Tema 6: Ecuaciones e inecuaciones.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Tema 6: Ecuaciones e inecuaciones."

Transcripción

1 Tema 6: Ecuaciones e inecuaciones. Ejercicio 1. Encontrar, tanteando, alguna solución de cada una de las siguientes ecuaciones: 3 a) + 5 = 69 Probamos para =,3,4,... = = 3 3 = = = = 69. NO NO SÍ ES ES ES SOLUCIÓN SOLUCIÓN Hemos obtenido la solución = 4. SOLUCIÓN b) = 315 Probando con = 3,4, 5 se llega a que 5 es solución, pues 5 5 = 315. c) 4 = = 65 Por tanto, la solución está entre 5 y 6. Probamos con 5,3; 5,4; 5,5; 5,6; 5,7; = ,6 = 983,... La solución es 5,6... Si quisiéramos afinar más, probaríamos con 5,61; 5,6; 4 5,7 = 1055,... 5,63;... (Usa la calculadora)

2 4º ESO A [EDUCANDO CON WIRIS] 1. Las ecuaciones las resolveremos con la función Resolver ecuación dentro de la pestaña Operaciones. Pinchamos en ella y nos aparecerá el esquema de la ecuación. Después sólo tendremos que rellenarlo y pinchar en el para obtener nuestro resultado. Figura 1. Apartado a. Figura 3. Apartado b. Figura 3 4. Apartado c. Figura 4

3 [RESOLUCIÓN DE EJERCICIOS GUIADOS] TEMA 6. Ecuaciones e inecuaciones. Ejercicio. La suma de un número más su tercera parte es 48. De qué número se trata? Elegimos la incógnita: es el número buscado. La tercera parte del número es. 3 Planteamos la ecuación y la resolvemos: + = = 3 48 = 36 3 Solución: El número buscado es Las ecuaciones las resolveremos con la función Resolver ecuación dentro de la pestaña Operaciones. Pinchamos en ella y nos aparecerá el esquema de la ecuación. Figura 5. Para conocer el resultado sólo tenemos que rellenar con nuestros datos y pinchar en el Figura 6 3

4 4º ESO A [EDUCANDO CON WIRIS] Ejercicio 3. Rodrigo tiene Invierte una parte en un negocio y el resto en un banco. En el negocio gana el 1%; y en el banco, el 3%. Al final ha ganado Cuánto invirtió en cada sitio? Invierte en el negocio ; invierte en el banco Gana en el negocio el 1% de 0, Gana en el banco el 3% de ( ) 0,03 (54000 ) 0,1 + 0,03(54000 ) = 430 0,1 0,03 + 0, = 430 0,09 = 700 = 700 : 0,09 = Solución: Invierte en el negocio y en el banco. 1. Para resolver nuestra ecuación pincharemos en la pestaña Operaciones y después en Resolver ecuación. Entonces ya tendremos el esquema de nuestra ecuación. Figura 7. Para conocer el resultado sólo tenemos que rellenar con nuestros datos y pinchar en el Figura 8 4

5 [RESOLUCIÓN DE EJERCICIOS GUIADOS] TEMA 6. Ecuaciones e inecuaciones. Ejercicio 4. La suma de tres números consecutivos es 87. Cuáles son los números? El primer número es. Los siguientes, + 1 y +. Planteamos la ecuación: Solución: Los números son 8, 9 y ( + 1) + ( + ) = = 87 = 8 1. Las ecuaciones las resolveremos con la función Resolver ecuación dentro de la pestaña Operaciones. Pinchamos en ella y nos aparecerá el esquema de la ecuación. Figura 9. Para conocer el resultado sólo tenemos que rellenar con nuestros datos y pinchar en el Figura 10 5

6 4º ESO A [EDUCANDO CON WIRIS] Ejercicio 5. Resolver las siguientes ecuaciones: a) = 0 6 ± = = =. Solución única b) = 0 7 ± ± 11 = =. Sin solución c) = = 0 5 = 45 = 9 = ± 9. Sin solución. 1. Las ecuaciones las resolveremos con la función Resolver ecuación dentro de la pestaña Operaciones. Pinchamos en ella y nos aparecerá el esquema de la ecuación. Después sólo tendremos que rellenarlo y pinchar en el para obtener nuestro resultado Figura 11 6

7 [RESOLUCIÓN DE EJERCICIOS GUIADOS] TEMA 6. Ecuaciones e inecuaciones.. Apartado a. Figura 1 3. Apartado b. Figura Apartado c. Figura 14 Ejercicio 6. Resolver: ( + 5) ( + 1)( 3) =

8 4º ESO A [EDUCANDO CON WIRIS] Desarrollamos el cuadrado y quitamos paréntesis: ( 3) = = = 0 11 ± 9 11± 3 = = 11± = 0 = 1 = 4 = 7 Hay dos soluciones: = 1 4 y = = Para resolver nuestra ecuación pincharemos en la pestaña Operaciones y después en Resolver ecuación. Entonces ya tendremos el esquema de nuestra ecuación. Figura 15. Para conocer el resultado sólo tenemos que rellenar con nuestros datos y pinchar en el Figura 16 8

9 [RESOLUCIÓN DE EJERCICIOS GUIADOS] TEMA 6. Ecuaciones e inecuaciones. Ejercicio 7. Resolver: ( 1) ( + )( ) = Quitamos los denominadores multiplicando por 4: ( 1) ( + )( ) = 3 Efectuamos los productos indicados: ( + 1) ( Quitamos paréntesis: 4 + 4) = = 3 Simplificamos y resolvemos: 4 ± = 0 = Hay dos soluciones: 1 = 1 y 3. 4 = ± = = 1 1 = Para resolver nuestra ecuación pincharemos en la pestaña Operaciones y después en Resolver ecuación. Entonces ya tendremos el esquema de nuestra ecuación. Figura 17. Para conocer el resultado sólo tenemos que rellenar con nuestros datos y pinchar en el 9

