Matrices. Definiciones básicas de matrices. José de Jesús Angel Angel.

Save this PDF as:
Tamaño: px
Comenzar la demostración a partir de la página:

Download "Matrices. Definiciones básicas de matrices. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.mx"

Transcripción

1 Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel MathCon c

2 Contenido 1 Matrices 2 11 Matrices cuadradas 3 12 Matriz transpuesta 4 13 Matriz identidad 4 14 Matriz diagonal 5 15 Matriz triángular 5 16 Matrices binarias 6 2 Operaciones entre matrices 7 21 Suma entre matrices 7 22 Producto por un escalar 8 23 Producto de matrices 9 3 Matriz inversa Obtención de matriz inversa por medio de Operaciones Elementales 12 4 Sistemas de Ecuaciones Lineales y Matrices 21

3 Matrices 1 Definición 1 Una matriz real es una función A de [1,, n] [1,, m], al conjunto de los números reales R, y decimos que A tiene orden n m Una matriz A se representa con todos sus valores de manera usual como un arreglo de n filas y m columnas: a 11 a 12 a 1m a 21 a 22 a 2m A a n1 a n2 a nm También la podemos representar como A a ij, donde 1 i n, 1 j m Ejemplos de matrices: 1 Ejemplo de una matriz 2 2: A a11 a 12 a 21 a 22 Como función la matriz anterior se escribe A : [1,, n] [1,, m] R, donde: 1, 1 a 11 1, 2 a 12 2, 1 a 21 2, 2 a 22

4 11 Matrices cuadradas 3 2 Ejemplo de una matriz 3 3: A a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 Como función se escribe A : [1,, 3] [1,, 3], donde: 3 Ejemplo de una matriz 3 2: A 4 Ejemplo de una matriz 2 3: A 11 a a a a a a a a a 33 a 11 a 12 a 21 a 22 a 31 a 32 a 21 a 22 a 23 a11 a 12 a 13 5 Ejemplo de una matriz 1 3: A a 11 a 12 a 13 6 Ejemplo de una matriz 3 1: A 11 Matrices cuadradas a 11 a 21 a 31 Las matrices cuadradas son aquellas que tienen el mismo número de filas que de columnas Éste conjunto de matrices suele escribirse como M n Las matrices cuadradas tienen propiedades particulares A a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33

5 12 Matriz transpuesta 4 12 Matriz transpuesta Dada una matriz A se define la matriz transpuesta A T la transpuesta,como aquella que cambia las filas por columnas, o las columnas por filas, es decir: Si A a ij, entonces A T a ji Para una matriz en M 3 : Si A a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33, entonces A T a 11 a 21 a 31 a 12 a 22 a 32 a 13 a 23 a 33 Ejemplo: Si A , entonces A T Propiedades de la matriz transpuesta: 1 A T T A, la transpuesta de una transpuesta es igual a la matriz 2 A + B T A T + B T, la transpuesta de una suma, es la suma de las transpuestas 3 AB T B T A T, la transpuesta de un producto es el producto de las transpuestas conmutado 4 ra T ra T, la transpuesta de un producto escalar es el producto escalar de la transpuesta 5 Si A A T, la matriz se llama simétrica 6 Si A T A, la matriz se llama antisimétrica 13 Matriz identidad En M n existe la matriz identidad, que consiste en una matriz con unos en la diagonal es decir donde i j y ceros en otro lugar o sea donde i j Por ejemplo en M 3,

6 14 Matriz diagonal 5 I Formalmente I n a ij { 0 si i j 1 si i j 14 Matriz diagonal La matriz es diagonal si tiene valores cero fuera de la diagonal En la diagonal es posible tener ceros o no Si a ij 0, con i j A a a a Matriz triángular Una matriz es triángular superior, si tiene valores cero abajo de la Si a ij 0, con i > j A a 11 a 12 a 13 0 a 22 a a 33 Una matriz es triángular inferior, si tiene valores cero arriba de la diagonal Si a ij 0, con i < j A a a 21 a 22 0 a 31 a 32 a 33

7 16 Matrices binarias 6 16 Matrices binarias Una matriz es binaria, si sus entradas toman sólo dos valores diferentes, podemos tomar los valores de 0, 1 A Las matrices binarias tienen varias aplicaciones, los valores 0, 1 representan elementos de un campo finito de dos elementos, esto quiere decir que los elementos 0, 1 se pueden multiplicar y sumar, y en ambos casos forman un grupo Abeliano Es decir: + : {0, 1} {0, 1} {0, 1}, Para esta suma: 1 La suma es conmutativa 2 La suma es asociativa 3 Existe el neutro aditivo, 0 4 Existe el inverso aditivo, a : {0, 1} {0, 1} {0, 1}, Para este producto: 1 El producto es conmutativo 2 El producto es asociativo 3 Existe el neutro multiplicativo, 1 4 Existe el inverso multiplicativo, a

8 Operaciones entre matrices 2 21 Suma entre matrices La suma esta definida sólo para matrices del mismo orden, es decir, sólo se puede sumar una matriz de orden n m con otra de orden n m La suma se realiza entrada por entrada, es decir: Si A a ij, y B b ij, entonces A + B a ij + b ij Ejemplos de suma de matrices: 1 Una matriz de orden 2 2 más otra del mismo orden Una matriz de orden 3 2 más otra del mismo orden Una matriz de orden 1 3 más otra del mismo orden

