LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS"

Transcripción

1 LÍMITES DE FUNCIONES. CONTINUIDAD RAMAS INFINITAS Página 7 REFLEIONA RESUELVE Aproimaciones sucesivas Comprueba que: f () =,5; f (,9) =,95; f (,99) =,995 Calcula f (,999); f (,9999); f (,99999); A la vista de los resultados anteriores, te parece razonable afirmar que, cuando se aproima a 5, el valor de f () se aproima a 7? Lo epresamos así: f () = 7 Si f () =, entonces: f (,999) =,9995; f (,9999) =,99995; f (,99999) =, f () = Calcula, análogamente, + 7. f () = 5,5; f (,9) = 5,95; f (,99) = 5,995; f (,999) = 5,9995; f (,9999) = 5,99995 f () = Página 9. Cada una de las siguientes funciones tiene uno o más puntos donde no es continua. Indica cuáles son esos puntos y qué tipo de discontinuidad presenta: + a) y = b) y = c) y = si? d) y = si = a) Rama infinita en = (asíntota vertical). b) Discontinuidad evitable en = 0 (le falta ese punto). c) Rama infinita en = 0 (asíntota vertical). d) Salto en =.

2 . Eplica por qué son continuas las siguientes funciones y determina el intervalo en el que están definidas: a) y = 5 b) y = 5, <, 0 Ì < c) y = d) y = +, Ó, Ì < 5 a) Está definida y es continua en todo Á. b) Está definida y es continua en 5]. Las funciones dadas mediante una epresión analítica sencilla (las que conocemos) son continuas donde están definidas. c) Está definida en todo Á. Es continua, también, en todo Á. El único punto en que se duda es el : las dos ramas toman el mismo valor para = : = 9 = 5 + = 5 Por tanto, las dos ramas empalman en el punto (, 5). La función es también continua en =. d) También las dos ramas empalman en el punto (, ). Por tanto, la función es continua en el intervalo en el que está definida: [0, 5). Página 5. Calcula el valor de los siguientes ites: a) b) (cos ) a) b) 0. Calcula estos ites: a) + 5 b) log , a) b) Página 5. Calcula k para que la función y = f () sea continua en Á: f () = + k,? 7, = 8 f () = 7 ( + k) = + k + k = 7 8 k =

3 UNIDAD Página 55. Calcula los ites de las funciones siguientes en los puntos que se indican. Donde convenga, especifica el valor del ite a la izquierda y a la derecha del punto. Representa gráficamente los resultados: a) f () = en, 0 y b) f () = en, 0 y ( ) c) f () = + en y d) f () = en 0 y + + a) f () = ( + ) ( ) f () f () = No eiste 8 f (). 8 0 f () = f () f () = No eiste 8 f (). b) f () = ( ) ( ) 8 f () 8 0 f () = 8 f () = 0 c) f () = ( ) ( ) ( + ) 8 f () = f () = f () No eiste 8 f ().

4 d) f () = ( + ) 8 0 f () = f () f () = No eiste 8 f (). Página 5. Di el ite cuando 8 de las siguientes funciones dadas por sus gráficas: y = f () y = f () y = f () y = f () f () f () = f () = f () no eiste. Página 57. Di el valor del ite cuando de las siguientes funciones: a) f () = b) f () = c) f () = d) f () = e) f () = f) f () = 5 b) d) 0 e) 0 f

5 UNIDAD Página 58. Calcula f () y representa sus ramas: a) f () = b) f () = c) f () = d) f () = 5 a) 0 b) 0 c) 0 d) +. Calcula f () y representa sus ramas: a) f () = b) f () = 5 c) f () = d) f () = + b) 0 c) d ) Página 59. Halla las asíntotas verticales y sitúa la curva respecto a ellas: a) y = b) y = + + 5

6 a) 8 f () f () = 8 + = es asíntota vertical. b) f () = 8 f () 8 + = es asíntota vertical.. Halla las asíntotas verticales y sitúa la curva respecto a ellas: a) y = b) y = a) f () = f () f () f () = = 0 es asíntota vertical. = es asíntota vertical. b) f () = f () = = es asíntota vertical. Página. Halla las ramas infinitas,, de estas funciones. Sitúa la curva respecto a su asíntota: a) y = b) y = + +

7 UNIDAD a) f () = 0 8 y = 0 es asíntota horizontal. b) y = + 8 y = es asíntota oblicua. +. Halla las ramas infinitas,, de estas funciones. Sitúa la curva respecto a sus asíntotas, si las hay: a) y = + b) y = + 7 a) f () = 8 y = es asíntota horizontal. b) grado de P grado de Q Ó f () = 8 rama parabólica hacia arriba. Página. Halla f () y representa la rama correspondiente: f () = + 7 f () = 7 = 7

8 . Halla f () y traza las ramas correspondientes: a) f () = ( + )/( ) b) f () = /( + ) a) f () = = = 0 b) f () = = = Página. Halla las ramas infinitas, de estas funciones, y sitúa la curva respecto a las asíntotas: a) y = b) y = + c) y = d) y = a) f () = 0 8 y = 0 es asíntota horizontal. b) f () = 0 8 y = 0 es asíntota horizontal. c) f () = 8 y = es asíntota horizontal. d) y = + 8 y = es asíntota oblicua. + 8

9 UNIDAD. Halla las ramas infinitas, cuando y si tienen asíntotas, sitúa la curva respecto a ellas: a) y = b) y = + + c) y = + d) y = + a) grado P grado Q Ó f () = 8 rama parabólica. b) f () = 8 y = es asíntota horizontal. c) y = y = + es asíntota oblicua. + d) f () = ( ) = 9

10 Página 9 EJERCICIOS PROBLEMAS PROPUESTOS PARA PRACTICAR Discontinuidades y continuidad a) Cuál de las siguientes gráficas corresponde a una función continua? b) Señala, en cada una de las otras cinco, la razón de su discontinuidad. a) b) c) d) e) f) a) Solo la a). b) b) Rama infinita en = (asíntota vertical). c) Rama infinita en = 0 (asíntota vertical). d) Salto en =. e) Punto desplazado en = ; f () = ; f () =. 8 f ) No está definida en =. Halla los puntos de discontinuidad, si los hay, de las siguientes funciones: a) y = + b) y = ( ) c) y = d) y = e) y = f) y = 5 + a) Continua. b) c) d) Continua. e) 0 y 5 f ) Continua. 0

11 UNIDAD Comprueba si las siguientes funciones son continuas en = 0 y en = : a) y = b) y = c) y = d) y = 7 a) No es continua ni en = 0 ni en =. b) Sí es continua en = 0, no en =. c) No es continua en = 0, sí en =. d) Continua en = 0 y en =. Indica para qué valores de Á son continuas las siguientes funciones: a) y = 5 b) y = c) y = d) y = e) y = 5 f) y = a) Á b) [, c) Á {0} 5 d) 0] f) Á ( ] 5 Comprueba que las gráficas de estas funciones corresponden a la epresión analítica dada y di si son continuas o discontinuas en =. a) f () = si si > + si < b) f () = si > c) f () = si si = a) Continua. b) Discontinua. c) Discontinua.