10 4º ESO A [EDUCANDO CON WIRIS] Figura 18 Ejercicio 8. El producto de dos números naturales consecutivos es 10. Qué números son? Llamamos y + 1 a los dos números. Ecuación: ( + 1) = 10 1± + 10 = 0 = ± 841 = = 1± 9 = 1 = 15 = 14 Como los dos números son naturales, solo nos vale la solución positiva. Los números buscados son 14 y 15. (Efectivamente, = 10 ). 1. Las ecuaciones las resolveremos con la función Resolver ecuación dentro de la pestaña Operaciones. Pinchamos en ella y nos aparecerá el esquema de la ecuación. Figura 19 10

11 [RESOLUCIÓN DE EJERCICIOS GUIADOS] TEMA 6. Ecuaciones e inecuaciones.. Para conocer el resultado sólo tenemos que rellenar con nuestros datos y pinchar en el Figura 0 Ejercicio 9. En un triángulo rectángulo, la hipotenusa mide 3 cm más que el cateto mayor, y este mide 3 cm más que el menor. Cuánto miden los tres lados? Figura 1 Llamamos al cateto menor. El otro cateto es + 3, y la hipotenusa, + 6. Por el teorema de Pitágoras: ( + 6) = + ( + 3) 6 ±1 = = = 3 Solo vale la solución positiva. = 9 6 ± 6 7 = 0 = = 11

12 4º ESO A [EDUCANDO CON WIRIS] Los tres lados miden 9 cm, 1 cm y 15 cm. Efectivamente, se cumple que = = 5 = Para resolver nuestra ecuación pincharemos en la pestaña Operaciones y después en Resolver ecuación. Entonces ya tendremos el esquema de nuestra ecuación. Figura. Para conocer el resultado sólo tenemos que rellenar con nuestros datos y pinchar en el Figura 3 Ejercicio 10. La superficie de un rectángulo es 8 sus lados? cm, y su perímetro, cm. Cuánto miden Si el perímetro mide cm, la suma de los dos lados desiguales es 11 cm. 1

13 [RESOLUCIÓN DE EJERCICIOS GUIADOS] TEMA 6. Ecuaciones e inecuaciones. Figura 4 Llamamos a la longitud de un lado y 11 a la del otro. El área de un rectángulo es el producto de sus lados: (11 ) = ± 9 11± 3 = = = 8 1 = 7 = 4 11± = 0 = Si = 7, entonces 11 = 4. Los dos lados miden 7 cm y 4 cm. Si = 4, entonces 11 = 7. Se llega a la misma solución = 1. Las ecuaciones las resolveremos con la función Resolver ecuación dentro de la pestaña Operaciones. Pinchamos en ella y nos aparecerá el esquema de la ecuación. Figura 5. Para conocer el resultado sólo tenemos que rellenar con nuestros datos y pinchar en el 13

14 4º ESO A [EDUCANDO CON WIRIS] Figura 6 Ejercicio 11. El área total de un cilindro de 15 cm de altura es Figura π cm. Hallar el radio. Recordemos que A = A + A TOTAL BASE LATERAL A BASE = πr A LATERAL = πr h = πr 15 = 30πr El área total, según nos dicen, es ecuación πr + 30πr = 500π. Dividiendo todo por π : 500π cm. Con todos estos resultados, construimos la 15 ± ± 35 r + 15r 50 = 0 r = = r = 5 1 r = 10 La única solución válida es 10. Es decir, el radio es de 10 cm. 14

15 [RESOLUCIÓN DE EJERCICIOS GUIADOS] TEMA 6. Ecuaciones e inecuaciones. 1. Para resolver nuestra ecuación pincharemos en la pestaña Operaciones y después en Resolver ecuación. Entonces ya tendremos el esquema de nuestra ecuación. Figura 8. Para conocer el resultado sólo tenemos que rellenar con nuestros datos y pinchar en el Figura 9 Ejercicio 1. El área total de un cilindro de 15 cm de altura es 1500 cm. Hallar su radio. Este problema es idéntico al anterior, pero el área no está dada para que se pueda simplificar. Para resolverlo, tendremos que manejar números aproimados. πr + πr 15 = 1500 πr + 30π 1500 = 0 30π ± (30π ) + 4 π 1500 r = = 9, 68 4π cm 15

16 4º ESO A [EDUCANDO CON WIRIS] 30 π + 4 π π = 4 π = 1. Las ecuaciones las resolveremos con la función Resolver ecuación dentro de la pestaña Operaciones. Pinchamos en ella y nos aparecerá el esquema de la ecuación. Figura 30. Para conocer el resultado sólo tenemos que rellenar con nuestros datos y pinchar en el Figura 31 Ejercicio 13. Un inversor deposita a un cierto porcentaje. Al cabo de un año añade y mantiene todo el capital al mismo porcentaje. Al finalizar el.º año le devuelven A qué porcentaje impuso su capital? Llamamos al índice de crecimiento anual. (Es decir, si el tanto por ciento es r, entonces es 1+ r / 100 ). 16

17 [RESOLUCIÓN DE EJERCICIOS GUIADOS] TEMA 6. Ecuaciones e inecuaciones. COMIENZO 1. er AÑO º AÑO FINAL ( ) Por tanto: ( ) = = 0 Se resuelve la ecuación y se obtiene como única raíz positiva 1,05. Si el índice de crecimiento anual es 1,05, entonces el porcentaje de aumento anual s del 5%. 1. Para resolver nuestra ecuación pincharemos en la pestaña Operaciones y después en Resolver ecuación. Entonces ya tendremos el esquema de nuestra ecuación. Figura 3. Para conocer el resultado sólo tenemos que rellenar con nuestros datos y pinchar en el Figura 33 17

18 Ejercicio 14. 4º ESO A [EDUCANDO CON WIRIS] Un vendedor callejero lleva un cierto número de relojes, por los que piensa sacar 00. Pero comprueba que dos de ellos están deteriorados. Aumentando el precio de los restantes en 5, consigue recaudar la misma cantidad. Cuántos relojes llevaba? Llevaba relojes. El precio de cada uno iba a ser Le quedan relojes. Los vende a Este precio es 5 superior al anterior: = + 5 Esta ecuación es la misma que hemos resuelto arriba. La ecuación tiene dos soluciones: -8 y 10. Solo la positiva es válida, teniendo en cuenta el conteto del problema. Solución: Llevaba 10 relojes. 1. Las ecuaciones las resolveremos con la función Resolver ecuación dentro de la pestaña Operaciones. Pinchamos en ella y nos aparecerá el esquema de la ecuación. Figura 34. Para conocer el resultado sólo tenemos que rellenar con nuestros datos y pinchar en el Figura 35 18

19 [RESOLUCIÓN DE EJERCICIOS GUIADOS] TEMA 6. Ecuaciones e inecuaciones. Ejercicio 15. El lado menor de un triángulo rectángulo mide 5 cm. Calcular el otro cateto sabiendo que la hipotenusa mide 1 cm más que él. Figura = ( + 1) + 5 = = 5 1 = 1 Solución: El otro cateto mide 1 cm. 1. Para resolver nuestra ecuación pincharemos en la pestaña Operaciones y después en Resolver ecuación. Entonces ya tendremos el esquema de nuestra ecuación. Figura 37. Para conocer el resultado sólo tenemos que rellenar con nuestros datos y pinchar en el 19

20 4º ESO A [EDUCANDO CON WIRIS] Figura 38 Ejercicio 16. Resolver estas inecuaciones: a) + 1 < < 7 < 6 < 6 : < 3 Solución: puede ser cualquier número menor que 3. Conjunto de soluciones: (,3) b) : (Al cambiar de signo, cambia el sentido de la desigualdad) Solución: puede ser -1 o cualquier número mayor que él. Conjunto de soluciones: [ 1,+ ) 1. Cuando queremos resolver una inecuación debemos escribir resolver_inecuación y después la inecuación entre paréntesis. Para insertar los símbolos necesarios pinchamos encima de ellos dentro de la pestaña Símbolos. Cuando esté rellena la inecuación pinchamos en el para obtener nuestro resultado. 0

21 [RESOLUCIÓN DE EJERCICIOS GUIADOS] TEMA 6. Ecuaciones e inecuaciones. Figura 39. Apartado a. Figura Apartado b. Figura 41 Ejercicio 17. Resolver este sistema de inecuaciones: < 1.ª inecuación: ª inecuación: 5 < < 3 > 3 Sistema: Solución: 3 < 5 1

22 4º ESO A [EDUCANDO CON WIRIS] La solución del sistema es cualquier número mayor que 3, que no supere al Para resolver un sistema de inecuaciones escribimos, al igual que para una inecuación individual, Resolver_inecuación y después pinchamos en el icono de Lista vertical e indicamos cuántas inecuaciones queremos que tenga nuestro sistema y aceptamos. Figura 4. Cuando hemos aceptado, podemos ver que nos aparece el esquema de nuestro sistema de inecuaciones. Figura El último paso es rellenar los huecos con los datos de nuestro sistema y pinchar en el icono = para obtener nuestro resultado. Figura 44

23 [RESOLUCIÓN DE EJERCICIOS GUIADOS] TEMA 6. Ecuaciones e inecuaciones. Ejercicio 18. Cuánto vale un chocolate con churros en el bar de la esquina? Ayer fuimos 6 personas y nos costó más de 0. Hoy hemos idos 8 personas y ha costado menos de 30. Llamamos al precio del chocolate con churros: Ayer: 6 > 0 > 3,3 3,34 Hoy: 8 < 30 < 3,75 3,74 Por tanto, su precio está comprendido entre 3,34 y 3,74. Probablemente, sea 3, Para resolver un sistema de inecuaciones escribimos, al igual que para una inecuación individual, Resolver_inecuación y después pinchamos en el icono de Lista vertical e indicamos cuántas inecuaciones queremos que tenga nuestro sistema y aceptamos. Figura 45. Cuando hemos aceptado, podemos ver que nos aparece el esquema de nuestro sistema de inecuaciones. 3

24 4º ESO A [EDUCANDO CON WIRIS] Figura El último paso es rellenar los huecos con los datos de nuestro sistema y pinchar en el icono = para obtener nuestro resultado. Figura 47 Ejercicio Resolver la inecuación < + 1. Suprimimos denominadores y agrupamos los términos como en las ecuaciones: * 7 3 < + 3 < 7 5 < 5 5 > 5 > 1 (*) Al multiplicar por -1 para cambiar de signo, cambia también el signo de la desigualdad. Soluciones: ( 1, + ) 1. Para resolver un sistema de inecuaciones escribimos, al igual que para una inecuación individual, Resolver_inecuación y después pinchamos en el icono de Lista vertical e indicamos cuántas inecuaciones queremos que tenga nuestro sistema y aceptamos. 4

25 [RESOLUCIÓN DE EJERCICIOS GUIADOS] TEMA 6. Ecuaciones e inecuaciones. Figura 48. Cuando hemos aceptado, podemos ver que nos aparece el esquema de nuestro sistema de inecuaciones. Figura El último paso es rellenar los huecos con los datos de nuestro sistema y pinchar en el icono = para obtener nuestro resultado. Figura 50 5

Tema 4: Problemas aritméticos.

Tema 4: Problemas aritméticos. Tema 4: Problemas aritméticos. Ejercicio 1. Cómo se pueden repartir 2.310 entre tres hermanos de forma que al mayor le corresponda la mitad que al menor y a este el triple que al mediano? El reparto ha

Más detalles

) = 5. Operaciones con polinomios 54 SOLUCIONARIO 1. POLINOMIOS. SUMA Y RESTA 2. MULTIPLICACIÓN DE POLINOMIOS

) = 5. Operaciones con polinomios 54 SOLUCIONARIO 1. POLINOMIOS. SUMA Y RESTA 2. MULTIPLICACIÓN DE POLINOMIOS 54 SOLUCIONARIO 5. Operaciones con polinomios. POLINOMIOS. SUMA RESTA PIENSA CALCULA Dado el cubo de la figura, calcula en función de : a) El área. b) El volumen. a) A ( ) = 6 b) V ( ) = CARNÉ CALCULISTA

Más detalles

PARA EMPEZAR. Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 5 6, 7 9, 1 , 7 8 4, 0, 1, 2, 9

PARA EMPEZAR. Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 5 6, 7 9, 1 , 7 8 4, 0, 1, 2, 9 5 INECUACIONES PARA EMPEZAR 1 Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 7 Si sumas a cada fracción, se mantiene el orden? 0 5 6, 7 9, 1 15 El denominador común

Más detalles

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

PROBLEMAS RESUELTOS DE OPTIMIZACIÓN

PROBLEMAS RESUELTOS DE OPTIMIZACIÓN Problemas de optimiación Ejercicio PROBLEMAS RESUELTOS DE OPTIMIZACIÓN Un banco lana al mercado un plan de inversión cua rentabilidad R(, en euros, viene dada en función de la cantidad invertida, en euros,

Más detalles

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7 1 Resuelve las siguientes ecuaciones: a) x 1 = x + x 6 = c) x 9x + = d) x 6x 7 = = a) x = 1 y x = 1 x = 3 y x = c) x = 4 y x = 5 d) x = 1 y x = 7 Resuelve las siguientes ecuaciones de primer grado: a)

Más detalles

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas:

Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones. 1 Resuelve las siguientes ecuaciones bicuadradas: Ecuaciones e Inecuaciones. 83 Ejercicios para practicar con soluciones 1 Resuelve las siguientes ecuaciones bicuadradas: 4 a) x 13x + 36 = 0 4 b) x 6x + 5 = 0 a) Realizando el cambio de variable: x = z

Más detalles

Capítulo 5: Ecuaciones de segundo grado y sistemas lineales

Capítulo 5: Ecuaciones de segundo grado y sistemas lineales º de ESO Capítulo : Ecuaciones de segundo grado sistemas lineales Autora: Raquel Hernández Revisores: Sergio Hernández María Molero Ilustraciones: Raquel Hernández Banco de Imágenes de INTEF Ecuaciones

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 0 Polinomios y fracciones algebraicas En esta Unidad aprenderás a: d Trabajar con epresiones polinómicas. d Factorizar polinomios. d Operar con fracciones algebraicas. d Descomponer una fracción algebraica

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página REFLEXIONA Y RESUELVE Algunos ites elementales Utiliza tu sentido común para dar el valor de los siguientes ites: a,, b,, @ c,, 5 + d,, @ @ + e,, @ f,, 0 @ 0 @

Más detalles

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS PARA EMPEZAR Un cuadrado tiene 5 centímetros de lado. Escribe la epresión algebraica que da el área cuando el lado aumenta centímetros. A ( 5) Señala cuáles de las siguientes

Más detalles

ACTIVIDADES DEL TEMA 4

ACTIVIDADES DEL TEMA 4 ACTIVIDADES DEL TEMA. Resuelve las siguientes ecuaciones: a. 0 0 c. 0 b. 9 0 d. 0. Resuelve las siguientes ecuaciones bicuadradas: a. 0 b. 0. Resuelve las siguientes ecuaciones de primer grado: a. ( -

Más detalles

Saint Louis School Educación Matemática NB2. Miss Rocío Morales Vásquez

Saint Louis School Educación Matemática NB2. Miss Rocío Morales Vásquez Saint Louis School Educación Matemática NB2 Miss Rocío Morales Vásquez Objetivo s de aprendizajes Resolver adiciones y sustracciones de fracciones con igual denominador (denominadores 100, 12, 10, 8, 6,

Más detalles

Problemas Tema 1 Enunciados de problemas de Repaso 4ºESO

Problemas Tema 1 Enunciados de problemas de Repaso 4ºESO página / Problemas Tema Enunciados de problemas de Repaso 4ºESO Hoja. Calcula las medidas de un rectángulo cuya superficie es de 40 metros cuadrados, sabiendo que el largo es 6 metros mayor que el triple

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA.- BACHILLERATO.- TEORÍA Y EJERCICIOS. Pág. 1 Crecimiento y decrecimiento. APLICACIONES DE LA DERIVADA Cuando una función es derivable en un punto, podemos conocer si es creciente

Más detalles

Tema 2: Aritmética mercantil.

Tema 2: Aritmética mercantil. Tema 2: Aritmética mercantil. Ejercicio 1. Hallar en cuánto se transforma un capital de 20000 euros al 8% anual en: a) 1 año. b) 4 años. c) 10 años. El capital, cada año, se multiplica por 1 + (8/100)

Más detalles

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1

I.E.S. Miguel de Cervantes (Granada) Departamento de Matemáticas GBG 1 ECUACIONES Y SISTEMAS. PROBLEMAS 1. El lado de un cuadrado mide 3 m más que el lado de otro cuadrado. Si la suma de las dos áreas es 89 m, calcula las dimensiones de los cuadrados.. La suma de dos números

Más detalles

3 Polinomios y fracciones algebráicas

3 Polinomios y fracciones algebráicas Solucionario 3 Polinomios y fracciones algebráicas ACTIVIDADES INICIALES 3.I. Para cada uno de los siguientes monomios, indica las variables, el grado y el coeficiente, y calcula el valor numérico de los

Más detalles

ECUACIONES DE PRIMER GRADO

ECUACIONES DE PRIMER GRADO ECUACIONES DE PRIMER GRADO 1- ECUACION DE PRIMER GRADO CON UNA INCOGNITA Una ecuación de primer grado con una incógnita es una igualdad en la que figura una letra sin eponente y que es cierta para un solo

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD UNIDAD 5 LÍMITES Y CONTINUIDAD Páginas 0 y Describe las siguientes ramas: a) f () b) f () no eiste c) f () d) f () + e) f () f) f () + g) f () h) f () no eiste; f () 0 i) f () + f () + j) f () 5 4 f ()

Más detalles

DESIGUALDADES página 1

DESIGUALDADES página 1 DESIGUALDADES página 1 1.1 CONCEPTOS Y DEFINICIONES Una igualdad en Álgebra es aquella relación que establece equivalencia entre dos entes matemáticos. Es una afirmación, a través del signo =, de que dos

Más detalles

HOJA 5 SUCESIONES Y PROGRESIONES

HOJA 5 SUCESIONES Y PROGRESIONES HOJA 5 SUCESIONES Y PROGRESIONES Sucesión: Término general 1.- Calcula el término general de las sucesiones: a) -1, 2, 5, 8, 11, b) 3, 3/2, ¾, 3/8, c) 1, 4, 9, 16, 25, 2.- Halla el término general de cada

Más detalles

EJERCICIOS PROPUESTOS. Copia y completa de modo que estas expresiones sean igualdades numéricas. a) 5 2 13 c) 2 32 b) 4 5 17 d) 4 6 18 10

EJERCICIOS PROPUESTOS. Copia y completa de modo que estas expresiones sean igualdades numéricas. a) 5 2 13 c) 2 32 b) 4 5 17 d) 4 6 18 10 5 ECUACIONES EJERCICIOS PROPUESTOS 5.1 Copia y completa de modo que estas epresiones sean igualdades numéricas. a) 5 1 c) b) 5 17 d) 6 1 10 a) 5 10 1 c) 16 b) 5 17 d) 6 1 10 5. Sustituye las letras por

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +

Más detalles

Resuelve problemas PÁGINA 75

Resuelve problemas PÁGINA 75 PÁGINA 7 Pág. 1 Resuelve problemas 9 Una empresa de alquiler de coches cobra por día y por kilómetros recorridos. Un cliente pagó 10 por días y 400 km, y otro pagó 17 por días y 00 km. Averigua cuánto

Más detalles

SOLUCIONES. Matemáticas 3 EDUCACIÓN SECUNDARIA 1 3 1 1 3, 4 2,3 + : a) Expresamos N = 2,3 en forma de fracción: 10 N = 23,333 N = 2,333 21 7 = + = =

SOLUCIONES. Matemáticas 3 EDUCACIÓN SECUNDARIA 1 3 1 1 3, 4 2,3 + : a) Expresamos N = 2,3 en forma de fracción: 10 N = 23,333 N = 2,333 21 7 = + = = Matemáticas EDUCACIÓN SECUNDARIA Opción A SOLUCIONES Evaluación: Fecha: Ejercicio nº 1.- a) Opera y simplifica: 1 1 1, 4, + : 5 b) Reduce a una sola potencia: 4 1 5 5 0 a) Expresamos N =, en forma de fracción:

Más detalles

Tema 7. Límites y continuidad de funciones

Tema 7. Límites y continuidad de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está

Más detalles

Ecuaciones de 1er y 2º grado

Ecuaciones de 1er y 2º grado Ecuaciones de er y º grado. Ecuaciones de er grado Resuelve mentalmente: a) + = b) = c) = d) = P I E N S A Y C A L C U L A a) = b) = c) = d) = Carné calculista, : C =,; R = 0, Resuelve las siguientes ecuaciones:

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

ES OBLIGATORIA LA RESOLUCIÓN COMPLETA DE CADA EJERCICIO (PLANTEAMIENTO, DESARROLLO Y SOLUCIÓN) DE FORMA CLARA Y CONCISA.

ES OBLIGATORIA LA RESOLUCIÓN COMPLETA DE CADA EJERCICIO (PLANTEAMIENTO, DESARROLLO Y SOLUCIÓN) DE FORMA CLARA Y CONCISA. EJERCICIOS DE REPASO MATEMÁTICAS.- º ESO ES OBLIGATORIA LA RESOLUCIÓN COMPLETA DE CADA EJERCICIO (PLANTEAMIENTO DESARROLLO Y SOLUCIÓN) DE FORMA CLARA Y CONCISA.. Sergio trabaja horas todas las semanas

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN 4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN Bloque 2. POLINOMIOS. (En el libro Tema 3, página 47) 1. Definiciones. 2. Valor numérico de una expresión algebraica. 3. Operaciones con polinomios: 3.1. Suma,

Más detalles

Propiedades de les desigualdades.

Propiedades de les desigualdades. Desigualdades Inecuaciones Diremos que a < b a es menor que b si b a es un número positivo. Gráficamente, a queda a l esquerra de b. Diremos que a > b a mayor que b si a b es un número positivo. Gráficamente,

Más detalles

1. HABILIDAD MATEMÁTICA

1. HABILIDAD MATEMÁTICA HABILIDAD MATEMÁTICA SUCESIONES, SERIES Y PATRONES. HABILIDAD MATEMÁTICA Una serie es un conjunto de números, literales o dibujos ordenados de tal manera que cualquiera de ellos puede ser definido por

Más detalles

El rincón de los problemas. Oportunidades para estimular el pensamiento matemático. Triángulos de área máxima o de área mínima Problema

El rincón de los problemas. Oportunidades para estimular el pensamiento matemático. Triángulos de área máxima o de área mínima Problema www.fisem.org/web/union El rincón de los problemas ISSN: 1815-0640 Número 37. Marzo 2014 páginas 139-145 Pontificia Universidad Católica del Perú umalasp@pucp.edu.pe Oportunidades para estimular el pensamiento

Más detalles

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1

TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 TEMA 11 LÍMITES, CONTINUIDAD Y ASÍNTOTAS MATEMÁTICAS I 1º Bach 1 TEMA 11 LÍMITES, CONTINUIDAD, ASÍNTOTAS 11.1 LÍMITE DE UNA FUNCIÓN 11.1.1 LÍMITE DE UNA FUNCIÓN EN UN PUNTO Límite de una función en un

Más detalles

MATEMÁTICA CPU Práctica 2. Funciones Funciones lineales y cuadráticas

MATEMÁTICA CPU Práctica 2. Funciones Funciones lineales y cuadráticas ECT UNSAM MATEMÁTICA CPU Práctica Funciones Funciones lineales cuadráticas FUNCIONES Damiana al irse del parque olvidó de subir a su perro Vicente en la parte trasera de su camioneta Los gráficos hacen

Más detalles

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente. 3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen

Más detalles

Polinomios y Ecuaciones

Polinomios y Ecuaciones Ejercicios de Cálculo 0 Prof. María D. Ferrer G. Polinomios y Ecuaciones.. Polinomios: Un polinomio o función polinómica es una epresión de la forma: n n n P a a a a a a = n + n + n + + + + 0 () Los números

Más detalles

b) Los lados de un triángulo rectángulo tienen por medida tres números naturales consecutivos. Halla dichos lados.

b) Los lados de un triángulo rectángulo tienen por medida tres números naturales consecutivos. Halla dichos lados. Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz Reduce a común denominador el siguiente conjunto de fracciones: + ; y Común denominador: ( + )( ) MCM + ( )( ) ( )( + )( ) ( ) (

Más detalles

RELACIÓN DE PROBLEMAS DE OPTIMIZACIÓN

RELACIÓN DE PROBLEMAS DE OPTIMIZACIÓN 1. En un concurso se da a cada participante un alambre de dos metros de longitud para que doblándolo convenientemente hagan con el mismo un cuadrilátero con los cuatro ángulos rectos. Aquellos que lo logren

Más detalles

EJERCICIOS PROPUESTOS. 3 rad x x 2. 4 rad d) 2 rad

EJERCICIOS PROPUESTOS. 3 rad x x 2. 4 rad d) 2 rad TRIGONOMETRÍA EJERCICIOS PROPUESTOS.. Indica la medida de estos ángulos en radianes. a) º c) º b) º d) º a) º rad c) rad º rad b) rad º rad d) rad rad º º Epresa en grados los siguientes ángulos. a) rad

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í Unidad. Límites de funciones. Continuidad y ramas infinitas Resuelve Página 7 A través de una lupa AUMENTO DISTANCIA (dm) El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A

Más detalles

4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA

4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA 4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA Una ecuación con una incógnita es de segundo grado si el exponente de la incógnita es dos. Ecuaciones de segundo grado con una incógnita son: Esta última ecuación

Más detalles

Polinomios y fracciones

Polinomios y fracciones BLOQUE II Álgebra 3. Polinomios y fracciones algebraicas 4. Resolución de ecuaciones 5. Sistemas de ecuaciones 6. Inecuaciones y sistemas de inecuaciones 3 Polinomios y fracciones algebraicas. Binomio

Más detalles

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 11 Y 12

Colegio La Inmaculada Misioneras Seculares de Jesús Obrero ACTIVIDADES DE LOS TEMAS 11 Y 12 Colegio La Inmaculada Misioneras Seculares de Jesús Obrero Matemáticas 4º E.S.O. ACTIVIDADES DE LOS TEMAS Y. Representa en los mismos ejes las siguientes funciones: y = - ; b) y = ; c) y = +. Representa

Más detalles

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o. ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.

Más detalles

PÁGINA 77 PARA EMPEZAR

PÁGINA 77 PARA EMPEZAR Soluciones a las actividades de cada epígrafe PÁGINA 77 Pág. 1 PARA EMPEZAR El arte cósico Vamos a practicar el arte cósico : Si a 16 veces la cosa le sumamos 5, obtenemos el mismo resultado que si multiplicamos

Más detalles

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0100

CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0100 CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN DE RECUPERACIÓN E0100 1) Cierto artículo de lujo se vende en 1 000 pesos. La cantidad de ventas es de 0 000 artículos al año. Se considera imponer un impuesto

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 9 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica Comprueba si = 2, = 3 es solución del siguiente sistema: 2 + 4 3 = 14 5 2 + 3 = 13 P I E N S A C A L C U L A + 4 = 14 5 + = 13

Más detalles

TEMA 6 FUNCIONES. María Juan Pablo Julia Manuel Ángela Enrique Alejandro Carmen

TEMA 6 FUNCIONES. María Juan Pablo Julia Manuel Ángela Enrique Alejandro Carmen TEMA 6 FUNCIONES 1.- Estudia y clasifica las relaciones que aparecen en las siguientes situaciones (elementos relacionados, características de la relación, dependencia entre elementos, conjuntos que se

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y

Más detalles

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta: Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.

Más detalles

CONCEPTOS PREVIOS TEMA 2

CONCEPTOS PREVIOS TEMA 2 1.PROPORCIONALIDAD 1.1 REPARTOS PROPORCIONALES CONCEPTOS PREVIOS TEMA 2 Cuando queremos repartir una cantidad entre varias personas, siempre dividimos el total por el número de personas que forman parte

Más detalles

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14

MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 13 y #14 MATEMÁTICAS BÁSICAS UNIVERSIDAD NACIONAL DE COLOMBIA - SEDE MEDELLÍN CLASES # 3 y #4 Desigualdades Al inicio del Capítulo 3, estudiamos las relaciones de orden en los número reales y el signi cado de expresiones

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página 7 REFLEXIONA Y RESUELVE Visión gráfica de los ites Describe análogamente las siguientes ramas: a) f() b) f() no eiste c) f() d) f() +@ e) f() @ f) f() +@ g) f()

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

Funciones CONJUNTO EXCEL 2013 AVANZADO

Funciones CONJUNTO EXCEL 2013 AVANZADO EXCEL 2013 AVANZADO Esta función contará la cantidad de celdas que contengan palabras de cuatro letras y que terminen con la A. El asterisco cumple una función similar, pero la diferencia radica en que

Más detalles

NÚMEROS RACIONALES Y DECIMALES

NÚMEROS RACIONALES Y DECIMALES NÚMEROS RACIONALES Y DECIMALES Unidad didáctica. Números racionales y decimales CONTENIDOS Fracciones Fracciones equivalentes Amplificar fracciones Simplificar fracciones Representación en la recta numérica.

Más detalles

FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal.

FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal. FRACCIONES Las fracciones representan números (son números, mucho más exactos que los enteros o los decimales), Representa una o varias partes de la unidad. Una fracción tiene dos términos, numerador y

Más detalles

APLICACIONES DE LA DERIVADA

APLICACIONES DE LA DERIVADA APLICACIONES DE LA DERIVADA 1. MONOTONÍA (CRECIMIENTO O DECRECIMIENTO) Si una función es derivable en un punto = a, podemos determinar su crecimiento o decrecimiento en ese punto a partir del signo de

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

, determinar: dominio y raíces; intervalos de continuidad y tipo de x 2 4 discontinuidades; asíntotas verticales y horizontales; su gráfica.

, determinar: dominio y raíces; intervalos de continuidad y tipo de x 2 4 discontinuidades; asíntotas verticales y horizontales; su gráfica. CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E00 ) Dadas las funciones f) +4, g) 3 & h), obtener: g/h)), h f)) &g h)), así como sus respectivos dominios. ) Dada la función definida por f) 3 5 5 3,

Más detalles

Sistemas de dos ecuaciones lineales con dos incógnitas

Sistemas de dos ecuaciones lineales con dos incógnitas Sistemas de dos ecuaciones lineales con dos incógnitas Una ecuación lineal con dos incógnitas es una epresión de la forma a b c donde a, b c son los coeficientes (números) e son las incógnitas. Gráficamente

Más detalles

Polinomios. Objetivos. Antes de empezar

Polinomios. Objetivos. Antes de empezar 2 Polinomios Objetivos En esta quincena aprenderás a: Manejar las expresiones algebraicas y calcular su valor numérico. Reconocer los polinomios y su grado. Sumar, restar y multiplicar polinomios. Sacar

Más detalles

Programación Lineal. Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal

Programación Lineal. Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal Programación Lineal Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal Ejemplo: Plan de producción de PROTRAC En esta ficha vamos a comentar cómo se construyó

Más detalles

Ecuaciones de segundo grado

Ecuaciones de segundo grado 3 Ecuaciones de segundo grado Objetivos En esta quincena aprenderás a: Identificar las soluciones de una ecuación. Reconocer y obtener ecuaciones equivalentes. Resolver ecuaciones de primer grado Resolver

Más detalles

no descompone no descompone no descompone

no descompone no descompone no descompone Problema 1. Sea I n el conjunto de los n primeros números naturales impares. Por ejemplo: I 3 = {1, 3, 5, I 6 = {1, 3, 5, 7, 9, 11, etc. Para qué números n el conjunto I n se puede descomponer en dos partes

Más detalles

Hoja1!C4. Hoja1!$C$4. Fila

Hoja1!C4. Hoja1!$C$4. Fila CAPÍTULO 6......... Cálculo y funciones con Excel 2000 6.1.- Referencias De Celdas Como vimos con anterioridad en Excel 2000 se referencian las celdas por la fila y la columna en la que están. Además como

Más detalles

MATEMÁTICAS: 2º BACHILLERATO SOLUCIONES A LOS PROBLEMAS DE OPTIMIZACIÓN: HOJA 6

MATEMÁTICAS: 2º BACHILLERATO SOLUCIONES A LOS PROBLEMAS DE OPTIMIZACIÓN: HOJA 6 MATEMÁTICAS: º BACHILLERATO SOLUCIONES A LOS PROBLEMAS DE OPTIMIZACIÓN: HOJA 6 1.- Determina dos números cuya suma sea y tales que el producto de uno de ellos por el cubo del otro sea máimo. = 1 er número;

Más detalles

Ecuaciones de primer y segundo grado

Ecuaciones de primer y segundo grado Ecuaciones de primer y segundo grado El fin del mundo En octubre de la cárcel de Wittenberg acogió una curiosa reunión: allí estaba Lutero visitando a su íntimo amigo Michael Stifel. Este, aplicando a

Más detalles

EJERCICIOS SOBRE : PROBLEMAS ECUACIONES DE PRIMER GRADO

EJERCICIOS SOBRE : PROBLEMAS ECUACIONES DE PRIMER GRADO 1) Calcular tres números consecutivos cuya suma sea 1. ) Las edades de dos hermanos suman 49 años. Calcularlas sabiendo que la edad de uno es superior en años a la del otro. ) Descomponer el número 171

Más detalles

PROPORCIONALIDAD - teoría

PROPORCIONALIDAD - teoría PROPORCIONALIDAD RAZÓN: razón de dos números es el cociente indicado de ambos. Es decir, la razón de los dos números a y b es a:b, o lo que es lo mismo, la fracción b a. PROPORCIÓN: es la igualdad de dos

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 49 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

FICHAS DE PRÁCTICAS 2º PRIMARIA MATEMÁTICAS

FICHAS DE PRÁCTICAS 2º PRIMARIA MATEMÁTICAS FICHAS DE PRÁCTICAS 2º PRIMARIA MATEMÁTICAS Crucigrama algebraico Duración Estimada: 50 min Mejorar el cálculo algebraico. Aprender a resolver ecuaciones de primer grado. Duración de enseñanza aprendizaje

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 3 Ecuaciones y sistemas. Inecuaciones Elaborado por la Profesora Doctora

Más detalles

TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS Matemáticas B 4º E.S.O. Tema : Polinomios y fracciones algebraicas. 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS 4º.1.1 COCIENTE DE MONOMIOS 4º El cociente de un monomio entre otro

Más detalles

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA http:/// CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA DESARROLLA EN FORMA RESUMIDA CADA UNIDAD CON: I. GUIONES DE CONFERENCIAS II. FICHAS DE ESTUDIO III. LABORATORIOS DE EJERCICIOS Trata las unidades siguientes:

Más detalles

PRECAUCIÓN: ERIZOS SUELTOS!

PRECAUCIÓN: ERIZOS SUELTOS! Evaluación por s. º E.S.O. Curso 010 011 PRECAUCIÓN: ERIZOS SUELTOS! Un erizo quiere atravesar una carretera de anchura AB. El erizo ve una farola al otro lado de la carretera desde el punto B, con un

Más detalles

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o.

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o. Problemas de Cinemática 1 o Bachillerato Tiro parabólico y movimiento circular 1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de

Más detalles

a) Un número par I) 2n 1 b) Un número impar II) x, x 1 c) Un número y el que le sigue III) 3a d) El triple de un número IV) 2z x 6 b) e)

a) Un número par I) 2n 1 b) Un número impar II) x, x 1 c) Un número y el que le sigue III) 3a d) El triple de un número IV) 2z x 6 b) e) Polinomios El 6 de septiembre del 00 se celebró el gran Premio de Singapur, la 5.ª prueba del mundial de Fórmula. La carrera constaba de 6 vueltas a un circuito de 5 067 m de longitud. Fernando Alonso,

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x

Más detalles

1Calculadora USO DE LA CALCULADORA

1Calculadora USO DE LA CALCULADORA USO DE LA CALCULADORA Pág. 1 Se ofrece aquí un material didáctico preparado para ser empleado directamente por los alumnos y las alumnas, que comprende explicaciones y actividades dirigidas al aprendizaje

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas Polinomios y fracciones algebraicas POLINOMIOS SUMA, RESTA Y MULTIPLICACIÓN POTENCIAS DIVISIÓN REGLA DE RUFFINI DIVISORES DE UN POLINOMIO FACTORIZACIÓN DE UN POLINOMIO VALOR NUMÉRICO DE UN POLINOMIO TEOREMA

Más detalles

DESIGUALDADES E INECUACIONES

DESIGUALDADES E INECUACIONES DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia

Más detalles

LAS FRACCIONES. Si queremos calcular la fracción de un número dividimos el número por el denominador y el resultado lo multiplicamos por el numerador.

LAS FRACCIONES. Si queremos calcular la fracción de un número dividimos el número por el denominador y el resultado lo multiplicamos por el numerador. LAS FRACCIONES LAS FRACCIONES Y SUS TÉRMINOS Los términos de una fracción se llaman numerador y denominador. El denominador indica el número de partes iguales en que se divide la unidad. El numerador indica

Más detalles

Unidad 1 números enteros 2º ESO

Unidad 1 números enteros 2º ESO Unidad 1 números enteros 2º ESO 1 2 Conceptos 1. Concepto de número entero: diferenciación entre número entero, natural y fraccionario. 2. Representación gráfica y ordenación. 3. Valor absoluto de un número

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las

Más detalles

REFUERZO MATEMÁTICAS 2º ESO CURSO: 2009/2010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ

REFUERZO MATEMÁTICAS 2º ESO CURSO: 2009/2010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ REFUERZO MATEMÁTICAS º ESO CURSO: 009/010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ SUMA Y RESTA DE NÚMEROS ENTEROS... POTENCIAS... 6 FRACCIONES... 8 FRACCIONES EQUIVALENTES... 8 SUMA DE FRACCIONES... 9 PRODUCTO

Más detalles

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2

Nombre del polinomio. uno monomio 17 x 5 dos binomio 2x 3 6x tres trinomio x 4 x 2 + 2 SISTEMA DE ACCESO COMÚN A LAS CARRERAS DE INGENIERÍA DE LA UNaM III. UNIDAD : FUNCIONES POLINÓMICAS III..1 POLINOMIOS La expresión 5x + 7 x + 4x 1 recibe el nombre de polinomio en la variable x. Es de

Más detalles

Tema: Ecuaciones y sistemas de ecuaciones

Tema: Ecuaciones y sistemas de ecuaciones Tema: Ecuaciones y sistemas de ecuaciones 1. Las siguientes ecuaciones tienen alguna solución entera. Intenta encontrarlas tanteando. Qué tipo de ecuación es cada una?. a) x + 6 = b) x x = 0 c) x x = 1

Más detalles

Las expresiones algebraicas se clasifican en racionales e irracionales.

Las expresiones algebraicas se clasifican en racionales e irracionales. 1. 1.1 Epresiones algebraicas 1.1 Epresión algebraica. En matemáticas una epresión algebraica es un conjunto de letras y números, ligados por los signos de adición, sustracción, multiplicación, división,

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles