiplicación de un vector por un escalar

Propiedades de la adición de vectores y la multiplicación de un vector por un escalar ÁLGEBRA MATRICIAL PROF. MARIELA SARMIENTO SESIÓN : ESPACIO VECTORIAL Propiedades de la adición de vectores y la multiplicación de un vector por un escalar Teorema.1: Si A, B y C son vectores cualesquiera

Más detalles

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 1 Conjuntos y Subconjuntos

Más detalles

Anexo 2: Demostraciones

Anexo 2: Demostraciones 0 Matemáticas I : Cálculo diferencial en IR Aneo : Demostraciones Funciones reales de variable real Demostración de: Propiedades del valor absoluto 79 de la página 85 Propiedades del valor absoluto 79.-

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

ESTRUCTURAS ALGEBRAICAS 1

ESTRUCTURAS ALGEBRAICAS 1 ESTRUCTURAS ALGEBRAICAS Se da la relación entre dos conjuntos mediante el siguiente diagrama: (, ) (2, 3) (, 4) (, 2) (7, 8) (, ) (3, 3) (5, ) (6, ) (, 6)........ 5 6......... 2 5 i) Observa la correspondencia

Más detalles

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra)

MATEMÁTICAS II. Departamento de Matemáticas I.E.S. A Xunqueira I (Pontevedra) MATEMÁTICAS II 1 José M. Ramos González Este libro es totalmente gratuito y solo vale la tinta y el papel en que se imprima. Es de libre divulgación y no está sometido a ningún copyright. Tan solo se

Más detalles

9.1 Primeras definiciones

9.1 Primeras definiciones Tema 9- Grupos Subgrupos Teorema de Lagrange Operaciones 91 Primeras definiciones Definición 911 Una operación binaria en un conjunto A es una aplicación α : A A A En un lenguaje más coloquial una operación

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

Funciones de varias variables

Funciones de varias variables Capítulo 2 Funciones de varias variables 1. Definiciones básicas En este texto consideraremos funciones f : A R m, A R n. Dichas funciones son comúnmente denominadas como funciones de varias variables,

Más detalles

Grupos. Subgrupos. Teorema de Lagrange. Operaciones.

Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1 Tema 1.-. Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1.1. Primeras definiciones Definición 1.1.1. Una operación binaria en un conjunto A es una aplicación α : A A A. En un lenguaje más coloquial

Más detalles

Fundamentos algebraicos

Fundamentos algebraicos Fundamentos algebraicos 1. Grupos Sea S un conjunto. Se denota con S S el conjunto de los pares ordenados (s, t) con s, t en S. Un mapeo de S S en S se llama operación binaria en S. Esta definición requiere

Más detalles

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios }

Ejemplos: Sean los conjuntos: A = { aves} B = { peces } C = { anfibios } La Teoría de Conjuntos es una teoría matemática, que estudia básicamente a un cierto tipo de objetos llamados conjuntos y algunas veces, a otros objetos denominados no conjuntos, así como a los problemas

Más detalles

Ejercicios 2.2 Usando aritmética de cuatro dígitos de precisión, sume la siguiente expresión

Ejercicios 2.2 Usando aritmética de cuatro dígitos de precisión, sume la siguiente expresión CAPÍTULO EJERCICIOS RESUELTOS: ARITMÉTICA DE ORDENADORES Y ANÁLISIS DE ERRORES Ejercicios resueltos Ejercicios.1 Calcula la suma y la resta de los números a = 0.453 10 4, y b = 0.115 10 3, con una aritmética

Más detalles

El Teorema de existencia y unicidad de Picard

El Teorema de existencia y unicidad de Picard Tema 2 El Teorema de existencia y unicidad de Picard 1 Formulación integral del Problema de Cauchy El objetivo del presente Tema, y del siguiente, es analizar el Problema de Cauchy para un SDO de primer

Más detalles

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales:

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales: ADICIÓN Y RESTA DE NUMEROS REALES ADICIÓN L a adición o suma de números reales se representa mediante el símbolo más (+) y es considerada una operación binaria porque se aplica a una pareja de números,

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

Matemática SECRETARÍA ACADÉMICA AREA INGRESO. - Septiembre de 2010 -

Matemática SECRETARÍA ACADÉMICA AREA INGRESO. - Septiembre de 2010 - SECRETARÍA ACADÉMICA AREA INGRESO - Septiembre de 00 - SECRETARÍA ACADÉMICA ÁREA INGRESO UNIVERSIDAD TECNOLÓGICA NACIONAL Zeballos 000 Rosario - Argentina www.frro.utn.edu.ar e-mail: ingreso@frro.utn.edu.ar

Más detalles

A modo de Presentación

A modo de Presentación Ecuaciones Diferenciales de Orden Superior Primera Parte Funciones Eulerianas Ing. Ramón Abascal Prof esor Titular de Análisi s de Señales y Sist emas y Teoría de los Circuit os I I en la UTN, Facultad

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Relaciones entre conjuntos

Relaciones entre conjuntos Relaciones entre conjuntos Parejas ordenadas El orden de los elementos en un conjunto de dos elementos no interesa, por ejemplo: {3, 5} = {5, 3} Por otra parte, una pareja ordenada consiste en dos elementos,

Más detalles

Grupos. 2.1 Introducción. Capítulo

Grupos. 2.1 Introducción. Capítulo Capítulo 2 Grupos 2.1 Introducción La estructura de grupo es una de las más comunes en toda la matemática pues aparece en forma natural en muchas situaciones, donde se puede definir una operación sobre

Más detalles

Vectores en R n y producto punto

Vectores en R n y producto punto Vectores en R n y producto punto Departamento de Matemáticas, CCIR/ITESM 10 de enero de 011 Índice 4.1. Introducción............................................... 1 4.. Vector..................................................

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles

Límites de funciones y continuidad

Límites de funciones y continuidad Capítulo 4 Límites de funciones y continuidad 4.. Definición Sea f definida en un entorno reducido de 0 0 < 0 < δ), pero no necesariamente en el mismo punto 0. Diremos que f tiene el ite L en 0 cuando

Más detalles

Métodos generales de generación de variables aleatorias

Métodos generales de generación de variables aleatorias Tema Métodos generales de generación de variables aleatorias.1. Generación de variables discretas A lo largo de esta sección, consideraremos una variable aleatoria X cuya función puntual es probabilidad

Más detalles

Subconjuntos destacados en la

Subconjuntos destacados en la 2 Subconjuntos destacados en la topología métrica En este capítulo, introducimos una serie de conceptos ligados a los puntos y a conjuntos que por el importante papel que juegan en la topología métrica,

Más detalles

Introducción al Análisis Complejo

Introducción al Análisis Complejo Introducción al Análisis Complejo Aplicado al cálculo de integrales impropias Complementos de Análisis, I.P.A Prof.: Federico De Olivera Leandro Villar 13 de diciembre de 2010 Introducción Este trabajo

Más detalles