9 22 Producto por un escalar Una matriz de orden 1 3 más otra del mismo orden Una matriz 3 3 sumada con otra del mismo orden a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 + b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 a 11 + b 11 a 12 + b 12 a 13 + b 13 a 21 + b 21 a 22 + b 22 a 23 + b 23 a 31 + b 31 a 32 + b 32 a 33 + b 33 Las matrices con la suma forman un grupo Abeliano, es decir: 1 La suma de matrices es conmutativa, A + B B + A 2 La suma de matrices es asociativa, A + B + C A + B + C 3 Existe la matriz neutro aditivo cero, tal que A A A 4 Para toda matriz A, existe inverso aditivo la matriz A 22 Producto por un escalar El producto de un escalar número real r por una matriz ra, se define de la forma natural, es decir, multiplicar cada entrada de A por el número r El orden de A puede ser cualquiera Si A a ij, entonces ra ra ij Ejemplos 1 Una matriz 2 2 por r

10 23 Producto de matrices 9 2 Una matriz 3 2 por r Una matriz 3 3 por r r a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ra 11 ra 12 ra 13 ra 21 ra 22 ra 23 ra 31 ra 32 ra Producto de matrices El producto de matrices esta definido, entre A, matriz de orden n p, por B de orden p m Dando como resultado C de orden n m Si A a ij, y B b ij, entonces C c ij donde c ij p k1 a ikb kj Ejemplos de producto de matrices: 1 Una matriz 2 2 por otra de orden El proceso es el siguiente: a Se multiplica la primera fila de la primera matriz por la primera columna de la segunda _ b Se avanza de fila y se multiplica la segunda fila de la primera matriz por la primera columna de la segunda _ _ c De manera similar se multiplica la primera fila de la primera matriz por la segunda columna de la segunda

11 23 Producto de matrices _ d Avanzando de fila finalmente, se multiplica la segunda fila de la primera matriz por la segunda columna de la segunda Una matriz 2 2 por otra de orden Una matriz 2 2 por otra de orden / / / /2 3 7/2 4 Una matriz 2 3 por otra de orden / / / / Una matriz A, 3 3 por otra B de orden 3 3 A AB a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 B b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 a 11b 11 + a 12 b 21 + a 13 b 31 a 11 b 12 + a 12 b 22 + a 13 b 32 a 11 b 13 + a 12 b 23 + a 13 b 33 a 21 b 11 + a 22 b 21 + a 23 b 31 a 21 b 12 + a 22 b 22 + a 23 b 32 a 21 b 13 + a 22 b 23 + a 23 b 33 a 31 b 11 + a 32 b 21 + a 33 b 31 a 31 b 12 + a 32 b 22 + a 33 b 32 a 31 b 13 + a 32 b 23 + a 33 b 33,

12 23 Producto de matrices 11 Resumiendo: 1 La suma de matrices forma un grupo Abeliano, es decir, es conmutativa, es asociativa, existe la matriz cero 0, y para toda matriz A, existe la matriz inversa aditiva A 2 Para el producto de matrices: éste NO es conmutativo, si es asociativo, existe la matriz neutra I para matrices cuadradas, y NO para toda matriz A, existe su matriz inversa multiplicativa A 1

13 Matriz inversa 3 Una matriz cuadrada A tiene inversa, si existe la matriz A 1 tal que A A 1 A 1 A I Se dice también que A es invertible o no singular Observación: No siempre existe la matriz inversa 31 Obtención de la matriz inversa por medio de Operaciones Elementales La matriz inversa de una matriz A se puede obtener aplicando un método similar al método de Gauss- Jordan para resolver SEL Operaciones elementales sobre filas de matrices 1 Cambio de dos filas 2 Multiplicar una fila por una constante 3 Sumar el múltiplo de una fila a otra fila Sea A una matriz, entonces existe la inversa A 1, si se puede calcular por el siguiente procedimiento 1 Considere la matriz A I, que significa ajuntar a A la matriz identidad I 2 Aplicar las operaciones elementales a las filas de A suficientes para convertirla en la matriz I 3 Las mismas operaciones elementales hay que aplicarlas al mismo tiempo a I adjuntada

14 31 Obtención de la matriz inversa por medio de Operaciones Elementales 13 4 La matriz de la derecha que resulte de 3, es la matriz inversa I A 1 Observación: si no es posible aplicar este método, entonces la matriz inversa no existe Ejemplos: Ejemplo 1 Sea A , encontrar la matriz inversa A 1, y comprobar el resultado a Adjuntar a A la matriz identidad I, b Aplicar F 2 3F 1 + F 2 3F F F c Obtenemos d Aplicar ahora F 1 F 2 + F 1 F F F e Obtenemos f Finalmente F 2 1 g Obtenemos F /2 1/2 2 1 Por lo tanto la inversa A 1 es 3/2 1/2 2 1 h Comprobando: 3/2 1/2 1 1 Ejemplo 2 Sea A a Considerar: /2 3/2 6/2 4/2, encontrar la matriz inversa A 1, y comprobar el resultado

15 31 Obtención de la matriz inversa por medio de Operaciones Elementales 14 b Aplicar F 2 2F 1 + F 2 2F F F c Obtenemos d Aplicar ahora F 1 F 2 + 3F 1 F F F e Obtenemos f Finalmente F F 1, F F /3 1/3 g Obtenemos 0 1 2/3 1/3 1/3 1/3 Por lo tanto la inversa A 1 es 2/3 1/ /3 1/3 h Comprobando: 2 1 2/3 1/3 5 3 Ejemplo 3 Sea A a Considerar: b Aplicar F 2 2F 1 + 5F 2 1/3 + 2/3 1/3 1/3 2/3 2/3 2/3 + 1/3, encontrar la matriz inversa A 1, y comprobar el resultado 2F F F c Obtenemos d Aplicar ahora F 1 3F 2 + 4F 1 3F F F

16 31 Obtención de la matriz inversa por medio de Operaciones Elementales e Obtenemos f Finalmente F F 1, F F /2 3/4 g Obtenemos 0 1 1/2 5/4 1/2 3/4 Por lo tanto la inversa A 1 es 1/2 5/ /2 3/4 h Comprobando: 2 2 1/2 5/ /2 3/2 15/4 + 15/4 2/2 2/2 6/4 + 10/4 1 1 Ejemplo 4 Sea A 2 2 Ejemplo 5 Sea A a Considerar: b Aplicar F 2 2F 1 + F 2, encontrar la matriz inversa A 1, y comprobar el resultado 2F F F c Obtenemos d En este caso no se puede aplicar el método, por lo tanto la matriz inversa NO existe Observemos que F 2 es múltiplo de F a Considerar:, encontrar la matriz inversa A 1, y comprobar el resultado b Aplicar F 2 F 1 + F 2 F F F

17 31 Obtención de la matriz inversa por medio de Operaciones Elementales 16 c Obtenemos d Aplicar ahora F 3 F 2 + F 3 F F F e Obtenemos f Ahora; F 2 F 3 + F 2 F 1 3F 3 + F F F F g Obtenemos h Ahora; F 1 2F 2 + F 1 2F F F i Obtenemos j Por último F 2 F 2 k Finalmente obtenemos Por lo tanto la inversa A 1 es l Comprobando: 3F F F

18 31 Obtención de la matriz inversa por medio de Operaciones Elementales Ejemplo 6 Sea A a Considerar:, encontrar la matriz inversa A 1, y comprobar el resultado b Aplicar F 3 F 1 + F 3 F F F c Obtenemos d Aplicar ahora: F 2 3F 3 + F 2 F 1 3F 3 + F F F F e Obtenemos f Ahora; F 1 F 2 + F 1 F F F g Obtenemos h Por último F 2 F 2 / F F F

19 31 Obtención de la matriz inversa por medio de Operaciones Elementales 18 i Finalmente obtenemos /2 1/2 3/ Por lo tanto la inversa A 1 es 3/2 1/2 3/ j Comprobando: /2 1/2 3/ Ejemplo 7 Sea A a Considerar:, encontrar la matriz inversa A 1, y comprobar el resultado b Aplicar F 2 F 1 + F 2 F F F c Obtenemos d Aplicar F 3 F 2 + F 3 F F F e Obtenemos f Aplicar ahora: F 2 2F 3 + F 2 F 1 F 3 + F

20 31 Obtención de la matriz inversa por medio de Operaciones Elementales 19 2F F F g Obtenemos h Ahora; F 1 F 2 + F 1 F F F i Obtenemos j Por último F 3 F 3 k Finalmente obtenemos Por lo tanto la inversa A 1 es F F F l Comprobando: Observación importante: el orden para hacer ceros las entradas dentro de la matriz debe seguirse siempre la siguiente secuencia a 11 6 a 5 a 1 a a 22 4 a 2 a 3 a a 33

21 31 Obtención de la matriz inversa por medio de Operaciones Elementales 20 Las siguientes afirmaciones son equivalentes: 1 Existe la matriz inversa 2 La matriz es equivalente por OE a la matriz Identidad

22 Sistemas de Ecuaciones Lineales y Matrices 4 Un sistema de ecuaciones lineales, ya sea homogéneo o no homogéneo puede ser escrito mediante matrices Definición 2 Considere el siguiente sistema de m ecuaciones con n incógnitas: a 11 x 1 + a 12 x 2 + a 13 x a 1n x n b 1 a 21 x 1 + a 22 x 2 + a 23 x a 2n x n b 2 a 31 x 1 + a 32 x 2 + a 33 x a 3n x n b 3 a m1 x 1 + a m2 x 2 + a m3 x a mn x n b m, donde las constantes a 11,, a 1n, a 12, a 2n,, a m1,, a mn, b 1,, b m R, y las incógnitas x 1,, x n representan también números reales Entonces tenemos la siguiente representación matricial: a 11 a 12 a 1n a 21 a 22 a 2n a 31 a 32 a 3n x 1 x 2 x 3 b 1 b 2 b 3 a m1 a m2 a mn x n b m Escrito como Ax b

23 4 Sistemas de Ecuaciones Lineales y Matrices 22 Proposición 1 El sistema de ecuaciones lineales SEL Ax b tiene una única solución, si y sólo si la matriz A tiene inversa En este caso la solución es x A 1 b Ahora tenemos las siguientes equivalencias: 1 Existe la matriz inversa 2 La matriz es equivalente por OE a la matriz Identidad 3 El sistema homogéneo Ax 0 tiene como única solución a la trivial 4 El sistema Ax b, tiene una única solución

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

Matrices: Conceptos y Operaciones Básicas

Matrices: Conceptos y Operaciones Básicas Matrices: Conceptos y Operaciones Básicas Departamento de Matemáticas, CCIR/ITESM 8 de septiembre de 010 Índice 111 Introducción 1 11 Matriz 1 113 Igualdad entre matrices 11 Matrices especiales 3 115 Suma

Más detalles

Matrices invertibles. La inversa de una matriz

Matrices invertibles. La inversa de una matriz Matrices invertibles. La inversa de una matriz Objetivos. Estudiar la definición y las propiedades básicas de la matriz inversa. Más adelante en este curso vamos a estudiar criterios de invertibilidad

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

Cambio de representaciones para variedades lineales.

Cambio de representaciones para variedades lineales. Cambio de representaciones para variedades lineales 18 de marzo de 2015 ALN IS 5 Una variedad lineal en R n admite dos tipos de representaciones: por un sistema de ecuaciones implícitas por una familia

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES

INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES INSTITUTO POLITÉCNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA MECÁNICA Y ELÉCTRICA UNIDAD CULHUACÁN INTEGRANTES CÁRDENAS ESPINOSA CÉSAR OCTAVIO racsec_05@hotmail.com Boleta: 2009350122 CASTILLO GUTIÉRREZ

Más detalles

Matrices Invertibles y Elementos de Álgebra Matricial

Matrices Invertibles y Elementos de Álgebra Matricial Matrices Invertibles y Elementos de Álgebra Matricial Departamento de Matemáticas, CCIR/ITESM 12 de enero de 2011 Índice 91 Introducción 1 92 Transpuesta 1 93 Propiedades de la transpuesta 2 94 Matrices

Más detalles

1. INVERSA DE UNA MATRIZ REGULAR

1. INVERSA DE UNA MATRIZ REGULAR . INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz

Más detalles

Matrices. Definiciones básicas de matrices. José de Jesús Angel Angel.

Matrices. Definiciones básicas de matrices.  José de Jesús Angel Angel. Matrices Definiciones básicas de matrices wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 2007-2009 Contenido 1 Matrices 3 11 Matrices cuadradas 5 12 Matriz transpuesta 5 13 Elementos de

Más detalles

Sistemas de Ecuaciones Lineales y Matrices

Sistemas de Ecuaciones Lineales y Matrices Sistemas de Ecuaciones Lineales y Matrices Oscar G Ibarra-Manzano, DSc Departamento de Area Básica - Tronco Común DES de Ingenierías Facultad de Ingeniería, Mecánica, Eléctrica y Electrónica Trimestre

Más detalles

1 Espacios y subespacios vectoriales.

1 Espacios y subespacios vectoriales. UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto

Más detalles

3.- DETERMINANTES. a 11 a 22 a 12 a 21

3.- DETERMINANTES. a 11 a 22 a 12 a 21 3.- DETERMINANTES. 3.1. -DEFINICIÓN Dada una matriz cuadrada de orden n, se llama determinante de esta matriz (y se representa por A o deta al polinomio cuyos términos son todos los productos posibles

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Problemas teóricos Sistemas de ecuaciones lineales con parámetros En los siguientes problemas hay que resolver el sistema de ecuaciones lineales para todo valor del parámetro

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades: Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición

Más detalles

Álgebra II, licenciatura. Examen parcial I. Variante α.

Álgebra II, licenciatura. Examen parcial I. Variante α. Engrape aqu ı No doble Álgebra II, licenciatura. Examen parcial I. Variante α. Operaciones con matrices. Sistemas de ecuaciones lineales. Nombre: Calificación ( %): examen escrito tarea 1 tarea 2 asist.+

Más detalles

Transformaciones Lineales. Definiciones básicas de Transformaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.

Transformaciones Lineales. Definiciones básicas de Transformaciones Lineales. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com. Transformaciones Lineales Definiciones básicas de Transformaciones Lineales wwwmathcommx José de Jesús Angel Angel jjaa@mathcommx MathCon c 007-009 Contenido 1 Transformaciones Lineales 11 Núcleo e imagen

Más detalles

Apéndice A. Repaso de Matrices

Apéndice A. Repaso de Matrices Apéndice A. Repaso de Matrices.-Definición: Una matriz es una arreglo rectangular de números reales dispuestos en filas y columnas. Una matriz com m filas y n columnas se dice que es de orden m x n de

Más detalles

Curso cero Matemáticas en informática :

Curso cero Matemáticas en informática : y Curso cero Matemáticas en informática : y Septiembre 2007 y y Se llama matriz de orden m n a cualquier conjunto de elementos dispuestos en m filas y n columnas: a 11 a 12 a 13 a 1n a 21 a 22 a 23 a 2n

Más detalles

Ahora podemos comparar fácilmente las cantidades de cada tamaño que se vende. Estos valores de la matriz se denominan elementos.

Ahora podemos comparar fácilmente las cantidades de cada tamaño que se vende. Estos valores de la matriz se denominan elementos. Materia: Matemática de 5to Tema: Definición y Operaciones con Matrices 1) Definición Marco Teórico Una matriz consta de datos que se organizan en filas y columnas para formar un rectángulo. Por ejemplo,

Más detalles

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca

Operaciones con vectores y matrices ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES. Ana Morata Gasca ECONOMETRÍA I OPERACIONES CON VECTORES Y MATRICES Ana Morata Gasca 1 DEFINICIÓN DE VECTOR Un vector es todo segmento de recta dirigido en el espacio. CARACTERÍSTICAS DE UN VECTOR Origen o Punto de aplicación:

Más detalles

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1 . ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES INTRODUCCIÓN En el presente documento se explican detalladamente dos importantes temas: 1. Descomposición LU. 2. Método de Gauss-Seidel. Se trata de dos importantes herramientas

Más detalles

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior.

Comenzaremos recordando algunas definiciones y propiedades estudiadas en el capítulo anterior. Capítulo 2 Matrices En el capítulo anterior hemos utilizado matrices para la resolución de sistemas de ecuaciones lineales y hemos visto que, para n, m N, el conjunto de las matrices de n filas y m columnas

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

4 APLICACIONES LINEALES. DIAGONALIZACIÓN

4 APLICACIONES LINEALES. DIAGONALIZACIÓN 4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES 1 1. ESPACIOS VECTORIALES 1.1. ESPACIOS VECTORIALES. SUBESPACIOS VECTORIALES Denición 1. (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo K, o K-espacio vectorial,

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario) Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Concepto de aplicación lineal T : V W Definición: Si V y W son espacios vectoriales con los mismos escalares (por ejemplo, ambos espacios vectoriales reales o ambos espacios vectoriales

Más detalles

Grupos. Subgrupos. Teorema de Lagrange. Operaciones.

Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1 Tema 1.-. Grupos. Subgrupos. Teorema de Lagrange. Operaciones. 1.1. Primeras definiciones Definición 1.1.1. Una operación binaria en un conjunto A es una aplicación α : A A A. En un lenguaje más coloquial

Más detalles

TEMA 6. EIGENVALORES Y EIGENVECTORES

TEMA 6. EIGENVALORES Y EIGENVECTORES TEMA 6. EIGENVALORES Y EIGENVECTORES M. C. Roberto Rosales Flores INSTITUTO TECNOLÓGICO SUPERIOR DE TLAXCO Ingeniería en Logística M. C. Roberto Rosales Flores (ITST TEMA 6. EIGENVALORES Y EIGENVECTORES

Más detalles

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales:

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales: ADICIÓN Y RESTA DE NUMEROS REALES ADICIÓN L a adición o suma de números reales se representa mediante el símbolo más (+) y es considerada una operación binaria porque se aplica a una pareja de números,

Más detalles

Espacios vectoriales y aplicaciones lineales.

Espacios vectoriales y aplicaciones lineales. Práctica 2 Espacios vectoriales y aplicaciones lineales. Contenido: Localizar bases de espacios vectoriales. Suma directa. Bases y dimensiones. Cambio de base. Aplicaciones lineales. Matriz asociada en

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 49 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial.

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial. Espacios vectoriales Espacios y subespacios R n es el conjunto de todos los vectores columna con n componentes. Además R n es un espacio vectorial. Ejemplo Dados dos vectores de R por ejemplo u = 5 v =

Más detalles

Números Reales. MathCon c 2007-2009

Números Reales. MathCon c 2007-2009 Números Reales z x y MathCon c 2007-2009 Contenido 1. Introducción 2 1.1. Propiedades básicas de los números naturales....................... 2 1.2. Propiedades básicas de los números enteros........................

Más detalles

Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 2012

Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 2012 Grupo: Matrícula: Nombre: Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 22. (pts) Sea A una matriz cuadrada. Indique validez a cada una de las siguientes

Más detalles

Las matrices Parte 1-2 o bachillerato

Las matrices Parte 1-2 o bachillerato Parte 1-2 o bachillerato wwwmathandmatesurlph 2014 1 Introducción Generalidades 2 Definición Ejercicio 1 : Suma de dos matrices cuadradas 2x2 Ejercicio 2 : Suma de dos matrices cuadradas 3x3 Propiedades

Más detalles

MATRICES Y DETERMINANTES

MATRICES Y DETERMINANTES Capítulo 6 MATRICES Y DETERMINANTES 6.. Introducción Las matrices y los determinantes son herramientas del álgebra que facilitan el ordenamiento de datos, así como su manejo. Los conceptos de matriz y

Más detalles

9.1 Primeras definiciones

9.1 Primeras definiciones Tema 9- Grupos Subgrupos Teorema de Lagrange Operaciones 91 Primeras definiciones Definición 911 Una operación binaria en un conjunto A es una aplicación α : A A A En un lenguaje más coloquial una operación

Más detalles

Álgebra lineal y matricial

Álgebra lineal y matricial Capítulo Álgebra lineal y matricial.. Vectores y álgebra lineal Unconjuntodennúmerosreales(a,,a n )sepuederepresentar: como un punto en el espacio n-dimensional; como un vector con punto inicial el origen

Más detalles

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n. Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular

Más detalles

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d

Relaciones binarias. ( a, b) = ( c, d) si y solamente si a = c y b = d Relaciones binarias En esta sección estudiaremos formalmente las parejas de objetos que comparten algunas características o propiedades en común. La estructura matemática para agrupar estas parejas en

Más detalles

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta.

MÉTODOS DE ELIMINACIÓN Son tres los métodos de eliminación más utilizados: Método de igualación, de sustitución y de suma o resta. ECUACIONES SIMULTÁNEAS DE PRIMER GRADO CON DOS INCÓGNITAS. Dos o más ecuaciones con dos incógnitas son simultáneas cuando satisfacen iguales valores de las incógnitas. Para resolver ecuaciones de esta

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Primeras definiciones Una aplicación lineal de un K-ev de salida E a un K-ev de llegada F es una aplicación f : E F tal que f(u + v) = f(u) + f(v) para todos u v E f(λ u) = λ f(u)

Más detalles

GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008

GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008 1. Sean los puntos A (1, 0,-1) y B (,-1, 3). Calcular la distancia del origen de coordenadas a la recta que pasa por A y B. Calculemos la recta que pasa por A y B. El vector AB es (1,-1,4) y por tanto

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1 1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1.1. ESPACIOS VECTORIALES 1. Analizar cuáles de los siguientes subconjuntos de R 3 son subespacios vectoriales. a) A = {(2x, x, 7x)/x R} El conjunto A es una

Más detalles

MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS

MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS Tema 1.- MATRICES MATRICES PRODUCTO DE MATRICES POTENCIAS NATURALES DE MATRICES CUADRADAS Fundamentos Matemáticos de la Ingeniería 1 Un poco de historia Lord Cayley es uno de los fundadores de la teoría

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

José de Jesús Ángel Ángel, c 2010. Factorización

José de Jesús Ángel Ángel, c 2010. Factorización José de Jesús Ángel Ángel, c 2010. Factorización Contenido 1. Introducción 2 1.1. Notación.................................. 2 2. Factor común 4 2.1. Ejercicios: factor común......................... 4

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires

Fascículo 2. Álgebra Lineal. Cursos de grado. Gabriela Jeronimo Juan Sabia Susana Tesauri. Universidad de Buenos Aires Fascículo 2 Cursos de grado ISSN 1851-1317 Gabriela Jeronimo Juan Sabia Susana Tesauri Álgebra Lineal Departamento de Matemática Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires 2008

Más detalles

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES 1 La ecuación 2x - 3 = 0 se llama ecuación lineal de una variable. Obviamente sólo tiene una solución. La ecuación -3x + 2y = 7 se llama ecuación lineal de

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES Capítulo 7 SISTEMAS DE ECUACIONES LINEALES 7.1. Introducción Se denomina ecuación lineal a aquella que tiene la forma de un polinomio de primer grado, es decir, las incógnitas no están elevadas a potencias,

Más detalles

Valores propios y vectores propios

Valores propios y vectores propios Capítulo 6 Valores propios y vectores propios En este capítulo investigaremos qué propiedades son intrínsecas a una matriz, o su aplicación lineal asociada. Como veremos, el hecho de que existen muchas

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES

FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES Eleonora Catsigeras 6 de mayo de 997 Notas para el curso de Análisis Matemático II Resumen Se enuncia sin demostración

Más detalles

Construcción de bases en el núcleo e imagen de una transformación lineal

Construcción de bases en el núcleo e imagen de una transformación lineal Construcción de bases en el núcleo e imagen de una transformación lineal Objetivos. Estudiar el algoritmo para construir una base del núcleo y una base de la imagen de una transformación lineal. Requisitos.

Más detalles

VII. Estructuras Algebraicas

VII. Estructuras Algebraicas VII. Estructuras Algebraicas Objetivo Se analizarán las operaciones binarias y sus propiedades dentro de una estructura algebraica. Definición de operación binaria Operaciones como la suma, resta, multiplicación

Más detalles

Multiplicación de Polinomios. Ejercicios de multiplicación de polinomios. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com.

Multiplicación de Polinomios. Ejercicios de multiplicación de polinomios. www.math.com.mx. José de Jesús Angel Angel. jjaa@math.com. Multiplicación de Polinomios Ejercicios de multiplicación de polinomios www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2008 Contenido 1. Antecedentes 2 2. Multiplicación de monomios

Más detalles

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R.

ALGEBRA LINEAL. Héctor Jairo Martínez R. Ana María Sanabria R. ALGEBRA LINEAL Héctor Jairo Martínez R. Ana María Sanabria R. SEGUNDO SEMESTRE 8 Índice general. SISTEMAS DE ECUACIONES LINEALES.. Introducción................................................ Conceptos

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades

5.1Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal y sus propiedades 5- ransformaciones Lineales 5Definición transformación lineal de núcleo ó kernel, e imagen de una transformación lineal sus propiedades Se denomina transformación lineal a toda función,, cuo dominio codominio

Más detalles

Anexo 1: Demostraciones

Anexo 1: Demostraciones 75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:

Más detalles

Curso de Procesamiento Digital de Imágenes

Curso de Procesamiento Digital de Imágenes Curso de Procesamiento Digital de Imágenes Impartido por: Elena Martínez Departamento de Ciencias de la Computación IIMAS, UNAM, cubículo 408 http://turing.iimas.unam.mx/~elena/teaching/pdi-lic.html elena.martinez@iimas.unam.mx

Más detalles

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de

ÁLGEBRA LINEAL E.T.S. DE INGENIERÍA INFORMÁTICA INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN. Apuntes de. para la titulación de E.T.S. DE INGENIERÍA INFORMÁTICA Apuntes de ÁLGEBRA LINEAL para la titulación de INGENIERÍA TÉCNICA EN INFORMÁTICA DE GESTIÓN Fco. Javier Cobos Gavala Amparo Osuna Lucena Rafael Robles Arias Beatriz Silva

Más detalles

Apéndice Álgebra lineal con wxmaxima

Apéndice Álgebra lineal con wxmaxima Apéndice Álgebra lineal con wxmaxima Objetivos 1. Definir matrices con wxmaxima. 2. Aplicar con wxmaxima operaciones con matrices. 3. Aplicar transformaciones elementales de matrices. 4. Calcular el determinante

Más detalles

Al consejero A no le gusta ninguno de sus colegas como presidente. Dos consejeros (C y E) están de acuerdo en los mismos candidatos (B, C y D).

Al consejero A no le gusta ninguno de sus colegas como presidente. Dos consejeros (C y E) están de acuerdo en los mismos candidatos (B, C y D). ÁLGEBRA DE MATRICE Página 48 Ayudándote de la tabla... De la tabla podemos deducir muchas cosas: Al consejero A no le gusta ninguno de sus colegas como presidente. B solo tiene un candidato el C. Dos consejeros

Más detalles

Matrices y sus operaciones

Matrices y sus operaciones Capítulo 1 Matrices y sus operaciones 1.1. Definiciones Dados dos enteros m, n 1 y un cuerpo conmutativo IK, llamamos matriz de m filas y n columnas con coeficientes en IK a un conjunto ordenado de n vectores

Más detalles

Departamento de Matemática Aplicada FUNDAMENTOS DE MATEMATICAS. Ingeniería Química (Curso 2005-06) Álgebra Lineal Práctica 3

Departamento de Matemática Aplicada FUNDAMENTOS DE MATEMATICAS. Ingeniería Química (Curso 2005-06) Álgebra Lineal Práctica 3 1. Matrices en Matlab Departamento de Matemática Aplicada FUNDAMENTOS DE MATEMATICAS. Ingeniería Química (Curso 2005-06) Álgebra Lineal Práctica 3 Para introducir una matriz en Matlab se procede de la

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Tema 3 Aplicaciones Lineales 3.1 Introducción Se presentan en este tema las aplicaciones entre espacios vectoriales, particularmente las aplicaciones lineales, que de una manera informal pueden definirse

Más detalles

Tema 7: Valores y vectores propios

Tema 7: Valores y vectores propios Tema 7: es y clausura s Espacios y Permutaciones es y clausura Una permutación p = {p 1, p 2,..., p n } de los números {1, 2,..., n} es una nueva ordenación de los elementos {1, 2,..., n}, es decir, un

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS 2 Í N D I C E CAPÍTULO MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES MATRICES. MATRIZ. DEFINICIÓN 2. ALGUNOS

Más detalles

Diagonalización de matrices

Diagonalización de matrices diagonalizacion.nb Diagonalización de matrices Práctica de Álgebra Lineal, E.U.A.T., Grupos ºA y ºB, 2005 Algo de teoría Qué es diagonalizar una matriz? Para estudiar una matriz suele ser conveniente expresarla

Más detalles

Espacios vectoriales

Espacios vectoriales Espacios vectoriales Problemas teóricos Muchos de estos problemas me los han enseñado mis colegas: profesores Flor de María Correa Romero, Carlos Domínguez Albino, Sergio González Govea, Myriam Rosalía

Más detalles

Tema 3: Aplicaciones de la diagonalización

Tema 3: Aplicaciones de la diagonalización TEORÍA DE ÁLGEBRA II: Tema 3. DIPLOMATURA DE ESTADÍSTICA 1 Tema 3: Aplicaciones de la diagonalización 1 Ecuaciones en diferencias Estudiando la cría de conejos, Fibonacci llegó a las siguientes conclusiones:

Más detalles

Matrices. Definiciones básicas de matrices. José de Jesús Angel Angel

Matrices. Definiciones básicas de matrices.   José de Jesús Angel Angel Matrices Definiciones básicas de matrices www.math.com.mx José de Jesús Angel Angel jjaa@math.com.mx MathCon c 2007-2009 Contenido 1. Matrices 3 1.1. Matrices cuadradas.................................

Más detalles

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Ejercicio 1 Escribe las siguientes matrices en forma normal de Hermite: 2 4 3 1 2 3 2 4 3 1 2 3 1. 1 2 3 2. 2 1 1 3. 1 2 3 4. 2

Más detalles

4 Aplicaciones Lineales

4 Aplicaciones Lineales Prof Susana López 41 4 Aplicaciones Lineales 41 Definición de aplicación lineal Definición 23 Sean V y W dos espacios vectoriales; una aplicación lineal f de V a W es una aplicación f : V W tal que: 1

Más detalles

Objetivos: Al inalizar la unidad, el alumno:

Objetivos: Al inalizar la unidad, el alumno: Unidad 7 transformaciones lineales Objetivos: Al inalizar la unidad, el alumno: Comprenderá los conceptos de dominio e imagen de una transformación. Distinguirá cuándo una transformación es lineal. Encontrará

Más detalles

x : N Q 1 x(1) = x 1 2 x(2) = x 2 3 x(3) = x 3

x : N Q 1 x(1) = x 1 2 x(2) = x 2 3 x(3) = x 3 3 Sucesiones - Fernando Sánchez - - Cálculo I de números racionales 03 10 2015 Los números reales son aproximaciones que se van haciendo con números racionales. Estas aproximaciones se llaman sucesiones

Más detalles

Valores y vectores propios de una matriz. Juan-Miguel Gracia

Valores y vectores propios de una matriz. Juan-Miguel Gracia Juan-Miguel Gracia Índice 1 Valores propios 2 Polinomio característico 3 Independencia lineal 4 Valores propios simples 5 Diagonalización de matrices 2 / 28 B. Valores y vectores propios Definiciones.-

Más detalles

Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL. x x1 n. θ y. 1 n x1 n ȳ1 n. Carlos Arce S. William Castillo E. Jorge González V.

Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL. x x1 n. θ y. 1 n x1 n ȳ1 n. Carlos Arce S. William Castillo E. Jorge González V. Universidad de Costa Rica Escuela de Matemática ALGEBRA LINEAL x x x1 n θ y y ȳ1 n 1 n x1 n ȳ1 n Carlos Arce S. William Castillo E. Jorge González V. 2003 Algebra Lineal Carlos Arce S., William Castillo

Más detalles

Tema 3 Resolución de Sistemas de Ecuaciones Lineales

Tema 3 Resolución de Sistemas de Ecuaciones Lineales Tema Resolución de Sistemas de Ecuaciones Lineales Índice Introducción 2 Método de Gauss 2 Resolución de sistemas triangulares 22 Triangulación por el método de Gauss 2 Variante Gauss-Jordan 24 Comentarios

Más detalles

Divisibilidad y números primos

Divisibilidad y números primos Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos

Más detalles

ESTRUCTURAS ALGEBRAICAS

ESTRUCTURAS ALGEBRAICAS ESTRUCTURAS ALGEBRAICAS Se ha trabajado con números complejos, polinomio y matrices y hemos efectuado con ellos ciertas operaciones: sin embargo no todas las operaciones se comportan de la misma manera,

Más detalles

ESTRUCTURAS ALGEBRAICAS. Parte 1

ESTRUCTURAS ALGEBRAICAS. Parte 1 ESTRUCTURAS ALGEBRAICAS Parte 1 ESTRUCTURAS ALGEBRAICAS Una estructura algebraica es una n-tupla (a 1,a 2,...,a n ), donde a 1 es un conjunto dado no vacío, y {a 2,...,a n } un conjunto de operaciones

Más detalles

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES

CURSO BÁSICO DE MATEMÁTICAS PARA ESTUDIANTES DE ECONÓMICAS Y EMPRESARIALES INECUACIONES NOTA IMPORTANTE: El signo de desigualdad de una inecuación puede ser,, < o >. Para las cuestiones teóricas que se desarrollan en esta unidad únicamente se utilizará la desigualdad >, siendo

Más detalles

Cómo introducir conceptos elementales sobre matrices y solución de sistemas de ecuaciones lineales desde la clase de EXCEL

Cómo introducir conceptos elementales sobre matrices y solución de sistemas de ecuaciones lineales desde la clase de EXCEL Cómo introducir conceptos elementales sobre matrices solución de sistemas de ecuaciones lineales desde la clase de EXCEL Lic. Eric Crespo Hurtado Dr. C. Tomás crespo Borges En 986, la junta directiva del

Más detalles

ESTRUCTURAS ALGEBRAICAS 1

ESTRUCTURAS ALGEBRAICAS 1 ESTRUCTURAS ALGEBRAICAS Se da la relación entre dos conjuntos mediante el siguiente diagrama: (, ) (2, 3) (, 4) (, 2) (7, 8) (, ) (3, 3) (5, ) (6, ) (, 6)........ 5 6......... 2 5 i) Observa la correspondencia

Más detalles

Espacios generados, dependencia lineal y bases

Espacios generados, dependencia lineal y bases Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................

Más detalles

Tema 3. Aplicaciones lineales. 3.1. Introducción

Tema 3. Aplicaciones lineales. 3.1. Introducción Tema 3 Aplicaciones lineales 3.1. Introducción Una vez que sabemos lo que es un espacio vectorial y un subespacio, vamos a estudiar en este tema un tipo especial de funciones (a las que llamaremos aplicaciones

Más detalles

Tronco común 1 Semestre

Tronco común 1 Semestre Tronco común 1 Semestre Programa de la asignatura: Álgebra lineal Universidad Abierta y a Distancia de México Tronco Común 1 Índice... 3 Presentación de la unidad... 3 Propósitos... 3 Competencia específica...

Más detalles

MATEMÁTICAS I TEMA 1: Espacios Vectoriales. 1 Definición de espacio vectorial. Subespacios

MATEMÁTICAS I TEMA 1: Espacios Vectoriales. 1 Definición de espacio vectorial. Subespacios Sonia L. Rueda ETS Arquitectura. UPM Curso 2007-2008. 1 MATEMÁTICAS I TEMA 1: Espacios Vectoriales 1 Definición de espacio vectorial. Subespacios Dados dos conjuntos V y K se llama ley de composición externa

Más detalles