12 Comprueba si la función f () = si < 0 es continua en = 0. si Ó 0 Recuerda que para que f sea continua en = 0, debe verificarse que: f () = f (0) 8 0 f () = f () = f () = = f (0) Es continua en = 0. 7 Comprueba si las siguientes funciones son continuas en los puntos que se indican: ( )/ si < a) f () = en = + si > si < b) f () = en = (/) si Ó si Ì c) f () = en = + si > a) No, pues no eiste f ( ). b) f () = f () = f () =. Sí es continua en = c) f () =? f () =. No es continua en = Página 70 8 Visión gráfica del ite f () f () Estas son, respectivamente, las gráficas de las funciones: f () = y f () = ( + ) + Cuál es el ite de cada una de estas funciones cuando 8? Observa la función cuando 8 por la izquierda y por la derecha.

13 UNIDAD f () = f () = 8 f () = f () = f () No eiste 8 f (). 9 Sobre la gráfica de la función f (), halla: a) f () b) f () c) f () d) f () e) f () f) f () g) f () h) f () a) c) d) 0 e) 0 f ) g) h) 0 Límite en un punto 0 Calcula los siguientes ites: a) ( 5 ) b) ( ) c) d) 8 8 0,5 e) 0 + f) log 8 8 g) h) e a) 5 b) 0 c) d) e) f ) g) 0 h) e

14 Dada la función f () = + si < 0, halla: + si Ó 0 a) f () b) f () c) f () Para que eista ite en el punto de ruptura, tienen que ser iguales los ites laterales. a) 5 b) c) f () = f () = f () = Calcula los siguientes ites: a) b) c) h h d) h 7h h 8 0 h h 8 0 h Saca factor común y simplifica cada fracción. a) = = 8 0 ( ) 8 0 ( + ) b) = + = c) h (h ) = h(h ) = 0 h 8 0 h h 8 0 h (h 7) h 7 7 d) = = h 8 0 h h 8 0 Resuelve los siguientes ites: a) b) 8 8 c) + d) 8 e) + f) ( + ) ( ) a) = 8 ( ) b) + = ( + ) ( + ) = = ( + )

15 UNIDAD ( + ) ( + ) ( ) c) = d) = 8 ( + ) ( ) 8 ( ) ( + ) e) = f ) ( )( + + +) = 8 ( + ) ( + ) 8 ( )( +) Calcula el ite de la función f () = en =, = 0 y =. + 8 f () = f () = f () = 8 + f () Límite cuando o 5 Calcula los siguientes ites y representa la información que obtengas: a) (7 + ) b) ( c) + 7 d) (7 ) Dale a valores grandes y saca conclusiones. Calcula el ite de las funciones del ejercicio anterior cuando y representa la información que obtengas. Resolución de los ejercicios 5 y : ) a) (7 + ) (7 + ) = 0 5 b) 0 = 8 5 c) ( + 7) 8 d) (7 ) = 8 5

16 7 Comprueba, dando valores grandes a, que las siguientes funciones tienden a 0 cuando. a) f () = b) f () = 0 7 c) f () = d) f () = 00 0 a) f(00) = 0,000 b) f(00) = 0,00 f () = 0 f () = 0 c) f (0 000) = 0,07 d) f (00) = 0,00000 f () = 0 f () = 0 8 Calcula el ite cuando y cuando de cada una de las siguientes funciones. Representa los resultados que obtengas. a) f () = 0 b) f () = c) f () = d) f () = Cuando : a) f () = b) f () = c) f () d) f () Cuando a) f () b) f () = c) f () = d) f ()

17 UNIDAD Página 7 9 Calcula los siguientes ites y representa las ramas que obtengas: a) b) ( ) c) d) ( ) e) f) + g) h) Calcula el ite de todas las funciones del ejercicio anterior cuando Resolución de los ejercicios 9 y 0: a) = 0; = 0 ( ) ( ) b) = c) = 0; = 0 d) = 0; = 0 ( ) ( ) e) = ; = + + 7

18 f) = g) = ; = + + h) = ; = 5 5 Resuelve los siguientes ites: a) b) ( ) ( ) c) d) ( + ) + 5 a) c) 0 d) Calcula el ite cuando y cuando de las siguientes funciones y representa las ramas que obtengas: a) f () = b) f () = 0 c) f () = d) f () = a) f () = 0; f () = 0 b) f () f () = c) f () = f () d) f () = ; f () = 8

19 UNIDAD Asíntotas Halla las asíntotas de las siguientes funciones y sitúa la curva respecto a cada una de ellas: a) y = b) y = + + c) y = d) y = a) Asíntotas: b) Asíntotas: = ; y = = ; y = c) Asíntotas: d) Asíntotas: = ; y = = ; y = 0 Halla las asíntotas de las siguientes funciones y sitúa la curva respecto a ellas: a) y = b) y = + + c) y = d) y = a) Asíntota: y = b) Asíntota: y = 0 9

20 c) Asíntotas: = 0; y = d) Asíntota: = 5 Halla las asíntotas de las siguientes funciones y sitúa la curva respecto a ellas: + a) f () = b) f () = 5 c) f () = d) f () = e) f () = + 9 f) f () = ( + ) a) Asíntota vertical: = Asíntota horizontal: y = b) Asíntota vertical: = 5 Asíntota horizontal: y = c) Asíntota vertical: = Asíntota horizontal: y = 0 d) Asíntota vertical: y = 0 No tiene más asíntotas. 0

21 UNIDAD e) Asíntota vertical: =, = Asíntota horizontal: y = 0 f ) Asíntota vertical: = Asíntota horizontal: y = 0 Cada una de las siguientes funciones tiene una asíntota oblicua. Hállala y estudia la posición de la curva respecto a ella: a) f () = b) f () = + + c) f () = d) f () = + e) f () = f) f () = + a) = Asíntota oblicua: y = b) + = + + Asíntota oblicua: y = + c) = Asíntota oblicua: y = d) + 0 = + + Asíntota oblicua: y = +

22 e) = + Asíntota oblicua: y = f) + = + Asíntota oblicua: y = PARA RESOLVER 7 Calcula los ites de las siguientes funciones en los puntos que anulan su denominador: a) f () = b) f () = + c) f () = t d) f (t) = t t a) f () = f () b) f () = 8 0 ( ) f () f () = f () f () = c) f () = ( ) ( ) ( + ) 8 f () = = ; f () = f () t d) f (t) = (t ) ; f (t ) = t t Halla las asíntotas de las siguientes funciones y sitúa la curva respecto a cada una de ellas: 5 a) y = b) y = c) y = + 7 d) y = e) y = f) y =

23 UNIDAD a) Asíntotas: = ; y = / / 5/ 5 b) Asíntotas: y = ; = 7 7/ c) Asíntotas: y = 0; = ± d) Asíntota: y = e) Asíntotas: y = ; =, = f ) Asíntotas: = ; y =

24 9 Halla las ramas infinitas de estas funciones. Cuando tengan asíntotas, sitúa la curva: a) y = ( + ) b) y = c) y = ( + ) d) y = e) y = f) y = a) f () = f () = Asíntota vertical: = 0 b) Asíntota vertical: = Asíntota horizontal: y = c) Asíntotas verticales: =, = Asíntota horizontal: y = 0 d) Asíntota horizontal: y = e) Asíntota vertical: = Asíntota oblicua: y = f) f () = f () = Asíntota vertical: = 5 5

25 UNIDAD Página 7 0 Prueba que la función f () = solo tiene una asíntota vertical y otra horizontal. Al hallar 8 f () verás que no f () = ; f () f () = f () = Asíntota vertical: = 0 Asíntota horizontal: y = Calcula los siguientes ites y representa los resultados que obtengas: a) b) a) ( ) ( + ) = = 8 8 ( ) 5 b) + ( ) ( ) = = ( ) 8 Calculamos los ites laterales: = Calcula los siguientes ites y representa los resultados que obtengas: a) b) c) d)

26 a) ( ) = = ( + ) 8 0 ( + ) Calculamos los ites laterales: = 8 0 ( + ) ( + ) b) + = ( + ) = ( + ) Calculamos los ites laterales: 8 + = c) ( ) ( = ) = 8 8 d) 8 ( ) ( + ) = = ( ) 8 Calculamos los ites laterales: ( + ) ( + ) = ( + ) Halla las asíntotas de estas funciones: a) y = b) y = + c) y = + 5 d) y = ( ) e) y = + f) y = a) y = + b) Asíntota vertical: = 0 ( ) ( + ) Asíntotas verticales: =, = Asíntota oblicua: y = c) Asíntota horizontal: y = d) Asíntota horizontal: y = 0 Asíntotas verticales: = ± e) Asíntota vertical: = 5 f ) Asíntota vertical: = 0 Asíntota oblicua: y = Asíntota oblicua: y = + 5

27 UNIDAD Representa las siguientes funciones y eplica si son discontinuas en alguno de sus puntos: si < a) f () = 5 si Ó si Ì 0 b) f () = + si > 0 c) f () = si < si > a) Discontinua en =. 5 b) Función continua. 8 8 c) Discontinua en =. 5 5 a) Calcula el ite de las funciones del ejercicio anterior en = y = 5. b) Halla, en cada una de ellas, el ite cuando y cuando a) f () = 7; f () = 0; f () f () b) f () = ; f () = ; f () = f () = c) 8 f () = 7; 8 5 f () = 5; f () = f () = 7

28 Calcula, en cada caso, el valor de k para que la función f () sea continua en todo Á. a) f () = si Ì (/) si < b) f () = + k si > + k si Ó ( c) f () = + )/ si? 0 k si = 0 a) 8 f () = 5 = f () f () = + k = + k 8 k = b) f () = f () = + k = f () 5 = + k 8 k = / ( + ) c) f () = = 8 k = Estudia la continuidad de estas funciones: si < a) f () = / si Ó si Ó b) f () = si < < si Ó c) f () = si Ì 0 + si > 0 a) f () = f () = f () = 8 Continua en = ? 8 Continua. Es continua en Á. b) f () = f () = f ( ) = 0 8 Continua en = f () = f () = f () = 0 8 Continua en = ? y? 8 Continua. Es continua en Á. c) f () =? f () = 8 Discontinua en = Si? 0, es continua. 8

29 UNIDAD 8 Calcula a para que las siguientes funciones sean continuas en = : + si Ì ( a) f () = b) f () = )/( ) si? a si > a si = a) 8 f () = = f () f () = a 8 + ( ) ( + ) b) f () = = 8 8 ( ) f () = a = a 8 a = 9 En una empresa se hacen montajes en cadena. El número de montajes realizados por un trabajador sin eperiencia depende de los días de entrenamiento según la función M(t) = (t en días). 0t t + a) Cuántos montajes realiza el primer día? el décimo? b) Representa la función sabiendo que el periodo de entrenamiento es de un mes. c) Qué ocurriría con el número de montajes si el entrenamiento fuera mucho más largo? a) M () = montajes el primer día. M (0) =, 8 montajes el décimo día. a = b) 5 MONTAJES DÍAS 0t t + c) Se aproima a 0 ( pues = 0 ). t 8 0 Los gastos de una empresa dependen de sus ingresos,. Así: 0, + 00 si 0 Ì 000 g () = 000/( + 50)si > 000 donde los ingresos y los gastos vienen epresados en euros. a) Representa g () y di si es función continua. b) Calcula el ite de g () cuando y eplica su significado. 9

30 a) GASTOS ( ) Es continua INGRESOS ( ) b) g () = 000. Como máimo gasta 000 al mes. Página 7 CUESTIONES TEÓRICAS Se puede calcular el ite de una función en un punto en el que la función no esté definida? Puede ser la función continua en ese punto? Sí se puede calcular, pero no puede ser continua. Puede tener una función más de dos asíntotas verticales? más de dos asíntotas horizontales? Pon ejemplos. Sí. Por ejemplo, f () = tiene = 0, = y = como asíntotas verticales. ( )( ) No puede tener más de dos asíntotas horizontales, una hacia y otra como en esta gráfica: El denominador de una función f () se anula en = a. Podemos asegurar que tiene una asíntota vertical en = a? Pon ejemplos. No. Por ejemplo, f () = + en = 0; puesto que: ( + ) f () = =

31 UNIDAD Representa una función que cumpla estas condiciones: f () = f () =, f () = 0 8 Es discontinua en algún punto? Sí, es discontinua al menos en =. PARA PROFUNDIZAR 5 Halla las ramas infinitas de las siguientes funciones eponenciales: a) y = + b) y = 0,75 c) y = + e d) y = e a) f () = f () = 0 Asíntota horizontal cuando y = 0 b) f () = 0; f () = Asíntota horizontal cuando : y = 0 c) f () = f () = Asíntota horizontal cuando y = d) f () = 0; f () = Asíntota horizontal cuando y = 0 Puesto que ( ) = halla un valor de para el cual sea mayor que Por ejemplo, para = 00, f () = Halla un valor de para el cual f () = 5 sea menor que 0,00. Por ejemplo, para = 000, f () = 0,000.

32 8 Cuál es la asíntota vertical de estas funciones logarítmicas? Halla su ite cuando : a) y = log ( ) b) y = ln( + ) a) Asíntota vertical: = f () = b) Asíntota vertical: = f () = Página 7 AUTOEVALUACIÓN 5, Ì. Calcula los ites de la función f () = en = 0, = y = 5. 7, > Eplica si la función es continua en =. f () = ( 5) = f () = ( 5) = 8 f () = ( 7) = No eiste el ite de f () cuando tiende a. f () = ( 7) = La función no es continua en =, porque no eiste el ite de la función en ese punto.. Halla los siguientes ites: a) b) c) ( ) 8 a) = = b) = = c) = 8 ( ) (Si 8 + o si 8, los valores de la función son positivos.)

33 UNIDAD. a) b) Sobre la gráfica de estas dos funciones, halla, en cada caso, los siguientes ites: f (); f (); f (); f () a) f () No tiene ite en =. 8 f () 8 f () = f () = 0 f () = b) f () = f () f () = f () = 8 8 f () = f () f () = No tiene ite en = , <. Calcula el valor que debe tomar a para que la función f () = a, Ó sea continua en =. Puede ser discontinua en otro punto? Para que f () sea continua en =, debe cumplir que: f () = f () Veamos: f () = ( 5) = f () = 8 + ( a) = a Como deben coincidir: = a 8 a =

34 5, si < Por tanto, f () =, si Ó No puede ser discontinua en ningún otro punto, por estar definida mediante funciones polinómicas. 5. Justifica qué valor debe tomar a para que la función sea continua en Á: a si Ì f () = a si > f () = a si Ì a si > La función es continua para valores de menores que y mayores que, porque ambos tramos son rectas. Para que sea continua en =, debe cumplirse: f () = f () f () = a 8 f () f () = a f () = a Para que eista el ite, debe ser: a = a 8 a = 8 a = 8 +. Halla las asíntotas de la función y = y estudia la posición de la curva respecto a ellas. Asíntota vertical: f () = 8 f () 8 + Así, = es una asíntota vertical. Asíntota horizontal: f () = 8 y = Si, f () < 0 8 la curva está por debajo de la asíntota. Si f () > 0 8 la curva está por encima de la asíntota. No tiene asíntotas oblicuas.

35 UNIDAD 7. Representa una función que cumpla las siguientes condiciones: f () f () = f () = 0 f () = Estudia las ramas infinitas de la función y = y representa la información + que obtengas = = = 9. Cuál de las siguientes funciones tiene una asíntota oblicua? Hállala y sitúa la curva respecto a ella: + a) y = b) y = c) y = + ( ) + La única que tiene asíntota oblicua es la función b) y =. + + y = = + La asíntota es y =. Como > 0, la curva está por encima de la asíntota. 5

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS LÍMITES DE FUNCIONES. CONTINUIDAD RAMAS INFINITAS Página 7 REFLEIONA RESUELVE Aproimaciones sucesivas Comprueba que: f () = 6,5; f (,9) = 6,95; f (,99) = 6,995 Calcula f (,999); f (,9999); f (,99999);

Más detalles

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í Unidad. Límites de funciones. Continuidad y ramas infinitas Resuelve Página 7 A través de una lupa AUMENTO DISTANCIA (dm) El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página 7 REFLEXIONA Y RESUELVE Visión gráfica de los ites Describe análogamente las siguientes ramas: a) f() b) f() no eiste c) f() d) f() +@ e) f() @ f) f() +@ g) f()

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD UNIDAD 5 LÍMITES Y CONTINUIDAD Páginas 0 y Describe las siguientes ramas: a) f () b) f () no eiste c) f () d) f () + e) f () f) f () + g) f () h) f () no eiste; f () 0 i) f () + f () + j) f () 5 4 f ()

Más detalles

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD

TEMA 8: LÍMITES DE FUNCIONES. CONTINUIDAD TEMA 8: DE FUNCIONES. CONTINUIDAD 1. EN EL INFINITO En ocasiones interesa estudiar el comportamiento de una función (la tendencia) cuando los valores de se hacen enormemente grandes ( ) o enormemente pequeños

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página REFLEXIONA Y RESUELVE Algunos ites elementales Utiliza tu sentido común para dar el valor de los siguientes ites: a,, b,, @ c,, 5 + d,, @ @ + e,, @ f,, 0 @ 0 @

Más detalles

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 TEMA 11 LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN 11.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función en un

Más detalles

ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN

ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN ANÁLISIS DE FUNCIONES, LÍMITES Y CONTINUIDAD. RESUMEN Problema Datos Procedimiento Ejemplo Dominio de una La ecuación de Casos en los que en dominio no es IR: función la función Irracionales (ecluir valores

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Tema 7. Límites y continuidad de funciones

Tema 7. Límites y continuidad de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

FUNCIONES Y GRÁFICAS.

FUNCIONES Y GRÁFICAS. FUNCIONES Y GRÁFICAS. CONTENIDOS: Concepto de función. Gráfica de una función. Estudio cualitativo de funciones dadas por sus gráficas Idea intuitiva de continuidad de una función. Repaso de funciones

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Tema 4: Representación de funciones Índice:. Información obtenida de la función... Dominio de la función.. Simetrías..3. Periodicidad.4. Puntos de corte con los ejes..5. Ramas

Más detalles

UNIDAD 1: LÍMITES DE FUNCIONES. CONTINUIDAD

UNIDAD 1: LÍMITES DE FUNCIONES. CONTINUIDAD UNIDAD : LÍMITES Y CONTINUIDAD UNIDAD : LÍMITES DE FUNCIONES CONTINUIDAD ÍNDICE DE LA UNIDAD - INTRODUCCIÓN - LÍMITE DE UNA FUNCIÓN EN UN PUNTO LÍMITES LATERALES - LÍMITES EN EL INFINITO 5 4- ÁLGEBRA DE

Más detalles

MATEMÁTICAS I 1º Bachillerato Capítulo 7: Límites y continuidad

MATEMÁTICAS I 1º Bachillerato Capítulo 7: Límites y continuidad MATEMÁTICAS I º Bachillerato Capítulo 7: Límites y continuidad file:///c:/users/cuenta~/appdata/local/temp/b006%0limitesycontinuida D%0Adela. 00 Índice. CONCEPTO DE LÍMITE.. DEFINICIÓN.. LÍMITES LATERALES..

Más detalles

Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim

Límites. 1. Calcula los límites de las siguientes funciones en los puntos que se indican: 2 2 2 a) lim b) lim c) lim d) lim Límites CIT_H. Calcula los límites de las siguientes funciones en los puntos que se indican: ( ) + + + a) lim b) lim c) lim d) lim + + + + + e) lim f) lim g) lim h) lim + 0 + + 9 + j) lim k) lim l) lim

Más detalles

10 Cálculo. de derivadas. 1. La derivada. Piensa y calcula. Aplica la teoría

10 Cálculo. de derivadas. 1. La derivada. Piensa y calcula. Aplica la teoría 0 Cálculo de derivadas. La derivada Piensa y calcula Calcula mentalmente sobre la primera gráfica del margen: a) la pendiente de la recta secante, r, que pasa por A y B b) la pendiente de la recta tangente,

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA 1. MONOTONÍA (CRECIMIENTO O DECRECIMIENTO) Si una función es derivable en un punto = a, podemos determinar su crecimiento o decrecimiento en ese punto a partir del signo de

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES

LÍMITES Y CONTINUIDAD DE FUNCIONES Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos

Más detalles

Gráfica de una función

Gráfica de una función CAPÍTULO 9 Gráfica de una función 9. Bosquejo de la gráfica de una función Para gráficar una función es necesario:. Hallar su dominio sus raíces.. Decidir si es par o impar, o bien ninguna de las dos cosas..

Más detalles

1. Limite de Funciones

1. Limite de Funciones 1. Limite de Funciones 1.1. Introducción. Consideremos la función f() = { 1+ 2 si > 0 1 2 si < 0 Se observa que la función no está definida en 0 = 0. Sin embargo, se observa que cuando se consideran valores

Más detalles

SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA 1

SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA 1 MATEMÁTICAS:º BACHILLERATO SOLUCIONES HOJA 5: APLICACIONES DE LA DERIVADA.- Calcular los etremos relativos de las siguientes funciones: a) f ( ) D(f) (Por ser polinómica) ; Posibles máimos o mínimos 6

Más detalles

5Soluciones a los ejercicios y problemas Gráficamente Representamos en unos mismos ejes ambas funciones:

5Soluciones a los ejercicios y problemas Gráficamente Representamos en unos mismos ejes ambas funciones: Soluciones a los ejercicios y problemas Gráficamente Representamos en unos mismos ejes ambas funciones: Pág. y 6 Puntos de corte con los ejes: 9 (, 9) Eje : 6 0 8 ± + 8 ± 7 8 8 + 7 ( ), 0 (,8; 0) 7 ( ),

Más detalles

12. f(x) = 1 x-1 2 13. f(x) = x+2. x 15. f(x) = 2x+1. x 24. f(x) = x 2 +x+1 2 25. f(x) = x 2 -x-2. 1 21. f(x) = x 2 +x. x-1 27.

12. f(x) = 1 x-1 2 13. f(x) = x+2. x 15. f(x) = 2x+1. x 24. f(x) = x 2 +x+1 2 25. f(x) = x 2 -x-2. 1 21. f(x) = x 2 +x. x-1 27. . Determina el dominio de la función:. f() = -. f() =. f() = 4. f() = -6. f() = 6. f() = + 7. f() = - 8. f() = e 9. f() = + 0. f() = -. f() = -. f() = -. f() = + 4. f() = +. f() = + 6. f() = - + 7. f()

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 11 Y 12

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 11 Y 12 Colegio La Inmaculada Misioneras Seculares de Jesús Obrero Matemáticas 4º E.S.O. ACTIVIDADES DE LOS TEMAS Y. Representa en los mismos ejes las siguientes funciones: y = - ; b) y = ; c) y = +. Representa

Más detalles

Límites y continuidad

Límites y continuidad Estudio de la continuidad de la función en el punto = : Comprobemos, como primera medida, que la función está definida en =. Para =, tenemos que determinar f() = + = 6 + = 8, luego eiste. Calculamos, entonces

Más detalles

Advierta que la definición 1 requiere implícitamente tres cosas si f es continua en a:

Advierta que la definición 1 requiere implícitamente tres cosas si f es continua en a: SECCIÓN.5 CONTINUIDAD 9.5 CONTINUIDAD En la sección.3 se le hizo notar que a menudo se puede hallar el ite de una función cuando tiende a a, con sólo calcular el valor de la función en a. Se dice que las

Más detalles

ANÁLISIS DE FUNCIONES RACIONALES

ANÁLISIS DE FUNCIONES RACIONALES ANÁLISIS DE FUNCIONES RACIONALES ( x 9) Dada la función f( x) = x 4 DETERMINE: Dominio, asíntotas, intervalos de crecimiento, intervalos de concavidad, extremos relativos y puntos de inflexión, representar

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN

DERIVADAS. TÉCNICAS DE DERIVACIÓN DERIVADAS. TÉCNICAS DE DERIVACIÓN Página 5 REFLEXIONA Y RESUELVE Tangentes a una curva y f () 5 5 9 4 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(4). f'() 0; f'(9) ; f'(4) 4 Di otros

Más detalles

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3

8LÍMITES Y DERIVADAS. Problema 1. Problema 2. Problema 3 CONTENIDOS Límite y asíntotas Cálculo de límites Continuidad Derivadas Estudio de funciones Problemas de optimización Varias de las características de diferentes tipos de funciones ya han sido estudiadas

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

Procedimiento para determinar las asíntotas verticales de una función

Procedimiento para determinar las asíntotas verticales de una función DETERMINACIÓN DE ASÍNTOTAS EN UNA FUNCIÓN Las asíntotas son rectas a las cuales la función se va aproimando indefinidamente, cuando por lo menos una de las variables ( o y) tienden al infinito. Una definición

Más detalles

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS

TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS Tema 8 Límites de funciones, continuidad y asíntotas Matemáticas II º Bach 1 TEMA 8 LÍMITES DE FUNCIONES, CONTINUIDAD Y ASÍNTOTAS 8.1 LÍMITE DE UNA FUNCIÓN 8.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite

Más detalles

Gráfica de una función

Gráfica de una función CAPÍTULO 9 Gráfica de una función 9. Interpretación de gráficas símbolos Con la finalidad de reafirmar la relación eistente entre el contenido de un concepto, la notación simbólica utilizada para representarlo

Más detalles

tiene una rama infinita cuando x, f(x) o ambas al mismo tiempo crecen infinitamente. De esta manera el punto ( x, f ( x))

tiene una rama infinita cuando x, f(x) o ambas al mismo tiempo crecen infinitamente. De esta manera el punto ( x, f ( x)) Matemáticas II Curso 03-04 6. Asíntotas Se dice que una función y f ( tiene una rama infinita cuando, f( o ambas al mismo tiempo crecen infinitamente. De esta manera el punto (, f ( ) se aleja infinitamente

Más detalles

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática

CAPITULO 3. Aplicaciones de la Derivada. Licda. Elsie Hernández Saborío. Instituto Tecnológico de Costa Rica. Escuela de Matemática CAPITULO Aplicaciones de la Derivada Licda. Elsie Hernández Saborío Instituto Tecnológico de Costa Rica Escuela de Matemática Créditos Primera edición impresa: Rosario Álvarez, 1988. Edición Latex: Marieth

Más detalles

Lim Sinf = Lim Ssup = Área de f( x) = f( x) dx = Integral definida

Lim Sinf = Lim Ssup = Área de f( x) = f( x) dx = Integral definida Concepto de integral definida: INSTITUTO UNIVERSITARIO DE TECNOLOGÍA INTEGRAL DEFINIDA Sea una función continua definida en [a, b]. Supongamos que dividimos este intervalo en n subintervalos : [a, ], [,

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

MATEMÁTICAS. TEMA 5 Límites y Continuidad

MATEMÁTICAS. TEMA 5 Límites y Continuidad MATEMÁTICAS TEMA 5 Límites y Continuidad MATEMÁTICAS º BACHILLERATO CCSS. TEMA 5: LÍMITES Y CONTINUIDAD ÍNDICE. Introducción. Concepto de función. 3. Dominio e imagen de una función. 4. Gráfica de algunas

Más detalles

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL

TEMA 2. FUNCIONES REALES DE VARIABLE REAL 2.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL TEMA. FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL . FUNCIONES REALES DE VARIABLE REAL.5. GRÁFICAS DE FUNCIONES REALES DE VARIABLE REAL.5.1. DOMINIO, CORTES CON LOS

Más detalles

UNIDAD I: FUNCIONES Y LIMITES

UNIDAD I: FUNCIONES Y LIMITES UNIDAD I: FUNCIONES Y LIMITES Iniciamos el estudio del cálculo haciendo un repaso de funciones y gráficas, para luego introducirnos en el estudio de los ites. Esta unidad consta en el teto base, en el

Más detalles

CALCULO CAPITULO 1 1.6 ASINTOTAS VERTICALES Y HORIZONTALES

CALCULO CAPITULO 1 1.6 ASINTOTAS VERTICALES Y HORIZONTALES 1.6 ASINTOTAS VERTICALES Y HORIZONTALES 1.6.1.- Definición. Una asíntota es una recta que se encuentra asociada a la gráfica de algunas curvas y que se comporta como un límite gráfico hacia la cual la

Más detalles

1-Comportamiento de una función alrededor de un punto:

1-Comportamiento de una función alrededor de un punto: Matemática II 7 Modulo Límites continuidad En esta sección desarrollaremos el concepto de límite, una de las nociones fundamentales del cálculo. A partir de este concepto se desarrollan también los conceptos

Más detalles

Teoría de Conjuntos y Funciones

Teoría de Conjuntos y Funciones Elaborado por: Lic. Eleazar J. García República Bolivariana de Venezuela. Tinaco.- Estado Cojedes Teoría de Conjuntos Funciones Este capítulo comienza con el estudio de las nociones de la teoría de conjuntos

Más detalles

x + x 2 +1 = 1 1 = 0 = lím

x + x 2 +1 = 1 1 = 0 = lím UNIDAD Asíntota horizontal: 8 +@ + + = y = es asíntota horizontal hacia +@ (y > ). + + + + = = = 0 8 @ 8 +@ y = 0 es asíntota horizontal hacia @ (y < 0). CUESTIONES TEÓRICAS 30 Qué podemos decir del grado

Más detalles

1. JUNIO 2014. OPCIÓN A. La función de beneficios f, en miles de euros, de una empresa depende de la cantidad invertida x, en miles de euros, en un

1. JUNIO 2014. OPCIÓN A. La función de beneficios f, en miles de euros, de una empresa depende de la cantidad invertida x, en miles de euros, en un Selectividad Andalucía Matemáticas Aplicadas a las Ciencias Sociales Bloque Funciones EJERCICIOS DE EXÁMENES DE SELECTIVIDAD ANDALUCÍABLOQUE FUNCIONES 1 JUNIO 014 OPCIÓN A La función de beneficios f en

Más detalles

UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.

UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD. IES Padre Poveda (Guadi) UNIDAD 9 LÍMITES DE FUNCIONES. CONTINUIDAD.. Límite de una función en un punto... Límites laterales... Límite de una función en un punto.. Límites en el infinito... Comportamiento

Más detalles

representación gráfica de funciones

representación gráfica de funciones representación gráfica de funciones Esta Unidad pretende ser una aplicación práctica de todo lo aprendido hasta ahora en el bloque de Análisis. En ella nos centraremos en las funciones polinómicas y racionales.

Más detalles

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS

ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS ANÁLISIS DESCRIPTIVO DE FUNCIONES Y GRÁFICAS INTRODUCCIÓN La noción actual de función comienza a gestarse en el siglo XIV, cuando empiezan a preocuparse de medir y representar las variaciones de ciertas

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

Matemáticas II TEMA 7 Límites y continuidad de funciones Problemas Propuestos

Matemáticas II TEMA 7 Límites y continuidad de funciones Problemas Propuestos Matemáticas II TEMA 7 Límites y continuidad de funciones Problemas Propuestos Definición de ites Demuestra, aplicando la definición, que ( ) Demuestra, aplicando la definición, que + + 8 Cálculo de ites

Más detalles

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES

DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES UNIDAD 6 DERIVADAS. TÉCNICAS DE DERIVACIÓN. APLICACIONES Página 5 Problema y f () 5 5 9 Halla, mirando la gráfica y las rectas trazadas, f'(), f'(9) y f'(). f'() 0; f'(9) ; f'() Di otros tres puntos en

Más detalles

FUNCIÓN EXPONENCIAL - FUNCIÓN LOGARÍTMICA

FUNCIÓN EXPONENCIAL - FUNCIÓN LOGARÍTMICA FUNCIÓN EXPONENCIAL - FUNCIÓN LOGARÍTMICA Problema : COMPARAR ÁREAS DE CUADRADOS A partir de un cuadrado realizaremos una nueva construcción: se trazan las diagonales y por cada vértice se dibuja una paralela

Más detalles

13 Integral. indefinida. 1. Reglas de integración. Piensa y calcula. Aplica la teoría

13 Integral. indefinida. 1. Reglas de integración. Piensa y calcula. Aplica la teoría Integral indefinida. Reglas de integración Piensa y calcula Calcula: a y =, y' = b y' =, y = c y = cos, y' = d y' = cos, y = a y' = b y = c y' = sen d y = sen Aplica la teoría. 7 Se aplica la integral

Más detalles

9 Funciones elementales

9 Funciones elementales Solucionario 9 Funciones elementales ACTIVIDADES INICIALES 9.I. Halla las raíces y factoriza los siguientes polinomios. a) P() 4 b) Q() 3 6 a) Se resuelve la ecuación 4 0. Las raíces son 6 y, y P() ( 6)(

Más detalles

Límites y Continuidad

Límites y Continuidad Universidad de Sonora División de Ciencias Eactas y Naturales Departamento de Matemáticas. Límites y Continuidad Problemas Resueltos Dr. José Luis Díaz Gómez Versión. Abril de 005 Dr. José Luis Díaz Gómez.

Más detalles

11 LÍMITES DE FUNCIONES. CONTINUIDAD

11 LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD EJERCICIOS PROPUESTOS. A qué valor tiende la función f ()? 5 a) Cuando se acerca a. c) Cuando se acerca a. b) Cuando se aproima a 5. d) Cuando se aproima a. a) se aproima

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la

Más detalles

Gráficas. Funciones Reales. Variable Real

Gráficas. Funciones Reales. Variable Real I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas Matemáticas de º de Bachillerato Gráficas de Funciones Reales de Variable Real Por Javier Carroquino CaZas Catedrático de matemáticas del I.E.S.

Más detalles

TEMA 5 LÍMITE DE FUNCIONES. CONTINUIDAD

TEMA 5 LÍMITE DE FUNCIONES. CONTINUIDAD TEMA 5 LÍMITE DE FUNCIONES. CONTINUIDAD 5.1. VISIÓN INTUITIVA DE LA CONTINUIDAD. TIPOS DE DISCONTINUIDADES. La idea de función continua es la que puede ser construida con un solo trazo. DISCONTINUIDADES

Más detalles

Página 322. 3. Representa: a) y = b) y = c) y = cos 2x + cos x. a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales:

Página 322. 3. Representa: a) y = b) y = c) y = cos 2x + cos x. a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales: Página. Representa: e e a) y = b) y = c) y = cos + cos e a) y = Dominio: D = Á {0} No es simétrica. Asíntotas verticales: f () = +@ 8 0 f () = +@ 8 0 + Asíntota vertical: = 0 f () = 0. Además, f () > 0

Más detalles

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que

Más detalles

5 Funciones. Límites y continuidad

5 Funciones. Límites y continuidad Solucionario 5 Funciones. Límites y continuidad ACTIVIDADES INICIALES 5.I. Representa la función: < si f ( ) si < 4 5 si 4 f 5.II. Factoriza estos polinomios: P() 4 5 P() 4 c) P() 4 7 8 P() 4 5 ( )( 5)

Más detalles

Límites y continuidad

Límites y continuidad Límites y continuidad.. Límites El ite por la izquierda de una función f en un punto 0, denotado como 0 f() es el valor al que se aproima f() cuando se acerca hacia 0 por la izquierda. De igual forma,

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase 9: Campos Direccionales, Curvas Integrales. Eistencia y Unicidad Elaborado por los profesores Edgar Cabello y Marcos González La ecuación y = f(, y) determina el coeficiente angular de la tangente

Más detalles

Matemática I Extremos de una Función. Definiciones-Teoremas

Matemática I Extremos de una Función. Definiciones-Teoremas Universidad Centroccidental Lisandro Alvarado Decanato de Agronomía Programa Ingeniería Agroindustrial Departamento de Gerencia Estudios Generales Matemática I Etremos de una Función. Definiciones-Teoremas

Más detalles

Solución. - Verticales: En los puntos excluidos del dominio donde el límite quede de la forma k. 3( ) = Asíntota vertical. = + x 2.

Solución. - Verticales: En los puntos excluidos del dominio donde el límite quede de la forma k. 3( ) = Asíntota vertical. = + x 2. Estudiar sus asíntotas y ramas ininitas valorando la posición de la unción respecto de ellas.. ( ) - Verticales: En los puntos ecluidos del dominio donde el límite quede de la orma D[ ( ) ] R { } 6 : Se

Más detalles

LÍMITES DE FUNCIONES Y DE SUCESIONES

LÍMITES DE FUNCIONES Y DE SUCESIONES LÍMITES DE FUNCIONES Y DE SUCESIONES Índice: 1.Funciones reales de variable real-------------------------------------------------------------- 1 2. Límite finito de una función en un punto.---------------------------------------------------

Más detalles

(Apuntes en revisión para orientar el aprendizaje)

(Apuntes en revisión para orientar el aprendizaje) (Apuntes en revisión para orientar el aprendizaje) LÍMITES DE FUNCIONES TRIGONOMÉTRICAS Para resolver límites que involucran funciones circulares directas, resulta conveniente conocer los límites de las

Más detalles

Funciones reales de variable real: límites y continuidad

Funciones reales de variable real: límites y continuidad Capítulo 3 Funciones reales de variable real: límites y continuidad 3.. Funciones reales de variable real 3... ntroducción Una función f : A B consiste en dos conjuntos, el dominio A = Dom(f) y el rango

Más detalles

Título: Límites de funciones y continuidad. Autor: c Juan José Isach Mayo

Título: Límites de funciones y continuidad. Autor: c Juan José Isach Mayo Título: Límites de funciones continuidad Autor: c Juan José Isach Mao Fecha:04 Septiembre del 007 Contents Límites 5. Conceptos previos.......................... 5. Límites de una función en un punto................

Más detalles

Concepto de función y funciones elementales

Concepto de función y funciones elementales Concepto de unción unciones elementales Matemáticas I - º Bachillerato Las unciones describen enómenos cotidianos, económicos, psicológicos, cientíicos Tales unciones se obtienen eperimentalmente, mediante

Más detalles

EJERCICIOS DE FUNCIONES REALES

EJERCICIOS DE FUNCIONES REALES EJERCICIOS DE FUNCIONES REALES.- La ley que relaciona el valor del área de un cuadrado con la longitud de su lado es una función. Sabemos que la epresión que nos relacionas ambas variables es. Observa

Más detalles

DESIGUALDADES página 1

DESIGUALDADES página 1 DESIGUALDADES página 1 1.1 CONCEPTOS Y DEFINICIONES Una igualdad en Álgebra es aquella relación que establece equivalencia entre dos entes matemáticos. Es una afirmación, a través del signo =, de que dos

Más detalles

164 Ecuaciones diferenciales

164 Ecuaciones diferenciales 64 Ecuaciones diferenciales Ejercicios 3.6. Mecánica. Soluciones en la página 464. Una piedra de cae desde el reposo debido a la gravedad con resistencia despreciable del aire. a. Mediante una ecuación

Más detalles

TEMA 5. REPRESENTACIÓN DE FUNCIONES

TEMA 5. REPRESENTACIÓN DE FUNCIONES 94 TEMA 5. REPRESENTACIÓN DE FUNCIONES 1. Representación de funciones 1.1. Dominio 1.. Puntos de corte con los ejes 1..1. Con el eje 1... Con el eje y 1.. Signo de la función 1.4. Periodicidad y simetría

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 49 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 0 Polinomios y fracciones algebraicas En esta Unidad aprenderás a: d Trabajar con epresiones polinómicas. d Factorizar polinomios. d Operar con fracciones algebraicas. d Descomponer una fracción algebraica

Más detalles

LÍMITES DE FUNCIONES, INDETERMINACIONES, CONTINUIDAD, RELACIÓN CON LA APLICACIÓN EN LA INTERPRETACIÓN DE SITUACIONES Y SU REPRESENTACIÓN.

LÍMITES DE FUNCIONES, INDETERMINACIONES, CONTINUIDAD, RELACIÓN CON LA APLICACIÓN EN LA INTERPRETACIÓN DE SITUACIONES Y SU REPRESENTACIÓN. LÍMITES DE FUNCIONES, INDETERMINACIONES, CONTINUIDAD, RELACIÓN CON LA APLICACIÓN EN LA INTERPRETACIÓN DE SITUACIONES Y SU REPRESENTACIÓN. Abel Martín. Profesor de Matemáticas del IES Pérez de Ayala (Oviedo

Más detalles

el blog de mate de aida CSI: Límites y continuidad. . Se lee x tiende a x por la derecha. , se expresa así: , se expresa así: por la derecha)

el blog de mate de aida CSI: Límites y continuidad. . Se lee x tiende a x por la derecha. , se expresa así: , se expresa así: por la derecha) pág. LÍMITE DE UNA FUNCIÓN EN UN PUNTO gnifica que toma valores cada vez más próimos a. Se lee tiende a. Ejemplo: ;,9;,;,;,8;,;,9;,;,999; Es una secuencia de números cada vez más próimos a. Escribimos.

Más detalles

Funciones elementales

Funciones elementales 10 Funciones elementales Objetivos En esta quincena aprenderás a: Reconocer y distinguir algunas de las funciones más habituales. Utilizar algunas funciones no lineales: cuadráticas, de proporcionalidad

Más detalles

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 gramos del primer elemento y 1 gramo del segundo; un kilo

Más detalles

Límite de una función

Límite de una función 1 CAPÍTULO 3 Límite de una función 1 3.3 Límites laterales Supongamos que f./ está definida en un cierto intervalo.a; 0 /. Si para números del dominio de f suficientemente próimos a 0 menores que 0, los

Más detalles

Continuidad, límites y asíntotas

Continuidad, límites y asíntotas 9 Continuidad, ites y asíntotas. Funciones especiales Piensa y calcula Completa la siguiente tabla: Parte entera de Parte decimal de Valor absoluto de 0,3 0,3,8,8 2,4 2,4 3,9 Ent () Dec () 3,9 0,3 0,3,8,8

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

1 Límites de funciones

1 Límites de funciones Héctor Palma Valenzuela. Dpto. de Matemática UdeC. 1 1 Límites de funciones En general, en la recta real R podemos considerar la noción de distancia entre dos puntos y a dada por la fórmula d (, a) = a

Más detalles

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS

REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS REPRESENTACIÓN DE FUNCIONES 11.1 ELEMENTOS FUNDAMENTALES PARA LA CONSTRUCCIÓN DE CURVAS DOMINIO - Polinomio : D = R - Cocientes : D = R {puntos que anulan el denominador} - Raíces de índice par : D = {Lo

Más detalles

, determinar: dominio y raíces; intervalos de continuidad y tipo de x 2 4 discontinuidades; asíntotas verticales y horizontales; su gráfica.

, determinar: dominio y raíces; intervalos de continuidad y tipo de x 2 4 discontinuidades; asíntotas verticales y horizontales; su gráfica. CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E00 ) Dadas las funciones f) +4, g) 3 & h), obtener: g/h)), h f)) &g h)), así como sus respectivos dominios. ) Dada la función definida por f) 3 5 5 3,

Más detalles

MODULO PRECALCULO TERCERA UNIDAD

MODULO PRECALCULO TERCERA UNIDAD MODULO PRECALCULO TERCERA UNIDAD Función Eponencial y Función Logarítmica 9 Alicia rió. "No sirve de nada intentarlo - dijo -; uno no puede creer cosas imposibles." - "Me atrevería a decir que no tienes

Más detalles

DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA

DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA (Apuntes en revisión para orientar el aprendizaje) DERIVADA DE UNA FUNCIÓN DEFINIDA EN FORMA PARAMÉTRICA f( t) f: ; t a, b y g() t De la regla de la cadena dy dy dt d dt d En donde dt se puede calcular

Más detalles

a) (1.7 puntos) Halle las coordenadas de sus extremos relativos y de su punto de inflexión, si existen.

a) (1.7 puntos) Halle las coordenadas de sus extremos relativos y de su punto de inflexión, si existen. Puntos de corte - Monotonía y Curvatura funciones simples Septiembre 2015 - Opción B Sea la función f() = 3 9 2 + 8 a) (1.7 puntos) Halle las coordenadas de sus etremos relativos y de su punto de infleión,

Más detalles

TEMA 1: Cálculo Diferencial de una variable

TEMA 1: Cálculo Diferencial de una variable TEMA 1: Cálculo Diferencial de una variable Cálculo para los Grados en Ingeniería EPIG - UNIOVI Curso 2010-2011 Los números Naturales I Los números Naturales N = f1, 2, 3, g I Principio de inducción Supongamos

Más detalles

FUNCIONES ELEMENTALES

FUNCIONES ELEMENTALES 0 FUNCIONES ELEMENTALES Página 5 REFLEIONA RESUELVE Asocia a cada una de las siguientes gráficas una ecuación de las de abajo: A B C D 80 (, π) 50 0 5 E F G H 0 (5, ) 50 0 50 0 (, ) 5 I J K L LINEALES

Más detalles

Polinomios y Ecuaciones

Polinomios y Ecuaciones Ejercicios de Cálculo 0 Prof. María D. Ferrer G. Polinomios y Ecuaciones.. Polinomios: Un polinomio o función polinómica es una epresión de la forma: n n n P a a a a a a = n + n + n + + + + 0 () Los números

Más detalles

Representación gráfica de funciones

Representación gráfica de funciones Gráfica de una fución Representación gráfica de funciones La gráfica de una función está formada por el conjunto de puntos (x, y) para todos los valores de x pertenecientes al Dominio de la función gráfica

Más detalles

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim

DERIVADAS. * Definición de derivada. Se llama derivada de la función f en el punto x=a al siguiente límite, si es que existe: lim DERIVADAS. CONTENIDOS. Recta tangente a una curva en un punto. Idea intuitiva del concepto de derivada de una función en un punto. Función derivada. sucesivas. Reglas de derivación Aplicación de la derivada

Más detalles

PÁGINA 77 PARA EMPEZAR

PÁGINA 77 PARA EMPEZAR Soluciones a las actividades de cada epígrafe PÁGINA 77 Pág. 1 PARA EMPEZAR El arte cósico Vamos a practicar el arte cósico : Si a 16 veces la cosa le sumamos 5, obtenemos el mismo resultado que si multiplicamos

Más detalles

1. Funciones y sus gráficas

1. Funciones y sus gráficas FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 200 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles