b) Los lados de un triángulo rectángulo tienen por medida tres números naturales consecutivos. Halla dichos lados.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "b) Los lados de un triángulo rectángulo tienen por medida tres números naturales consecutivos. Halla dichos lados."

Transcripción

1 Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz Reduce a común denominador el siguiente conjunto de fracciones: + ; y Común denominador: ( + )( ) MCM + ( )( ) ( )( + )( ) ( ) ( )( + )( ) ( )( + ) ( )( + )( ) + ; ; Simplifica las siguientes fracciones, factorizando previamente: a) a) y y + 6 y y y+ 6 y y y y 5 y + 5 y ( ) ( ) ( ) ( y )( + y ) 5( + y ) 5 b) 5 y + 5y ( )( y ) ( y ) y ( + ) ( )( + )( ) b) Los lados de un triángulo rectángulo tienen por medida tres números naturales consecutivos. Halla dichos lados. Tomando como medidas de los lados: -, y + Aplicando el teorema de Pitágoras: ( ) + (+ ) Operando: Pasando al primer miembro y simplificando: 0 ( ) 0 Se obtienen como soluciones; 0 (imposible) y cm Las dimensiones de los lados son cm, cm y 5 cm. Una pieza rectangular de cinc es cm más larga que ancha. Con ella se construye una caja de 80 cm cortando un cuadrado de 6 cm de lado en cada esquina y doblando los bordes. Halla las dimensiones de la caja.

2 Si es la medida de la anchura, entonces + es la medida de la largura. Sabiendo que el volumen de la caja es Vabc, se tiene: Ecuación: 6( )(+ ) 80 Simplificando por 6: ( )( 8) 0 Operando: 0 0 Resolviendo: cm o -cm (que descartamos) Las dimensiones de la pieza rectangular son cm y 6 cm. Resuelve la ecuación: Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz La ecuación: Resolvemos en : 6 ± , 8 De 8, se sigue De -/8, se sigue -/ Las dos cifras de un número suman y el producto de dicho número por el que se obtiene de invertir el orden de sus cifras es 5. Halla dicho número. ab b+ 0 a Sea ab el número que queremos calcular, se sabe por el valor relativo de las cifras que ba a+ 0 b El número ba que se obtiene al invertir el orden de las cifras es Si b, entonces a - y como sabemos que (ab)(ba)5, se tiene la siguiente ecuación: ( + 0)( )( + 0 ) 5 (0 9 )(+ 9 ) 5 Operando: div. por 8 Que tiene como soluciones:, 8 El número puede ser el 8 o el 8 + 0

3 Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz Dentro de años, la edad de una persona será la mitad del cuadrado de la edad que tenía hace años. Calcula la edad actual de esa persona. Si es la edad actual de la persona, entonces, hace años tenía - años y dentro de años, tendrá + años La ecuación para hallar la edad actual es: ( ) + Operando: (+ ) Resolviendo obtenemos: años; 7 años La solución 7 años no es admisible, puesto que hace años no habría nacido la edad de esa persona es años. (m + ) 0 Dada la ecuación, halla los valores de m para que las dos raíces de la ecuación se diferencien en unidades. a + b+ c 0 Las raíces de la ecuación de segundo grado Su suma es + b a y su producto es c a verifican: Como la ecuación De la suma de raíces: (m+ ) 0 tiene como raíces m + + m+ y + se tiene: Del producto de raíces: m m +, que es la ecuación que resuelve el problema. Operando y simplificando se tiene: m + m+ 0 que tiene por soluciones m - y m -.

4 Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz Resuelve la siguiente ecuación con dos radicales: + + Ecuación: + + Aislando un radical: Aislando el radical: Operando: Resolviendo: 0, 5 Solución válida: 5 Encuentra las soluciones, si eisten, de la ecuación: Ecuación: Igualando productos cruzados: ( + ) (6 )( + ) Pasando términos al primer miembro y operando: Resolviendo: 7 ± ± 0

5 Las soluciones son: Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz 0 0 ; Al etraer la raíz cuadrada de un número se obtiene de resto. Si a dicho número se le suman 7 unidades, la raíz cuadrada del número obtenido aumenta en una unidad y se obtiene 6 de resto. Halla dicho número. Sea el número. Resulta evidente que - es un cuadrado perfecto. Resulta evidente que (+7)-6 es un cuadrado perfecto que supera en una unidad al anterior. Podemos plantear la ecuación: Aislando el radical: Resolviendo: Resuelve la siguiente ecuación con dos radicales: Ecuación: Aislando un radical: Aislando el radical: Operando:

6 + 0 Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz Resolviendo: -, Solución válida: las dos 5 Halla un número de dos cifras, sabiendo que éstas suman 7 unidades y que si sumamos unidades al número que resulta de intercambiar el orden de las cifras, su raíz cuadrada es el doble de la raíz del número inicial. Sea N ab el número que queremos calcular, se puede plantear el siguiente sistema: a+ b 7 ba+ ab Considerando el valor relativo de las cifras, el sistema anterior se puede epresar según: a+ b 7 a+ b 7 a+ 0b+ b+ 0a a+ 0b+ (b+ 0a) a 7 b 7 b+ 0b+ (b+ 70 0b) Operando la última ecuación, se tiene: 70 5 b 70 b 6 a El número es N 6 6 Las dos cifras de un número suman 8. Calcula dicho número, sabiendo que su raíz cuadrada da de resto y que la raíz cuadrada del número que resulta de invertir el orden de las cifras es unidades menor y da como resto 0. Sea (ab) el número, tal que a+b8. La ecuación a plantear es: (ab) + (ba) 0 Por el valor relativo de las cifras, dicha ecuación, se puede escribir según: b+ 0 a + a+ 0 b 0 Teniendo en cuenta que a8-b, tendremos: 76 9b + 9b 76 9b + 9b + 9b Aislando el radical:

7 Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz 7 8 b 9b 7 9b 9b b+ 8b 6 b 8 Simplificando: 8b 70b : 7 Resolviendo: b, b 7/ b 6b+ 5 0 La segunda solución no es válida por no ser entera El número buscado es 5 7 Halla dos números naturales, tales que la diferencia entre el doble del primero y el segundo sea la raíz cuadrada de la suma de los cuadrados de dichos números; y la diferencia entre el segundo y la raíz cuadrada del primero sea igual a la unidad. Sea el primer número e y el segundo, del enunciado, se puede establecer el sistema: y + y y Operando se tiene: y+ y y y+ + y ( y) 0 y y+ De la primera ecuación se tienen dos posibilidades: ª solución : ª solución : 0 y y+ 0 y, no válida por no verificar el sistema inicial y y y+ y y y 0 y+ 0 y N La única solución válida es e y 8 Resuelve la ecuación siguiente: + Ecuación: +

8 + + ( + ) Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz Aislando el radical: + ( + ) Simplificando por : + ( + ) + + Simplificando: 0 + Resolviendo: -, La primera solución no es válida Solución 9 La raíz cuadrada de la edad de un padre, da la edad de su hijo. Al cabo de años la edad del padre será doble que la del hijo. Cuántos años tiene cada uno? Si es la edad en años del padre, la del hijo, es La ecuación es: ( ) + + Operando y aislando el radical: Operando: Resolviendo: 6 años o 6 años Solución válida la primera Las edades del padre y del hijo son respectivamente: 6 años y 6 años 0 Encuentra las soluciones, si eisten, de la ecuación: Ecuación:

9 Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz Multiplicando por el MCM6(5-)(5+) se tiene: 6(5 + ) + 6(5 ) (5 + )(5 ) Operando: Pasando términos al primer miembro y simplificando, se tiene: ± Las soluciones son -;. La hipotenusa de un triángulo rectángulo es de 6 metros y la suma de sus catetos es metros. Hallar los catetos. + y + y m, y m; m, y 0 m Resuelve el siguiente sistema: + y 5 y 55 5,y-;-5,y El producto de dos números es 5 y la diferencia de sus cuadrados es 6. Averigua cuáles son dichos números. Se trata de resolver el sistema de ecuaciones no lineales. y 5 y 6 Despejando y en la primera ecuación:

10 5 y Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz y sustituyendo su valor en la segunda, se tiene: 5 Haciendo el cambio: z se trata de resolver la ecuación: z 6 z 05 0 cuyas soluciones son. z 5, z 9 Con lo cual, 5, y; -5, y- En la actualidad, la edad de un padre es el cuadrado de la edad de su hijo menos dos años. El año que viene, la edad del padre será cinco veces la edad de su hijo. Calcula la edad de ambos. Si llamamos a la edad del padre e y a la del hijo, se trata de resolver el sistema de ecuaciones no lineales: y + 5(y+ ) Restando ambas ecuaciones, obtenemos: 5(y+ ) y + y 5 y 6 0 y 6, La solución: y y la descartamos en el conteto del problema, entonces la solución del sistema es: y6; 5 Resuelve el siguiente sistema de ecuaciones: y 6 y + 6, y

11 Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz 6 Resuelve el siguiente sistema de ecuaciones: + 7 y y, y ;, y 7 Resuelve el siguiente sistema de ecuaciones: + y y 0-5, y -; 5, y ; -, y -5;, y 5 Resuelve por el método de Gauss el siguiente sistema compatible indeterminado: + 5y + z + y z z ; 9 y z+ 9 Resuelve el siguiente sistema de ecuaciones por el método de Gauss: y z 6 + y + z + y + z Eliminamos la incógnita y multiplicando la primera ecuación por y sumándola con la segunda y sumando la tercera ecuación con la primera, obteniendo el sistema:

12 5 + z 5 + z 9 Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz que no tiene solución. El sistema propuesto es incompatible. La suma de las cifras de un número de dos cifras es 8. Si al número se le añaden 8 unidades, resultan las mismas cifras pero en orden inverso. Plantea un sistema para hallar dicho número y resuélvelo por el método de Gauss. + y y+ 8 0 y+ ; y 5. El número 5. Un granjero compra en una feria 60 animales entre pollos, conejos y patos y paga, en total, una factura de 55 euros. Cada pollo le ha costado euros, cada conejo euros y cada pato,5 euros. Si el número de pollos representa los 7/9 del total de conejos y patos comprados. Cuántos animales compró de cada clase? Si llamamos al número de pollos comprados, y al de los conejos y z al de los patos, se trata de resolver el sistema: + y+ z 60 + y+,5 z 55 7 (y+ z) 9 Ordenando el sistema se obtiene: + y+ z 60 + y+,5 z y 7 z 0 resolviéndolo resulta: 80, y50, z0 5 Resuelve el siguiente sistema de ecuaciones por el método de Gauss: + y + z + y + az y z en función del valor del parámetro a

13 Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz Sumando la primera ecuación con la tercera y la segunda con la tercera, obtenemos el sistema: + (a ) z De donde se deduce que:, (a ) z 0 Si a, z tiene cualquier valor e y-z. Sistema compatible indeterminado En caso contrario z0, y0. Sistema compatible determinado 6 Se quiere obtener un lingote de oro de kg de peso y ley 900 milésimas, fundiendo oro de 975 milésimas, oro de 95 milésimas y oro de 850 milésimas. Sabiendo que del segundo tipo hemos usado 00 g más que del primero, averigua qué cantidad hay que fundir de cada clase. Llamando a los gramos del primer tipo de oro, y a los del segundo y z a los del tercero, se trata de resolver el sistema: + y+ z y+ 850 z y + 00 Ordenando el sistema y resolviéndolo, se obtiene: 75, y75, z50 7 Resuelve el siguiente sistema de ecuaciones por el método de Gauss: y + z 8 y + z 5 + z a en función del valor del parámetro a Eliminamos la incógnita y sumando la primera ecuación con la segunda, obteniendo el sistema: + z + z a De donde se deduce que: Si a-, el sistema es compatible indeterminado y-5-z, (z+)/- Para otro valor de a el sistema es incompatible 8 Resuelve el siguiente sistema de ecuaciones por el método de Gauss:

14 y + y + z a + y z 7 Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz en función del valor del parámetro a Eliminamos la incógnita z sumando la segunda ecuación con la tercera, obteniendo el sistema. y + y 7 + a Multiplicando la primera por - y sumándole a la segunda, se obtiene y(a+)/ de donde (a+5)/, z(9a-9)/ El sistema es siempre compatible determinado, para cualquier valor de a. 9 Resuelve por el método de Gauss el siguiente sistema compatible indeterminado: + y z + y + z 7 z+ ; y 5 z 0 Resuelve el siguiente sistema de ecuaciones por el método de Gauss: y + z + y + z y + z 5 Eliminamos la incógnita y multiplicando la segunda ecuación por y sumándola con la primera y sumando la tercera ecuación con la segunda, obteniendo el sistema: + z 9 + z 9 que tiene infinitas soluciones, siempre que z-, y. El sistema es compatible indeterminado Resuelve el siguiente sistema utilizando el método de Gauss:

15 y y Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz ; y - Resuelve el siguiente sistema utilizando el método de Gauss: y 0 y ; y Epresa la solución del siguiente sistema en función del parámetro + y a a + ay a 0 utilizando el método de Gauss: a ; a a + y a Resuelve el siguiente sistema de ecuaciones por el método de Gauss: + y z y + z + y z Eliminamos la incógnita z sumando la primera ecuación y la segunda y restando la tercera ecuación a la primera, obteniendo el sistema:

16 5 y 5 y Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz Dividiendo la segunda ecuación por - y sumándola con la primera, resulta, de donde y0, z0. 5 Resuelve el siguiente sistema de ecuaciones por el método de Gauss: + y z + y + z 5 + y + z Eliminamos la incógnita z sumando la primera ecuación con la segunda y multiplicando la primera ecuación por y sumándola con la tercera, obteniendo el sistema: + y y 6 Multiplicando la primera por 7 y la segunda por - y sumando ambas, resulta -, de donde y6, z 6 Resuelve el siguiente sistema de ecuaciones por el método de Gauss: + y + z y + z + y + 6z Eliminamos la incógnita z multiplicando la primera ecuación por - y sumándola con la segunda y multiplicando la primera ecuación por 6 y restándole la tercera, obteniendo el sistema: y + y 5 Multiplicando la primera por - y sumándola con la segunda, y, de donde, z- 7 Resuelve el siguiente sistema de ecuaciones por el método de Gauss: y + z 7 + y + z + y z 5

17 Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz Eliminamos la incógnita y sumando la primera ecuación con la segunda y la primera con la tercera, obteniendo el sistema: + z 8 De donde resulta: 6, z, y 8 La suma de tres números es 7. Dos veces el primero menos tres veces el segundo es igual a y el primero más el doble del segundo menos tres veces el tercero es igual a 6. Averigua cuáles son estos números. Llamando al primero, y al segundo y z al tercero, se trata de resolver el sistema: + y+ z 7 y + y z 6 Eliminando z entre la primera y la tercera ecuaciones, se tiene: + 5 y 57 y Resolviéndolo, se obtiene: 8,y 5, z

3 Polinomios y fracciones algebráicas

3 Polinomios y fracciones algebráicas Solucionario 3 Polinomios y fracciones algebráicas ACTIVIDADES INICIALES 3.I. Para cada uno de los siguientes monomios, indica las variables, el grado y el coeficiente, y calcula el valor numérico de los

Más detalles

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7 1 Resuelve las siguientes ecuaciones: a) x 1 = x + x 6 = c) x 9x + = d) x 6x 7 = = a) x = 1 y x = 1 x = 3 y x = c) x = 4 y x = 5 d) x = 1 y x = 7 Resuelve las siguientes ecuaciones de primer grado: a)

Más detalles

4 Ecuaciones y sistemas

4 Ecuaciones y sistemas Solucionario Ecuaciones y sistemas ACTIVIDADES INICIALES.I. Comprueba si las siguientes ecuaciones tienen como soluciones,,. a) 0 b) 5 () 8 a) 0 () () es solución. 0 8 9 6 0 6 0 0 9 5 5 6 5 es solución.

Más detalles

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente. 3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y

Más detalles

Ejercicios Resueltos del Tema 4

Ejercicios Resueltos del Tema 4 70 Ejercicios Resueltos del Tema 4 1. Traduce al lenguaje algebraico utilizando, para ello, una o más incógnitas: La suma de tres números consecutivos Un número más la mitad de otro c) El cuadrado de la

Más detalles

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado.

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado. ECUACIONES Y DESIGUALDADES UNIDAD VII VII. CONCEPTO DE ECUACIÓN Una igualdad es una relación de equivalencia entre dos epresiones, numéricas o literales, que se cumple para algún, algunos o todos los valores

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 3 Ecuaciones y sistemas. Inecuaciones Elaborado por la Profesora Doctora

Más detalles

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS PARA EMPEZAR Un cuadrado tiene 5 centímetros de lado. Escribe la epresión algebraica que da el área cuando el lado aumenta centímetros. A ( 5) Señala cuáles de las siguientes

Más detalles

Capítulo 5: Ecuaciones de segundo grado y sistemas lineales

Capítulo 5: Ecuaciones de segundo grado y sistemas lineales º de ESO Capítulo : Ecuaciones de segundo grado sistemas lineales Autora: Raquel Hernández Revisores: Sergio Hernández María Molero Ilustraciones: Raquel Hernández Banco de Imágenes de INTEF Ecuaciones

Más detalles

Polinomios y fracciones

Polinomios y fracciones BLOQUE II Álgebra 3. Polinomios y fracciones algebraicas 4. Resolución de ecuaciones 5. Sistemas de ecuaciones 6. Inecuaciones y sistemas de inecuaciones 3 Polinomios y fracciones algebraicas. Binomio

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 0 Polinomios y fracciones algebraicas En esta Unidad aprenderás a: d Trabajar con epresiones polinómicas. d Factorizar polinomios. d Operar con fracciones algebraicas. d Descomponer una fracción algebraica

Más detalles

4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA

4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA 4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA Una ecuación con una incógnita es de segundo grado si el exponente de la incógnita es dos. Ecuaciones de segundo grado con una incógnita son: Esta última ecuación

Más detalles

7 ECUACIONES. SISTEMAS DE ECUACIONES

7 ECUACIONES. SISTEMAS DE ECUACIONES EJERCICIOS PROPUESTOS 7. Escribe estos enunciados en forma de ecuación. a) La suma de dos números consecutivos es. La suma de tres números pares consecutivos es 0. c) Un número más su quinta parte es.

Más detalles

Ecuaciones y sistemas lineales

Ecuaciones y sistemas lineales UNIDAD Ecuaciones y sistemas lineales D e sobra son conocidas las ecuaciones. Refrescamos y profundizamos en su estudio: ecuaciones de primer y segundo grado, así como otras polinómicas de grados superiores,

Más detalles

5 SISTEMAS DE ECUACIONES

5 SISTEMAS DE ECUACIONES 5 SISTEMAS DE ECUACINES EJERCICIS PRPUESTS 5. Escribe estos enunciados en forma de una ecuación con dos incógnitas. a) Un número más el doble de otro es. La diferencia de dos números es 5. c) Un número

Más detalles

BOLETIN Nº 5 MATEMÁTICAS 3º ESO Ecuaciones y sistemas Curso 2011/12

BOLETIN Nº 5 MATEMÁTICAS 3º ESO Ecuaciones y sistemas Curso 2011/12 BOLETIN Nº MATEMÁTICAS º ESO Ecuaciones sistemas Curso / ) ( ) ) ( ) 8 ( ) ) ) 8 ( ) ( ) ) ( )( ) ) ( )( ) ( ) ) ( ) ( ) ( ) ( ) 8) ( ) 8( ) ( ) ) ( ) ( 8) ( ) ) (8 ) ( ) ( ) ) ( ) ( ) (8 ) ) ( ) ( ) (

Más detalles

ECUACIONES DE PRIMER GRADO

ECUACIONES DE PRIMER GRADO ECUACIONES DE PRIMER GRADO 1- ECUACION DE PRIMER GRADO CON UNA INCOGNITA Una ecuación de primer grado con una incógnita es una igualdad en la que figura una letra sin eponente y que es cierta para un solo

Más detalles

Ecuaciones de segundo grado

Ecuaciones de segundo grado 3 Ecuaciones de segundo grado Objetivos En esta quincena aprenderás a: Identificar las soluciones de una ecuación. Reconocer y obtener ecuaciones equivalentes. Resolver ecuaciones de primer grado Resolver

Más detalles

TEMA: ECUACIONES CON NÚMEROS NATURALES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA.

TEMA: ECUACIONES CON NÚMEROS NATURALES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA. TEMA: ECUACIONES CON NÚMEROS NATURALES INTRODUCCIÓN: Las ecuaciones sirven, básicamente, para resolver problemas ya sean matemáticos, de la vida diaria o de cualquier ámbito- y, en ese caso, se dice que

Más detalles

POLINOMIOS Y FRACCIONES ALGEBRAICAS

POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS Página 66 PARA EMPEZAR, REFLEXIONA Y RESUELVE Múltiplos y divisores. Haz la división: 4 + 5 0 + 5 A la vista del resultado, di dos divisores del polinomio 4 + 5 0. (

Más detalles

6Soluciones a los ejercicios y problemas PÁGINA 133

6Soluciones a los ejercicios y problemas PÁGINA 133 PÁGINA 33 Pág. P RACTICA Comprueba si x =, y = es solución de los siguientes sistemas de ecuaciones: x y = 4 3x 4y = 0 a) b) 5x + y = 0 4x + 3y = 5 x y = 4 a) ( ) = 5? 4 No es solución. 5x + y = 0 5 =

Más detalles

Ecuaciones de 1er y 2º grado

Ecuaciones de 1er y 2º grado Ecuaciones de er y º grado. Ecuaciones de er grado Resuelve mentalmente: a) + = b) = c) = d) = P I E N S A Y C A L C U L A a) = b) = c) = d) = Carné calculista, : C =,; R = 0, Resuelve las siguientes ecuaciones:

Más detalles

Potencias y Raíces. 100 Ejercicios para practicar con soluciones

Potencias y Raíces. 100 Ejercicios para practicar con soluciones Potencias y Raíces. 00 Ejercicios para practicar con soluciones Cuál es el área de un cuadrado cuyo lado mide cm? Expresa el resultado en forma de potencia. El área de un cuadrado es: A Por tanto, el área

Más detalles

) = 5. Operaciones con polinomios 54 SOLUCIONARIO 1. POLINOMIOS. SUMA Y RESTA 2. MULTIPLICACIÓN DE POLINOMIOS

) = 5. Operaciones con polinomios 54 SOLUCIONARIO 1. POLINOMIOS. SUMA Y RESTA 2. MULTIPLICACIÓN DE POLINOMIOS 54 SOLUCIONARIO 5. Operaciones con polinomios. POLINOMIOS. SUMA RESTA PIENSA CALCULA Dado el cubo de la figura, calcula en función de : a) El área. b) El volumen. a) A ( ) = 6 b) V ( ) = CARNÉ CALCULISTA

Más detalles

6 Ecuaciones de 1. er y 2. o grado

6 Ecuaciones de 1. er y 2. o grado 8985 _ 009-08.qd /9/07 5:7 Página 09 Ecuaciones de. er y. o grado INTRODUCCIÓN La unidad comienza diferenciando entre ecuaciones e identidades, para pasar luego a la eposición de los conceptos asociados

Más detalles

UNIDAD 4 Sistemas de ecuaciones lineales... 84 Introducción... 84 4.1.- Sistemas de ecuaciones lineales con dos incógnitas... 84 4.2.

UNIDAD 4 Sistemas de ecuaciones lineales... 84 Introducción... 84 4.1.- Sistemas de ecuaciones lineales con dos incógnitas... 84 4.2. FACULTAD DE INGENIERÍA - UNSJ Unidad : Sistemas de Ecuaciones Lineales UNIDAD Sistemas de ecuaciones lineales... 8 Introducción... 8.1.- Sistemas de ecuaciones lineales con dos incógnitas... 8..- Resolución

Más detalles

ALUMNOS DE CUARTO DE ESO CON MATEMÁTICAS DE TERCERO PENDIENTES

ALUMNOS DE CUARTO DE ESO CON MATEMÁTICAS DE TERCERO PENDIENTES ALUMNOS DE CUARTO DE ESO CON MATEMÁTICAS DE TERCERO PENDIENTES La materia se estructurará en dos partes. Los alumnos que tengan en la primera evaluación menos de un cuatro deberán hacer el martes de Febrero

Más detalles

Problemas Tema 1 Enunciados de problemas de Repaso 4ºESO

Problemas Tema 1 Enunciados de problemas de Repaso 4ºESO página / Problemas Tema Enunciados de problemas de Repaso 4ºESO Hoja. Calcula las medidas de un rectángulo cuya superficie es de 40 metros cuadrados, sabiendo que el largo es 6 metros mayor que el triple

Más detalles

SISTEMAS DE ECUACIONES: MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES: MÉTODO DE GAUSS Ejercicio nº 1.- SISTEMAS DE ECUACIONES: MÉTODO DE GAUSS Resuelve estos sistemas, mediante el método de Gauss: Las soluciones del sistema son: Ejercicio nº 2.- Por un rotulador, un cuaderno y una carpeta

Más detalles

FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal.

FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal. FRACCIONES Las fracciones representan números (son números, mucho más exactos que los enteros o los decimales), Representa una o varias partes de la unidad. Una fracción tiene dos términos, numerador y

Más detalles

Sistemas de dos ecuaciones lineales con dos incógnitas

Sistemas de dos ecuaciones lineales con dos incógnitas Sistemas de dos ecuaciones lineales con dos incógnitas Una ecuación lineal con dos incógnitas es una epresión de la forma a b c donde a, b c son los coeficientes (números) e son las incógnitas. Gráficamente

Más detalles

UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD. Miguel A. Jorquera

UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD. Miguel A. Jorquera UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD Miguel A. Jorquera BACHILLERATO MATEMÁTICAS II JUNIO 2 ii Índice General 1 Examen Junio 2. Opción B 1 2 SOLUCIONES del examen de junio 2 Opción

Más detalles

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales

Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Matemáticas I: Hoja 2 Cálculo matricial y sistemas de ecuaciones lineales Ejercicio 1 Escribe las siguientes matrices en forma normal de Hermite: 2 4 3 1 2 3 2 4 3 1 2 3 1. 1 2 3 2. 2 1 1 3. 1 2 3 4. 2

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Índice general 1. Sistemas de ecuaciones lineales 2 2. Método de sustitución 5 3. Método de igualación 9 4. Método de eliminación 13 5. Conclusión 16 1 Sistemas de ecuaciones

Más detalles

4 ECUACIONES Y SISTEMAS

4 ECUACIONES Y SISTEMAS 4 ECUACIONES Y SISTEMAS PARA EMPEZAR 1 Indica si las siguientes igualdades son identidades o ecuaciones, y resuelve estas últimas. a) 5 1 4 c) ( )( ) 4 b) 5 d) 7 5 10 a) Identidad c) Identidad b) Ecuación.

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 7 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica a) En qué punto se cortan la gráfica roja la azul del dibujo de la izquierda? b) Tienen algún punto en común las rectas de la

Más detalles

EJERCICIOS DE SISTEMAS DE ECUACIONES

EJERCICIOS DE SISTEMAS DE ECUACIONES EJERCICIOS DE SISTEMAS DE ECUACIONES Ejercicio nº 1.- a) Resuelve por sustitución: 5x y 1 3x 3y 5 b) Resuelve por reducción: x y 6 4x 3y 14 Ejercicio nº.- a) Resuelve por igualación: 5x y x y b) Resuelve

Más detalles

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS

SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS SISTEMAS DE ECUACIONES. MÉTODO DE GAUSS Sistemas de dos ecuaciones con dos incógnitas. Un sistema lineal de dos ecuaciones con dos incógnitas es de la forma: a b c ' ' ' con a b c a b c números reales

Más detalles

Bachillerato. Matemáticas. Ciencias y tecnología

Bachillerato. Matemáticas. Ciencias y tecnología Bachillerato º Matemáticas Ciencias y tecnología Índice Unidad 0 Números reales........................................... 7. Evolución histórica................................... 8. Números reales......................................

Más detalles

1. Ecuaciones lineales 1.a. Definición. Solución.

1. Ecuaciones lineales 1.a. Definición. Solución. Sistemas de ecuaciones Contenidos 1. Ecuaciones lineales Definición. Solución 2. Sistemas de ecuaciones lineales Definición. Solución Número de soluciones 3. Métodos de resolución Reducción Sustitución

Más detalles

Sistemas de Ecuaciones

Sistemas de Ecuaciones 4 Sistemas de Ecuaciones Objetivos En esta quincena aprenderás a: Reconocer y clasificar los sistemas de ecuaciones según su número de soluciones. Obtener la solución de un sistema mediante una tablas.

Más detalles

1º BACHILLERATO MATEMÁTICAS CCSS

1º BACHILLERATO MATEMÁTICAS CCSS PÁGINA 87, EJERCICIO 48 1º BACHILLERATO MATEMÁTICAS CCSS PROBLEMAS TEMA 4 - ECUACIONES Y SISTEMAS La suma de los cuadrados de dos números naturales impares consecutivos es 170. Calcula el valor del siguiente

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES Capítulo 7 SISTEMAS DE ECUACIONES LINEALES 7.1. Introducción Se denomina ecuación lineal a aquella que tiene la forma de un polinomio de primer grado, es decir, las incógnitas no están elevadas a potencias,

Más detalles

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos

Una desigualdad se obtiene al escribir dos expresiones numéricas o algebraicas relacionadas con alguno de los símbolos MATEMÁTICAS BÁSICAS DESIGUALDADES DESIGUALDADES DE PRIMER GRADO EN UNA VARIABLE La epresión a b significa que "a" no es igual a "b ". Según los valores particulares de a de b, puede tenerse a > b, que

Más detalles

GUÍA DE MATEMÁTICA 101

GUÍA DE MATEMÁTICA 101 GUÍA DE MATEMÁTICA 101 CRISTIAN M. GONZÁLEZ CRUZ, MSc. Revisada y Corregida Por: PATRIA FERNÁNDEZ Derechos Reservados Prohibida la copia parcial o total de este documento Guía de matemática 101, Por: Cristian

Más detalles

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA

CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA http:/// CURSO DE MATEMÁTICA BÁSICA: ÁLGEBRA DESARROLLA EN FORMA RESUMIDA CADA UNIDAD CON: I. GUIONES DE CONFERENCIAS II. FICHAS DE ESTUDIO III. LABORATORIOS DE EJERCICIOS Trata las unidades siguientes:

Más detalles

PÁGINA 77 PARA EMPEZAR

PÁGINA 77 PARA EMPEZAR Soluciones a las actividades de cada epígrafe PÁGINA 77 Pág. 1 PARA EMPEZAR El arte cósico Vamos a practicar el arte cósico : Si a 16 veces la cosa le sumamos 5, obtenemos el mismo resultado que si multiplicamos

Más detalles

Álgebra y Trigonometría CNM-108

Álgebra y Trigonometría CNM-108 Álgebra y Trigonometría CNM-108 Clase 2 Ecuaciones, desigualdades y funciones Departamento de Matemáticas Facultad de Ciencias Exactas y Naturales Universidad de Antioquia Copyleft c 2008. Reproducción

Más detalles

2. Si P(x)= x 3 -x 2-3x+1, Q(x)= 2x 2-2x+1 y R(x)= 2x 3-6x 2 +6x-1, opera: a) P+Q; b) P-Q+R; c) 2P-3R; d) P.Q-R; e) P+Q-R; f) Q.

2. Si P(x)= x 3 -x 2-3x+1, Q(x)= 2x 2-2x+1 y R(x)= 2x 3-6x 2 +6x-1, opera: a) P+Q; b) P-Q+R; c) 2P-3R; d) P.Q-R; e) P+Q-R; f) Q. ejerciciosyeamenes.com POLINOMIOS 1. Si P()= - +1 y Q()= -+, opera: a) P-Q b) P+Q c) P+Q P.Q Sol: a) P-Q= -6 +-1 b) P+Q= 1 - -6+7 c) P+Q= -+ P.Q= 1 5-1 +17 - -+. Si P()= - -+1, Q()= -+1 y R()= -6 +6-1,

Más detalles

Segundo de Bachillerato Geometría en el espacio

Segundo de Bachillerato Geometría en el espacio Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto

Más detalles

Sistemas de ecuaciones de primer grado con dos incógnitas

Sistemas de ecuaciones de primer grado con dos incógnitas Unidad Didáctica 4 Sistemas de ecuaciones de primer grado con dos incógnitas Objetivos 1. Encontrar y reconocer las relaciones entre los datos de un problema y expresarlas mediante el lenguaje algebraico.

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

Resolución de ecuaciones lineales. En general para resolver una ecuación lineal o de primer grado debemos seguir los siguientes pasos:

Resolución de ecuaciones lineales. En general para resolver una ecuación lineal o de primer grado debemos seguir los siguientes pasos: Resolución de ecuaciones lineales En general para resolver una ecuación lineal o de primer grado debemos seguir los siguientes pasos: 1º Quitar paréntesis. Si un paréntesis tiene el signo menos delante,

Más detalles

8 Ecuaciones. Sistemas de ecuaciones

8 Ecuaciones. Sistemas de ecuaciones 8 Ecuaciones. Sistemas de ecuaciones ACTIVIDADES INICIALES 8.I. Qué es una clepsidra? Qué ventajas tiene sobre el reloj de sol? Un reloj de agua. La ventaja respecto al reloj de sol es que puede funcionar

Más detalles

6 SISTEMAS DE ECUACIONES

6 SISTEMAS DE ECUACIONES 6 SISTEMAS DE ECUACIONES EJERCICIOS PROPUESTOS 6.1 Halla las soluciones de la ecuación 2x 6y 28 sabiendo el valor de una de las incógnitas. a) x 5 c) y 1 e) y 3 b) x 10 d) y 0 f) x 1 2 a) x 5 2 5 6y 28

Más detalles

SUMA Y RESTA DE FRACCIONES

SUMA Y RESTA DE FRACCIONES SUMA Y RESTA DE FRACCIONES CONCEPTOS IMPORTANTES FRACCIÓN: Es la simbología que se utiliza para indicar que un todo será dividido en varias partes (se fraccionará). Toda fracción tiene dos partes básicas:

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales 9 Sistemas de ecuaciones lineales 1. Sistemas lineales. Resolución gráfica Comprueba si = 2, = 3 es solución del siguiente sistema: 2 + 4 3 = 14 5 2 + 3 = 13 P I E N S A C A L C U L A + 4 = 14 5 + = 13

Más detalles

9 Ecuaciones. de primer grado. 1. El lenguaje algebraico

9 Ecuaciones. de primer grado. 1. El lenguaje algebraico 9 Ecuaciones de primer grado 1. El lenguaje algebraico Calcula el resultado de las siguientes epresiones: a) Tenía 5 y me han dado 7. Cuántos euros tengo? b) En un rectángulo, un lado mide metros y el

Más detalles

SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA

SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA DEPARTAMENTO DE PREPARATORIA ABIERTA MATEMÁTICAS II GUIA DE ESTUDIO

Más detalles

INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO

INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO INTERVALOS, DESIGUALDADES Y VALOR ABSOLUTO INTERVALOS Los Intervalos son una herramienta matemática que se utiliza para delimitar un conjunto determinado de números reales. Por ejemplo el intervalo [-5,3]

Más detalles

Tema 6: Ecuaciones e inecuaciones.

Tema 6: Ecuaciones e inecuaciones. Tema 6: Ecuaciones e inecuaciones. Ejercicio 1. Encontrar, tanteando, alguna solución de cada una de las siguientes ecuaciones: 3 a) + 5 = 69 Probamos para =,3,4,... = = 3 3 = 4 4 3 3 3 + 5 = 13. + 5 =

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

PARA EMPEZAR. Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 5 6, 7 9, 1 , 7 8 4, 0, 1, 2, 9

PARA EMPEZAR. Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 5 6, 7 9, 1 , 7 8 4, 0, 1, 2, 9 5 INECUACIONES PARA EMPEZAR 1 Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 7 Si sumas a cada fracción, se mantiene el orden? 0 5 6, 7 9, 1 15 El denominador común

Más detalles

Ámbito científico tecnológico. Ecuaciones de segundo grado Sistemas de ecuaciones

Ámbito científico tecnológico. Ecuaciones de segundo grado Sistemas de ecuaciones Dirección Xeral de Educación, Formación Profesional e Innovación Educativa Educación secundaria para personas adultas Ámbito científico tecnológico Educación a distancia semipresencial Módulo Unidad didáctica

Más detalles

HIgualdades y ecuacionesh. HElementos de una ecuaciónh. HEcuaciones equivalentes. HSin denominadoresh. HCon denominadoresh

HIgualdades y ecuacionesh. HElementos de una ecuaciónh. HEcuaciones equivalentes. HSin denominadoresh. HCon denominadoresh 6 Ecuaciones Objetivos En esta quincena aprenderás a: Reconocer situaciones que pueden resolverse con ecuaciones Traducir al lenguaje matemático enunciados del lenguaje ordinario. Conocer los elementos

Más detalles

EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos.

EJERCICIOS PROPUESTOS. Escribe las expresiones algebraicas correspondientes. a) Tres números consecutivos. b) Tres números pares consecutivos. EJERCICIOS PROPUESTOS 4.1 Relaciona cada enunciado con su epresión algebraica. Múltiplo de 3. Número par. El cuadrado de un número más 3. Un número más 5. El triple de un número más 7. 5 3 3 3 7 4. Escribe

Más detalles

Resuelve problemas PÁGINA 75

Resuelve problemas PÁGINA 75 PÁGINA 7 Pág. 1 Resuelve problemas 9 Una empresa de alquiler de coches cobra por día y por kilómetros recorridos. Un cliente pagó 10 por días y 400 km, y otro pagó 17 por días y 00 km. Averigua cuánto

Más detalles

Iniciación a las Matemáticas para la ingenieria

Iniciación a las Matemáticas para la ingenieria Iniciación a las Matemáticas para la ingenieria Los números naturales 8 Qué es un número natural? 11 Cuáles son las operaciones básicas entre números naturales? 11 Qué son y para qué sirven los paréntesis?

Más detalles

REFUERZO MATEMÁTICAS 2º ESO CURSO: 2009/2010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ

REFUERZO MATEMÁTICAS 2º ESO CURSO: 2009/2010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ REFUERZO MATEMÁTICAS º ESO CURSO: 009/010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ SUMA Y RESTA DE NÚMEROS ENTEROS... POTENCIAS... 6 FRACCIONES... 8 FRACCIONES EQUIVALENTES... 8 SUMA DE FRACCIONES... 9 PRODUCTO

Más detalles

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS Guía de Estudio para examen de Admisión de Matemáticas CONTENIDO PRESENTACIÓN... 3 I. ARITMÉTICA... 4 1. OPERACIONES CON FRACCIONES...

Más detalles

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo POLINOMIOS 1.1. DEFINICIONES Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo p(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n + ; a i, x K; n N

Más detalles

a) Da una aproximación (con un número entero de metros) para las medidas del largo y del ancho del campo.

a) Da una aproximación (con un número entero de metros) para las medidas del largo y del ancho del campo. Modelos de EXAMEN Ejercicio nº 1.- Nos dicen que la medida de un campo de forma rectangular es de 45,236 m de largo por 38,54 m de ancho. Sin embargo, no estamos seguros de que las cifras decimales dadas

Más detalles

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES 1 La ecuación 2x - 3 = 0 se llama ecuación lineal de una variable. Obviamente sólo tiene una solución. La ecuación -3x + 2y = 7 se llama ecuación lineal de

Más detalles

HOJA 3 DIVISIBILIDAD

HOJA 3 DIVISIBILIDAD Conceptos de múltiplo y divisor HOJA 3 DIVISIBILIDAD 1.- El número aba es múltiplo de 3 y de 5 cuánto valdrán entonces a y b si a,b son distintos de 0? 2.- El número aba es múltiplo de 5 y de 9 cuánto

Más detalles

El Teorema de Pitágoras

El Teorema de Pitágoras LECCIÓN CONDENSADA 9.1 El Teorema de Pitágoras En esta lección Conocerás el Teorema de Pitágoras, que establece la relación entre las longitudes de los catetos y la longitud de la hipotenusa de un triángulo

Más detalles

Examen de Matemáticas 2 o de Bachillerato Mayo 2003

Examen de Matemáticas 2 o de Bachillerato Mayo 2003 Examen de Matemáticas o de Bachillerato Mayo 00 1. Expresar el número 60 como suma de tres enteros positivos de forma que el segundo sea el doble del primero y su producto sea máximo. Determinar el valor

Más detalles

ECUACIONES. Cuáles son las dimensiones del rectángulo con área 1.200 m tal que la base es el doble de la

ECUACIONES. Cuáles son las dimensiones del rectángulo con área 1.200 m tal que la base es el doble de la ECUACIONES altura? Cuáles son las dimensiones del rectángulo con área.00 m tal que la base es el doble de la Una persona recibe un salario de 00UM más un % sobre las ventas mensuales. Otra persona no recibe

Más detalles

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades: DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)

Más detalles

Divisibilidad y números primos

Divisibilidad y números primos Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos

Más detalles

Polinomios y Ecuaciones

Polinomios y Ecuaciones Ejercicios de Cálculo 0 Prof. María D. Ferrer G. Polinomios y Ecuaciones.. Polinomios: Un polinomio o función polinómica es una epresión de la forma: n n n P a a a a a a = n + n + n + + + + 0 () Los números

Más detalles

Soluciones a las actividades

Soluciones a las actividades Soluciones a las actividades BLOQUE I Álgebra 1. Sistemas lineales 2. Matrices 3. Determinantes 4. Sistemas lineales con parámetros 1 Sistemas lineales 1. Sistemas de ecuaciones lineales Piensa y calcula

Más detalles

IES MARIA INMACULADA MATEMÁTICAS 2º E.S.O. Curso 2010-2011 TEMA : LENGUAJE ALGEBRÁICO

IES MARIA INMACULADA MATEMÁTICAS 2º E.S.O. Curso 2010-2011 TEMA : LENGUAJE ALGEBRÁICO IES MARIA INMACULADA MATEMÁTICAS º E.S.O. Curso 010-011 GUIÓN DEL TEMA 1. Lenguaje numérico y lenguaje algebraico.. Epresión algebraica.. Valor numérico de una epresión algebraica.. Monomios. 5. Grado

Más detalles

Matemática SECRETARÍA ACADÉMICA AREA INGRESO. - Septiembre de 2010 -

Matemática SECRETARÍA ACADÉMICA AREA INGRESO. - Septiembre de 2010 - SECRETARÍA ACADÉMICA AREA INGRESO - Septiembre de 00 - SECRETARÍA ACADÉMICA ÁREA INGRESO UNIVERSIDAD TECNOLÓGICA NACIONAL Zeballos 000 Rosario - Argentina www.frro.utn.edu.ar e-mail: ingreso@frro.utn.edu.ar

Más detalles

DESIGUALDADES E INECUACIONES

DESIGUALDADES E INECUACIONES DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia

Más detalles

TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 2 POLINOMIOS Y FRACCIONES ALGEBRAICAS Matemáticas B 4º E.S.O. Tema : Polinomios y fracciones algebraicas. 1 TEMA POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS 4º.1.1 COCIENTE DE MONOMIOS 4º El cociente de un monomio entre otro

Más detalles

ASOCIATIVA: La suma no varia si se asocian en diferentes formas los sumandos. NEUTRO: El cero ( 0 ) es le elemento neutro aditivo.

ASOCIATIVA: La suma no varia si se asocian en diferentes formas los sumandos. NEUTRO: El cero ( 0 ) es le elemento neutro aditivo. ARITMETICA I. NÚMEROS NATURALES Ν Es el conjunto de los números positivos desde el cero hasta el infinito ( ). Ejemplo: Ν{0,1,,3,4,, } I.1 PROPIEDADES DEL CONJUNTO DE LOS NÚMEROS NATURALES. Dentro de las

Más detalles

Lenguaje Algebraico y Ecuaciones

Lenguaje Algebraico y Ecuaciones CAPÍTULO Lenguaje Algebraico Ecuaciones Se puede pensar que el álgebra comienza cuando se empiezan a utilizar letras para representar números, pero en realidad comienza cuando los matemáticos empiezan

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 5 PRACTICA Completa los siguientes sistemas de ecuaciones para que ambos tengan la solución =, =. + 7 = + = a) b) 4 = Sustituimos en cada ecuación =, = operamos: + = a) b) 4 = 0 Comprueba si

Más detalles

4 INECUACIONES Y SISTEMAS

4 INECUACIONES Y SISTEMAS 4 INECUACINES SISTEMAS EJERCICIS PRPUESTS 4. Escribe las siguientes informaciones utilizando desigualdades. a) He sacado, por lo menos, un 7 en el examen. b) Tengo tarifa plana de ADSL de ocho de la mañana

Más detalles

Problemas de 2 o Bachillerato (ciencias sociales) Isaac Musat Hervás

Problemas de 2 o Bachillerato (ciencias sociales) Isaac Musat Hervás Problemas de 2 o Bachillerato ciencias sociales) Isaac Musat Hervás 27 de mayo de 2007 2 Índice General 1 Problemas de Álgebra 5 1.1 Matrices, Exámenes de Ciencias Sociales............ 5 1.2 Sistemas de

Más detalles

I.E.S. SALVADOR RUEDA DEPARTAMENTO DE MATEMÁTICAS

I.E.S. SALVADOR RUEDA DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA RECUPERAR LAS MATEMÁTICAS DE º ESO El profesor/a de la asignatura se encargará de ir evaluando al alumno/a con la asignatura pendiente en la forma que le indique: realización de exámenes,

Más detalles

10Soluciones a los ejercicios y problemas PÁGINA 196

10Soluciones a los ejercicios y problemas PÁGINA 196 0Soluciones a los ejercicios y problemas PÁGINA 96 Pág. E presiones algebraicas Llamando a un número indeterminado, asocia cada enunciado con la epresión que le corresponde: a) El doble del número. b)

Más detalles

4. Cuáles son los dos números?

4. Cuáles son los dos números? Problemas algebraicos 1 PROBLEMAS (SISTEMAS LINEALES) 1.1 PROBLEMAS (SISTEMAS NO LINEALES) 1.- La razón de dos números es tres quintos y si aumentamos el denominador una unidad y disminuimos el numerador

Más detalles

Ecuaciones e Inecuaciones

Ecuaciones e Inecuaciones 5 Ecuaciones e Inecuaciones Objetivos En esta quincena aprenderás a: Resolver ecuaciones de primer y segundo grado. Resolver ecuaciones bicuadradas y factorizadas. Identificar y resolver inecuaciones de

Más detalles

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-)

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) CÁLCULO MATEMÁTICO BÁSICO LOS NUMEROS ENTEROS Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) Si un número aparece entre barras /5/, significa que su

Más detalles