Potencias y Raíces. 100 Ejercicios para practicar con soluciones

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Potencias y Raíces. 100 Ejercicios para practicar con soluciones"

Transcripción

1 Potencias y Raíces. 00 Ejercicios para practicar con soluciones Cuál es el área de un cuadrado cuyo lado mide cm? Expresa el resultado en forma de potencia. El área de un cuadrado es: A Por tanto, el área es ( ) cm l Expresa los números como multiplicación de factores iguales y luego en forma de potencia: ( ) ( ) ( ) - 8 ( ) ( ) ( ) (- ) (- ) - 8 (- ) - Expresa como potencia única: (- ) : ( ) [(- ) ] ( ) : ( ) ( ) 9 [(- ) ] (- )

2 Expresa en forma de una potencia que tenga como base un número primo: e) f) ( )( )( ) 8 e) f) ( )( )( ) ( ) 8 ( ) Escribe en notación científica los siguientes números. 0,000 0, ,0 0, , ,0 0 Expresa las siguientes potencias como producto de factores: (- ) (- ) -

3 (- ) ( ) ( ) (- ) (- ) ( ) ( ) ( ) ( ) ( ) - Expresa el resultado como potencia única: [(- ) ] 0 - (- ) (- ) (- ) (- ) ( ) [(- ) ] (- ) 0 - (- ) (- ) (- ) (- ) (- ) ( ) [ ( ) ] ( ) 8 Escribe en forma de potencia las siguientes raíces: 9 9

4 9 Escribe en forma radical: e) f) g) h) 9 e) f) g) h) 9 0 Expresa como potencia única: (- ) : ( ) [(- ) ] ( ) : ( ) ( ) 9 [(- ) ] (- ) Expresa el resultado como potencia única: ( ) - : ( ) -

5 - ( ) ( ) ( ) ( ) - : ( ) Escribe en notación científica los siguientes números e) f) Escribe en notación científica los siguientes números. millones de pesetas Trescientos mil dólares Cuatrocientos treinta y dos mil metros Treinta milímetros (en metros) millones de pesetas, 0 ptas. Trescientos mil dólares 0 dólares Cuatrocientos treinta y dos mil metros, 0 metros Treinta milímetros (en metros) 0 metros Una fábrica produce toneladas de hierro al día. Cuántos kilos de hierro fabricará en días? Expresa el resultado en notación científica. tonelada son 000 kg. toneladas son 000 kg. En cinco días fabricará: , 0 kilogramos.

6 Escribe en notación ordinaria los siguientes números. 0, 0 0 0, 0 0, 0 0 0, ,0000 0,000 Cuál es el cubo del cociente que resulta de dividir 8 entre? Expresa las operaciones y el resultado en forma de potencia. : 8 El cubo del cociente es: ( ) Una persona haciendo un recorrido andando emplea 0 días y horas. Cuántos segundos habrá tardado en hacer el recorrido? Expresa el resultado en notación científica. hora son 00 segundos 0 días y horas son horas Por tanto, habrá tardado: , 0 segundos. 8 Expresa las siguientes raíces como potencias:

7 9 En las siguientes operaciones, aplica las propiedades correspondientes y expresa el resultado como potencia única: [(- ) ] (- ) : (- ) ( ) : ( ) + [(- ) ] (- ) : (- ) ( ) ( ) :( ) ( ) ( ) ( ) ( ) ( ) ( 8) 8 : : : 0 La masa de la tierra es,98 0 kg, y la masa de la Luna,, 0. Cuántas Lunas se podrían formar con la masa de la Tierra?,98 0 0,8 0 8, Lunas, 0 Escribe en forma de raíz las siguientes potencias de exponente fraccionario: 9

8 9 9 España tiene una población de, 0 habitantes y una superficie de densidad de la población española? (Densidadhab/ km ) 0, 0 km. Cuál será la La densidad de la población española es : (, 0 ): ( 0, 0 ) (, : 0,) ( 0 : 0 ) 0, 0, 0 h / km El área de un terreno cuadrado es m. Cuál será el área de otro terreno cuyo lado es el triple del primero? Expresa el resultado en forma de potencia. Si l es el lado del primer terreno, entonces l. El lado del segundo terreno es: l metros. Y por tanto, el área es: ( l) l m. Expresa el resultado como potencia única: (- ) (- ) (- ) (- ) ( ) ( ) ( ) ( ) 0 8

9 Escribe en forma de potencia los siguientes radicales: Escribe en notación científica los siguientes números e indica su orden de magnitud Dos billones y medio 8 00 millones , 0 Orden de magnitud: billones y medio, 0 Orden de magnitud: millones,8 0 Orden de magnitud: 0 9

10 Expresa el resultado como potencia única: ( ) ( ) ( ) 8 La masa de la Tierra es,98 0 kg. Cuál sería la masa equivalente a planetas iguales a la Tierra? planetas equivalentes a la Tierra tendrían una masa de:,98 0,9 0,9 0 ( ) kg 9 Expresa el resultado como potencia única: : : 0 : 0 0 Un lavavajillas dispone de 8 bandejas y en cada una de ellas caben vasos. Cuántos vasos se podrán lavar de una sola vez? Expresa el resultado en forma de potencia. La capacidad del lavavajillas es: 8 8 vasos 0

11 Escribe como potencia única: - (- ) (- ) (- ) 8 (- ) - (- ) : (- ) (- ) (- ) (- ) ( ) ( ) 8 (- ) [ 8 ( ) ] ( ) ( ) - ( ) ( ) - : - ( ) La edad de Marcos es años. Cuál es el cuadrado del doble de su edad dentro de años? Expresa el resultado en forma de potencia. La edad de Marcos dentro de años será: + años. El doble de la edad dentro de años será: años. 0 Y el cuadrado de dicha edad es: ( ) años. Reduce a índice común los siguientes radicales:,,,, m.c.m.(,),,, m.c.m.(,,), 9, Simplifica los siguientes radicales: 8

12 8 Introduce en el radical los números que están fuera: 8 8 Simplifica los siguientes radicales: En un triángulo rectángulo los catetos miden cm y cm respectivamente. Cuánto medirá la hipotenusa?

13 cm h cm Aplicando el Teorema de Pitágoras: h a + b h + (La raíz negativa no es solución valid La hipotenusa mide cm 8 Calcula las siguientes raíces: - 8 y ( ) ( ) 8 8 y ( ) y ( ) 9 Introduce en la raíz todos los factores:

14 8 8 0 Expresa en forma de raíz las siguientes potencias de exponente fraccionario: Reduce a índice común los siguientes radicales:,, 0,,? 0 Expresa como producto de un número entero y un radical los siguientes radicales:

15 Extrae todos los factores posibles de las siguientes raíces: 9 9 ( ) El área de un terreno de forma cuadrada es 9 m. Cuánto medirá el perímetro del terreno? El lado del terreno mide 9 m (La raíz negativa no es solución válid El perímetro es: m. Simplifica los siguientes radicales expresándolos previamente en forma de potencia: 0 8

16 El número es igual al cubo de. Calcula la raíz sexta de dicho número y explica cómo lo haces. ( ) ( ) Escribe radicales equivalentes a: El volumen de un cubo es 000 m. Cuál es el área de una de sus caras? Como V l, entonces l m. El área de una de las caras es: A l 0 00 m.

17 9 Escribe radicales equivalentes a: Reduce a índice común los siguientes radicales:, 9,,,,, 0, 0 8, 0 m.c.m.(,,) 0 9,, m.c.m.(,,) 0 0 0, 0 0, 0 Simplifica los siguientes radicales: 8 8

18 8 8 Cuál es la máxima distancia, en línea recta, que podrá recorrer un jugador en un campo de fútbol de 0 m de largo y m de ancho? La máxima distancia corresponde a la diagonal del terreno rectangular. d m 0 m Por el teorema de Pitágoras: d 0 + m. La distancia máxima es m Simplifica las siguientes potencias expresándolas previamente en forma radical:

19 Extrae factores de las siguientes raíces: 000 a b c a b c a a b b b c c c a a b b b c c b c a b c bc Introduce todos los factores en las raíces: 9 La mitad del cuadrado de la distancia que recorre un ciclista en 0 minutos es km. Cuánto recorrerá en horas? 9

20 Si la mitad del cuadrado de la distancia es, el cuadrado de la distancia es: km. Por tanto la distancia que recorre el ciclista en media hora es: 8 km. En dos horas recorrerá: 8 km. Simplifica los siguientes radicales: Se quiere construir un tablero cuadrado que tenga una superficie de cm y que a su vez contenga casillas iguales. Cuánto medirá el lado de cada casilla? El lado del tablero medirá: cm El número de filas y columnas que tendrá el tablero será: Por tanto el lado de cada casilla medirá: :, cm. 9 Cómo se puede extraer la raíz séptima de ? Extrae de la raíz todos los factores posibles: 88 0

21 88 8 Reduce a índice común los siguientes radicales:,,,,,, ( ) 0 0 ( ),, El área de un cuadrado es 09 cm. Cuánto medirá el perímetro de otro cuadrado cuyo lado es la raíz cúbica del lado del primero? El lado del primer cuadrado mide: 09 cm. El lado del segundo cuadrado es: cm Por tanto, su perímetro medirá: cm. Extrae factores de los siguientes radicales: 00 8

22 Ordena de menor a mayor los siguientes radicales:,,,, 0 8,,,, < < < < m.c.m.(,,),, 0 8,, 0 0, 0, < 0 8 < m.c.m.(,,0) 0 0 < 0 8 < Extrae factores de los siguientes radicales: La edad de Juan actualmente es años y tiene el cubo de la edad de su hermano Pedro. Dentro de 9 años la edad de Juan será el cuadrado de la edad que su hermana María tiene actualmente Cuál es la edad actual de sus dos hermanos?

23 La edad de Pedro es: años Dentro de 9 años, Juan tendrá +9. Por tanto, María tendrá años Las edades de María y de Pedro son y años respectivamente Expresa en forma de raíz las siguientes potencias: Reduce a índice común y luego realiza las siguientes multiplicaciones: : 8 : 8 8 : 8 : 9 Calcula las siguientes multiplicaciones y divisiones de radicales: 8 b ) 9 c ) : 0 :

24 : 0 : 0 0 Realiza las siguientes divisiones de radicales reduciendo previamente a índice común: 9 : : : 9 : 9 : 9 9 : : : : 8 9 ( ) : : : Realiza las siguientes sumas y restas de radicales: ( + ) ( + 0) Calcula: ( + ) 0

25 ( ) Expresa primero en forma radical y luego calcula: 9 0 : : ( ) : : : 0 : 0 : : 00 Realiza las siguientes sumas de radicales: ( ) ( + ) Realiza las siguientes divisiones con radicales: : :

26 : : : : : : : Cuál es el perímetro de un cuadrado cuya área es cm? Realiza las operaciones utilizando potencias de exponente fraccionario. El lado de cuadrado es: cm El perímetro del cuadrado es: + 9 cm Reduce a índice común y luego realiza las siguientes multiplicaciones: ( ) 9 8 Expresa primero en forma radical y luego divide: 9 0 : : 9 : 0 : : : 9 9 : 9 9 : 9 9 : : 0 0 : 0 0 : 0 8 0

27 9 Reduce primero a índice común y luego multiplica: Calcula las siguientes sumas y restas, convirtiendo previamente los radicales en semejantes: ( ) ( ) 8 En una habitación se quieren colocar mesas cuadradas de m cada una y mesas, también cuadradas, de 8 m cada una. Puestas una a continuación de otra, qué longitud ocuparán todas las mesas? El lado de cada mesa de m es: l m El lado de cada mesa de 8 m es: l 8 m Por tanto, la longitud de todas las mesas es: m 8 Un abuelo tiene el cuadrado del cubo de la edad de su nieto. Cuál será la edad de su nieto si tiene años? x Si la edad del nieto es x, el abuelo tiene ( ) Por tanto, el nieto tiene: años..

28 8 Calcula: El cuadrado de la raíz cúbica de. La raíz cuadrada de la raíz cuarta de. El cubo de la raíz cuadrada de. La raíz cúbica de la raíz cuadrada de. ( ) ( ) 8 Halla en la forma más simplificada posible el resultado de las siguientes divisiones: : 8 : : : : ( ) : 0 : 0 : 8 Calcula: Calcula: 8 9 : ( : ) ( 9 ) ( : ) 8 : ( 9 ) 9 : 9 9 : 9 : : 8

29 : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: Calcula las siguientes sumas y restas, convirtiendo previamente los radicales en semejantes: ( + + ) Calcula: 89 Calcula las siguientes multiplicaciones de radicales simplificando el resultado cuando sea posible: 9

30 : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: : ) 9 : 9 : 9 : 8: : ) 9 : 9 : 9 : 8: : ) 9 : 9 : 9 : 8: : ) 9 : 9 : 9 : 8: : ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: Realiza las siguientes sumas de radicales: 9 Estudia si la siguiente expresión da como resultado un número entero: Sí es un número entero. 9 La medida de los lados de un rectángulo es y. Calcula: La medida de la diagonal. La suma y la diferencia de las dos diagonales. El producto y el cociente de las dos diagonales. Suma de las diagonales: ( Diferencia: ( Producto: ( Cociente: ( 9 Calcula: ( 0

31 : ( ) 9 : 9 : 9 : 8: 9 9

32 : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: Calcula:

33 : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: : ) 9 : 9 : 9 : 8: Realiza las siguientes sumas de radicales: (

34 : ( ) 9 : 9 : 9 : 8: 9 9

35 : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: Realiza las siguientes operaciones:

36 : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: Cuánto suman las diagonales de un cuadrado de lado cm?

37 : ) 9 : 9 : 9 : 8: : ) 9 : 9 : 9 : 8: 9 9 La diagonal de un cuadrado de lado cm es ( La suma de las dos diagonales es: (..

38 : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: Realiza las siguientes sumas de radicales: 8

39 : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: 9 9 9

40 : ) 9 : 9 : 9 : 8: Calcula: ( 0

41 : ( ) 9 : 9 : 9 : 8: 9 9

42 : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: : ( ) 9 : 9 : 9 : 8: Halla el resultado de las siguientes operaciones con radicales:

a) 12 = b) 45 = c) 54 a) 2 = 2 c) 9 c) 9 = 9 Tema 2 - Hoja 2: Raíz de un número

a) 12 = b) 45 = c) 54 a) 2 = 2 c) 9 c) 9 = 9 Tema 2 - Hoja 2: Raíz de un número Tema - Hoja : Raíz de un número Expresa como producto de un número entero y un radical los siguientes radicales: a) a) = = = = = = Expresa en forma de raíz las siguientes potencias de exponente fraccionario:

Más detalles

3. Un número x dividido por 12 da como cociente 7 y resto 9. a) Halla x b) Qué número tienes que sumar a x para que la división por 12 sea exacta?

3. Un número x dividido por 12 da como cociente 7 y resto 9. a) Halla x b) Qué número tienes que sumar a x para que la división por 12 sea exacta? . a) Expresa en forma polinómica: 8 b) Representa en el sistema binario el número. a) Calcula: (+).()+.(4) b) Escribe en forma de potencia: 6. Un número x dividido por da como cociente 7 y resto 9. a)

Más detalles

a) Da una aproximación (con un número entero de metros) para las medidas del largo y del ancho del campo.

a) Da una aproximación (con un número entero de metros) para las medidas del largo y del ancho del campo. Modelos de EXAMEN Ejercicio nº 1.- Nos dicen que la medida de un campo de forma rectangular es de 45,236 m de largo por 38,54 m de ancho. Sin embargo, no estamos seguros de que las cifras decimales dadas

Más detalles

( ) ( ) a) 8 2. b) 9 12 c) 625 : 5 d) 10 : 6. a) 8 2 = 8 2 = 16 = 4. b) 9 12 = 9 12 = c) 625 : 5 = = 125 = d) 10 : 6 = = 6 3

( ) ( ) a) 8 2. b) 9 12 c) 625 : 5 d) 10 : 6. a) 8 2 = 8 2 = 16 = 4. b) 9 12 = 9 12 = c) 625 : 5 = = 125 = d) 10 : 6 = = 6 3 Tema - Hoja : Cálculo de potencias y raíces Calcula las siguientes multiplicaciones y divisiones de radicales: a) 8 9 c) 6 : d) 0 : 6 a) 8 = 8 = 6 = 9 = 9 = 08 6 c) 6 : = = = 0 d) 0 : 6 = = 6 Realiza las

Más detalles

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7

a) x 1 = 2 b) x + x 6 = 2 + = + = c) x 9x + 20 = 2 d) x 6x 7 = a) x = 1 y x = 1 b) x = 3 y x = 2 c) x = 4 y x = 5 d) x = 1 y x = 7 1 Resuelve las siguientes ecuaciones: a) x 1 = x + x 6 = c) x 9x + = d) x 6x 7 = = a) x = 1 y x = 1 x = 3 y x = c) x = 4 y x = 5 d) x = 1 y x = 7 Resuelve las siguientes ecuaciones de primer grado: a)

Más detalles

( ) ( ) = ( ) = ( ) ) ( ( ) c) 128. 2 2 b) 7 7 3 4. c) 6 : 6. 2 2 2 7 7 7 c) 6 : 6 6 6. Tema 2 - Hoja 1: Potencias de exponente entero y fraccionario

( ) ( ) = ( ) = ( ) ) ( ( ) c) 128. 2 2 b) 7 7 3 4. c) 6 : 6. 2 2 2 7 7 7 c) 6 : 6 6 6. Tema 2 - Hoja 1: Potencias de exponente entero y fraccionario Tema - Hoja : Potencias de exponente entero y fraccionario Expresa los números como multiplicación de factores iguales y luego en forma de potencia: a b c 8 d 6 ( ( ( a = b = = = ( c 8 d = 6 = Expresa

Más detalles

b) Los lados de un triángulo rectángulo tienen por medida tres números naturales consecutivos. Halla dichos lados.

b) Los lados de un triángulo rectángulo tienen por medida tres números naturales consecutivos. Halla dichos lados. Problemas Repaso MATEMÁTICAS APLICADAS A LAS CCSS I Profesor:Féli Muñoz Reduce a común denominador el siguiente conjunto de fracciones: + ; y Común denominador: ( + )( ) MCM + ( )( ) ( )( + )( ) ( ) (

Más detalles

EJERCICIOS PROPUESTOS. c) 5 2 d) 5 2 3

EJERCICIOS PROPUESTOS. c) 5 2 d) 5 2 3 Potencias y raíces EJERCICIOS PROPUESTOS. Escribe como potencias positivas las negativas, y viceversa. a) 8 b) 6 a) b) 6 c) 8 c) d) d). Expresa estas potencias como potencias únicas y calcula las operaciones.

Más detalles

PROBLEMAS QUE SE RESUELVEN CON ECUACIONES

PROBLEMAS QUE SE RESUELVEN CON ECUACIONES PROBLEMAS QUE SE RESUELVEN CON ECUACIONES 1º) El perímetro de un triángulo isósceles mide 15 cm. El lado desigual del triángulo es la mitad de cada uno de los lados iguales. Halla la longitud de cada uno

Más detalles

1ª PARTE: OPERACIONES CON NÚMEROS 1

1ª PARTE: OPERACIONES CON NÚMEROS 1 Cuaderno de Actividades º ª PARTE: OPERACIONES CON NÚMEROS A) ENTEROS Realiza las siguientes operaciones: ) + 6 + + ) ) + ) ) ) + 8 + ) 6 ) + 9 ) ) 6) + ). + ) ) + + ) + + ) ) 6) 6) : -)+-)+9 = -8 +.+9

Más detalles

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado,

1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, FICHA 1: Teorema de Pitágoras 1. Aplicar el teorema de Pitágoras para responder a las siguientes cuestiones (y hacer un dibujo aproximado, cuando proceda): a) Hallar la hipotenusa de un triángulo rectángulo

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 3 Ecuaciones y sistemas. Inecuaciones Elaborado por la Profesora Doctora

Más detalles

Raíces cuadradas y radicales

Raíces cuadradas y radicales Raíces cuadradas y radicales Raíz cuadrada - la raíz cuadrada de x, donde x, es igual a c (donde c si c 2 = x. Se usa la notación para representar la raíz cuadrada principal de x. Al símbolo se le llama

Más detalles

3 Polinomios y fracciones algebráicas

3 Polinomios y fracciones algebráicas Solucionario 3 Polinomios y fracciones algebráicas ACTIVIDADES INICIALES 3.I. Para cada uno de los siguientes monomios, indica las variables, el grado y el coeficiente, y calcula el valor numérico de los

Más detalles

EJERCICIOS PROPUESTOS. Indica, sin realizar la división, el tipo de expresión decimal de estos números. Periódico mixto c) 2 7. Periódico puro d) 7 7

EJERCICIOS PROPUESTOS. Indica, sin realizar la división, el tipo de expresión decimal de estos números. Periódico mixto c) 2 7. Periódico puro d) 7 7 NÚMEROS REALES EJERCICIOS PROPUESTOS. Indica, sin realizar la división, el tipo de expresión decimal de estos números. a) b) 9 6 c) 7 d) 7 7 4 0 a) Periódico mixto c) 7 Periódico mixto 6 4 b) 9 Periódico

Más detalles

EXAMEN DE POLINOMIOS, ECUACIONES Y SISTEMAS 6-3-7

EXAMEN DE POLINOMIOS, ECUACIONES Y SISTEMAS 6-3-7 I.E.S. Humanes Junio de 007 EXAMEN DE POLINOMIOS, ECUACIONES Y SISTEMAS 6-3-7 1º) Resuelve: 3 x ( x 3) = 7x 3 ( x + 4) x x + 4 º) Resuelve: = 3 1 3º) Resuelve: ( x 1) = ( x 1 ) ( x + ) x 4º) Resuelve:

Más detalles

14 ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS

14 ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS 14 ÁREAS Y VOLÚMENES DE CUERPOS GEOMÉTRICOS EJERCICIOS PROPUESTOS 14.1 Calcula el área de los ortoedros cuyas longitudes vienen dadas en centímetros. a) b) 6 6 6 5 1 a) El cuerpo es un cubo: A 6a 6 6 6

Más detalles

Problemas de ecuaciones de primer grado

Problemas de ecuaciones de primer grado Problemas de ecuaciones de primer grado 1. La suma de dos números pares consecutivos es 102. Halla esos números. (50 y 52) 2. La suma de tres números impares consecutivos es 69. Busca los números. (21,23

Más detalles

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado.

+ 7 es una ecuación de segundo grado. es una ecuación de tercer grado. ECUACIONES Y DESIGUALDADES UNIDAD VII VII. CONCEPTO DE ECUACIÓN Una igualdad es una relación de equivalencia entre dos epresiones, numéricas o literales, que se cumple para algún, algunos o todos los valores

Más detalles

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS

3 POLINOMIOS Y FRACCIONES ALGEBRAICAS POLINOMIOS Y FRACCIONES ALGEBRAICAS PARA EMPEZAR Un cuadrado tiene 5 centímetros de lado. Escribe la epresión algebraica que da el área cuando el lado aumenta centímetros. A ( 5) Señala cuáles de las siguientes

Más detalles

10 FIGURAS Y CUERPOS GEOMÉTRICOS

10 FIGURAS Y CUERPOS GEOMÉTRICOS EJERCICIOS PROPUESTOS 10.1 Indica cuál de estos poliedros es cóncavo y cuál es convexo. a) Cóncavo b) Convexo 10.2 Completa la siguiente tabla. Caras (C ) Vértices (V ) Aristas (A) C V A 2 Tetraedro 4

Más detalles

PARA EMPEZAR. Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 5 6, 7 9, 1 , 7 8 4, 0, 1, 2, 9

PARA EMPEZAR. Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 5 6, 7 9, 1 , 7 8 4, 0, 1, 2, 9 5 INECUACIONES PARA EMPEZAR 1 Escribe con el mismo denominador y ordena de menor a mayor las siguientes fracciones: 7 Si sumas a cada fracción, se mantiene el orden? 0 5 6, 7 9, 1 15 El denominador común

Más detalles

CUADERNILLO RECUPERACIÓN PENDIENTES CURSO 13-14 MATEMÁTICAS 1º E.S.O.

CUADERNILLO RECUPERACIÓN PENDIENTES CURSO 13-14 MATEMÁTICAS 1º E.S.O. CUADERNILLO RECUPERACIÓN PENDIENTES CURSO 13-14 MATEMÁTICAS 1º E.S.O. Tema 1: Números Naturales: Tema 2: Divisibilidad. Tema 3: Fracciones. Tema 4: Números decimales. Tema 5: Números enteros. Tema 6: Iniciación

Más detalles

DEPARTAMENTO DE SERVICIOS EDUCATIVOS COMISIÓN ANDRAGÓGICA AÑO 2011 GUÍA PARA ASESORAR

DEPARTAMENTO DE SERVICIOS EDUCATIVOS COMISIÓN ANDRAGÓGICA AÑO 2011 GUÍA PARA ASESORAR DEPARTAMENTO DE SERVICIOS EDUCATIVOS COMISIÓN ANDRAGÓGICA AÑO 2011 GUÍA PARA ASESORAR a las personas jóvenes y adultas que requieren presentar el examen de OPERACIONES AVANZADAS 1 NÚMEROS CON SIGNO. Los

Más detalles

NOTACIÓN EXPONENCIAL O CIENTÍFICA

NOTACIÓN EXPONENCIAL O CIENTÍFICA 1 NOTACIÓN EXPONENCIAL O CIENTÍFICA En cualquier ciencia los números que se deben escribir son a veces muy grandes o muy pequeños, por ejemplo: El número de átomos de carbono que hay en un gramo: 50 150

Más detalles

CENAFE MATEMÁTICAS POLÍGONOS

CENAFE MATEMÁTICAS POLÍGONOS POLÍGONOS Es la porción del plano comprendida dentro de una línea poligonal cerrada. Es la superficie del plano limitada por una línea poligonal. La medida de un polígono es su área. Criterios de clasificación:

Más detalles

REFUERZO MATEMÁTICAS 2º ESO CURSO: 2009/2010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ

REFUERZO MATEMÁTICAS 2º ESO CURSO: 2009/2010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ REFUERZO MATEMÁTICAS º ESO CURSO: 009/010 PROFESOR: MARÍA DE LA ROSA SÁNCHEZ SUMA Y RESTA DE NÚMEROS ENTEROS... POTENCIAS... 6 FRACCIONES... 8 FRACCIONES EQUIVALENTES... 8 SUMA DE FRACCIONES... 9 PRODUCTO

Más detalles

EJERCICIOS PARA RECUPERAR MATEMÁTICAS PENDIENTES 2º ESO

EJERCICIOS PARA RECUPERAR MATEMÁTICAS PENDIENTES 2º ESO MATEMÁTICAS PENDIENTES º ESO Operaciones combinadas con enteros Calcula + ( (+ 0 ) ) + 0 + ( + ) ( (+ 8 + 9 )) 0 + + + + 6 68 + 6+ 9 6 ( + 6+ ( + 6)) + 0 (( + 8 ) + (+ ) + ) + + 8 + ( + + 6+ ) 66 ( + 6

Más detalles

Ecuaciones de segundo grado

Ecuaciones de segundo grado 3 Ecuaciones de segundo grado Objetivos En esta quincena aprenderás a: Identificar las soluciones de una ecuación. Reconocer y obtener ecuaciones equivalentes. Resolver ecuaciones de primer grado Resolver

Más detalles

Ecuaciones de 1er y 2º grado

Ecuaciones de 1er y 2º grado Ecuaciones de er y º grado. Ecuaciones de er grado Resuelve mentalmente: a) + = b) = c) = d) = P I E N S A Y C A L C U L A a) = b) = c) = d) = Carné calculista, : C =,; R = 0, Resuelve las siguientes ecuaciones:

Más detalles

PENDIENTES DE MATEMÁTICAS DE 2º ESO (CURSO 2014-2015)

PENDIENTES DE MATEMÁTICAS DE 2º ESO (CURSO 2014-2015) PENDIENTES DE MATEMÁTICAS DE 2º ESO (CURSO 2014-2015) CRITERIOS E INDICADORES Se detallan a continuación los criterios de evaluación junto con sus indicadores de contenidos asociados. En negrita se indican

Más detalles

4 ECUACIONES Y SISTEMAS

4 ECUACIONES Y SISTEMAS 4 ECUACIONES Y SISTEMAS PARA EMPEZAR 1 Indica si las siguientes igualdades son identidades o ecuaciones, y resuelve estas últimas. a) 5 1 4 c) ( )( ) 4 b) 5 d) 7 5 10 a) Identidad c) Identidad b) Ecuación.

Más detalles

Lenguaje Algebraico Ing. Gerardo Sarmiento

Lenguaje Algebraico Ing. Gerardo Sarmiento Agosto 2009 Unidad 1 LENGUAJE ALGEBRAICO 1.1.1 DEFINICION DE ALGEBRA 1.1.2 SIMBOLOS Y LENGUAJE 1.1.3 EXPRESIONES ALGEBRAICAS Lenguaje Común y Lenguaje Algebráico 1.1.4 NOTACION ALGEBRAICA Elementos de

Más detalles

RESOLUCIÓN DE PROBLEMAS

RESOLUCIÓN DE PROBLEMAS RESOLUCIÓN DE PROBLEMAS La resolución de problemas mediante ecuaciones tiene una serie de dificultades que nos llevan a plantear un tema separado del resto. Las dificultades, llegado este punto en que

Más detalles

2 Potencias y radicales

2 Potencias y radicales 89 _ 09-008.qxd //08 09: Página Potencias y radicales INTRODUCCIÓN Los alumnos ya han trabajado con potencias de exponente positivo y han efectuado multiplicaciones y divisiones de potencias y potencias

Más detalles

ALUMNOS DE CUARTO DE ESO CON MATEMÁTICAS DE TERCERO PENDIENTES

ALUMNOS DE CUARTO DE ESO CON MATEMÁTICAS DE TERCERO PENDIENTES ALUMNOS DE CUARTO DE ESO CON MATEMÁTICAS DE TERCERO PENDIENTES La materia se estructurará en dos partes. Los alumnos que tengan en la primera evaluación menos de un cuatro deberán hacer el martes de Febrero

Más detalles

EJERCICIOS SOBRE : FRACCIONES

EJERCICIOS SOBRE : FRACCIONES 1.- Introducción a las fracciones: Las fracciones representan siempre una cierta parte de algo. Ese algo es la unidad que elegimos. Ejemplo: _ Dos 1 / 2 litros de leche. _ Sólo tiene 1/ 2 pastilla 2.-

Más detalles

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-)

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) CÁLCULO MATEMÁTICO BÁSICO LOS NUMEROS ENTEROS Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) Si un número aparece entre barras /5/, significa que su

Más detalles

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente. 3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen

Más detalles

ES OBLIGATORIA LA RESOLUCIÓN COMPLETA DE CADA EJERCICIO (PLANTEAMIENTO, DESARROLLO Y SOLUCIÓN) DE FORMA CLARA Y CONCISA.

ES OBLIGATORIA LA RESOLUCIÓN COMPLETA DE CADA EJERCICIO (PLANTEAMIENTO, DESARROLLO Y SOLUCIÓN) DE FORMA CLARA Y CONCISA. EJERCICIOS DE REPASO MATEMÁTICAS.- º ESO ES OBLIGATORIA LA RESOLUCIÓN COMPLETA DE CADA EJERCICIO (PLANTEAMIENTO DESARROLLO Y SOLUCIÓN) DE FORMA CLARA Y CONCISA.. Sergio trabaja horas todas las semanas

Más detalles

CUESTIONARIO PRIMER PERIODO

CUESTIONARIO PRIMER PERIODO CUESTIONARIO PRIMER PERIODO ÁREA DE MATEMÁTICAS Asignatura: MATEMÁTICAS Curso Séptimo Bimestre Cuarto Fecha 20.01.2012 Elaboró Prof. NICOLÁS ROJAS Revisó Prof. MAURICIO CÁRDENAS 2012: Año de la predicación

Más detalles

TEMA 6 SEMEJANZA DE TRIÁNGULOS

TEMA 6 SEMEJANZA DE TRIÁNGULOS Tema 6 Semejanza de triángulos Matemáticas - 4º ESO 1 TEMA 6 SEMEJANZA DE TRIÁNGULOS ESCALAS EJERCICIO 1 : En una fotografía, María y Fernando miden,5 cm y,7 cm, respectivamente; en la realidad, María

Más detalles

INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE EDUCACION MEDIA SUPERIOR

INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE EDUCACION MEDIA SUPERIOR INSTITUTO POLITECNICO NACIONAL SECRETARIA ACADEMICA DIRECCION DE EDUCACION MEDIA SUPERIOR CENTRO DE ESTUDIOS CIENTÍFICOS Y TECNOLÓGICOS NÚM. 13 RICARDO FLORES MAGÓN Guía para el ETS (ordinario o especial)

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas 0 Polinomios y fracciones algebraicas En esta Unidad aprenderás a: d Trabajar con epresiones polinómicas. d Factorizar polinomios. d Operar con fracciones algebraicas. d Descomponer una fracción algebraica

Más detalles

Polinomios y fracciones

Polinomios y fracciones BLOQUE II Álgebra 3. Polinomios y fracciones algebraicas 4. Resolución de ecuaciones 5. Sistemas de ecuaciones 6. Inecuaciones y sistemas de inecuaciones 3 Polinomios y fracciones algebraicas. Binomio

Más detalles

I.E.S. SALVADOR RUEDA DEPARTAMENTO DE MATEMÁTICAS

I.E.S. SALVADOR RUEDA DEPARTAMENTO DE MATEMÁTICAS PLAN DE TRABAJO PARA RECUPERAR LAS MATEMÁTICAS DE º ESO El profesor/a de la asignatura se encargará de ir evaluando al alumno/a con la asignatura pendiente en la forma que le indique: realización de exámenes,

Más detalles

) = 5. Operaciones con polinomios 54 SOLUCIONARIO 1. POLINOMIOS. SUMA Y RESTA 2. MULTIPLICACIÓN DE POLINOMIOS

) = 5. Operaciones con polinomios 54 SOLUCIONARIO 1. POLINOMIOS. SUMA Y RESTA 2. MULTIPLICACIÓN DE POLINOMIOS 54 SOLUCIONARIO 5. Operaciones con polinomios. POLINOMIOS. SUMA RESTA PIENSA CALCULA Dado el cubo de la figura, calcula en función de : a) El área. b) El volumen. a) A ( ) = 6 b) V ( ) = CARNÉ CALCULISTA

Más detalles

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO:

RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO: RESUMEN INFORMATIVO PROGRAMACIÓN DIDÁCTICA CURSO 2014 /2015 DEPARTAMENTO: MATEMÁTICAS MATERIA: RECUPERACIÓN DE MATEMÁTICAS CURSO: 2º ESO OBJETIVOS: Resolver problemas con enunciados relacionados con la

Más detalles

8 GEOMETRÍA DEL PLANO

8 GEOMETRÍA DEL PLANO EJERIIOS PROPUESTOS 8.1 alcula la medida del ángulo que falta en cada figura. a) 6 b) 145 15 105 160 130 a) En un triángulo, la suma de las medidas de sus ángulos es 180. p 180 90 6 8 El ángulo mide 8.

Más detalles

Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de

Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de las bases matemáticas para mejorar el aprendizaje de los

Más detalles

Guía de Matemáticas Segundo Grado

Guía de Matemáticas Segundo Grado Guía de Matemáticas Segundo Grado 1 A cuántos gramos equivale una libra? a) 0022 b) 022 c) 2020 d) 22 2 A cuántos centímetros equivale una pulgada? a) 2.54 cm b) 2.5 cm c) 2 cm d) 1 cm 3 A cuántos kilómetros

Más detalles

GUÍA DE MATEMÁTICA 101

GUÍA DE MATEMÁTICA 101 GUÍA DE MATEMÁTICA 101 CRISTIAN M. GONZÁLEZ CRUZ, MSc. Revisada y Corregida Por: PATRIA FERNÁNDEZ Derechos Reservados Prohibida la copia parcial o total de este documento Guía de matemática 101, Por: Cristian

Más detalles

Page 1 of 9 Actividades de potencias Exponente positivo Potencias de 10 1. Escribe estos números en forma ordinaria: 7'3 10 3 ; 4'724 10 8 ; 8'24 10 5 Notación científic Orden de magnitu Comparaciones

Más detalles

TEMA 2: POTENCIAS Y RAÍCES. Matemáticas 3º de la E.S.O.

TEMA 2: POTENCIAS Y RAÍCES. Matemáticas 3º de la E.S.O. TEMA 2: POTENCIAS Y RAÍCES Matemáticas 3º de la E.S.O. 1. Potencias con exponente entero Potencias de exponente negativo a n = 1 a n Las potencias de exponente negativo cumplen las mismas propiedades que

Más detalles

3. Teorema de Pitágoras

3. Teorema de Pitágoras 3. Teorema de Pitágoras Taller de Matemáticas 3º ESO 1. Propiedades de los triángulos rectángulos. Rompecabezas sobre el teorema de Pitágoras 3. Aplicaciones del teorema de Pitágoras: cálculo de distancias

Más detalles

Potencias, radicales y logaritmos

Potencias, radicales y logaritmos Potencias, radicales y logaritmos 1. Potencias de exponente natural y entero Calcula mentalmente las siguientes potencias: a) b) ( ) c) d) ( ) P I E N S A Y C A L C U L A a) 8 b) 8 c) 8 d) 8 1 Calcula

Más detalles

MANEJO DE EXPRESIONES ALGEBRAICAS. Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas

MANEJO DE EXPRESIONES ALGEBRAICAS. Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas MANEJO DE EXPRESIONES ALGEBRAICAS Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas 34 Reforma académica 003 MAPA CURRICULAR Matemáticas I Aritmética y Álgebra

Más detalles

PROBLEMAS DE GEOMETRÍA. 1. La base de un prisma recto es un cuadrado de área 4 m 2 y la altura es 9 m. Cuál es su volumen?.

PROBLEMAS DE GEOMETRÍA. 1. La base de un prisma recto es un cuadrado de área 4 m 2 y la altura es 9 m. Cuál es su volumen?. PROBLEMAS DE GEOMETRÍA 1. La base de un prisma recto es un cuadrado de área 4 m 2 y la altura es 9 m. Cuál es su volumen?. Sol: 36 m 3 2. Una caja de zapatos tiene de dimensiones 3, 4 y 2 dm. Qué volumen

Más detalles

UNIDAD 11. GEOMETRÍA DEL ESPACIO (I).

UNIDAD 11. GEOMETRÍA DEL ESPACIO (I). UNIDAD 11. GEOMETRÍA DEL ESPACIO (I). Al final deberás haber aprendido... El examen tratará sobre... Describir los cuerpos geométricos del espacio e identificar sus elementos. Deducir las fórmulas para

Más detalles

OLIMPÍADA JUVENIL DE MATEMÁTICA 2009 CANGURO MATEMÁTICO PRUEBA PRELIMINAR SÉPTIMO GRADO

OLIMPÍADA JUVENIL DE MATEMÁTICA 2009 CANGURO MATEMÁTICO PRUEBA PRELIMINAR SÉPTIMO GRADO OLIMPÍADA JUVENIL DE MATEMÁTICA 2009 CANGURO MATEMÁTICO PRUEBA PRELIMINAR SÉPTIMO GRADO RESPONDE LA PRUEBA EN LA HOJA DE RESPUESTA ANEXA 1. Cuál de los siguientes números es par? A 2009 B 2 + 0 + 0 + 9

Más detalles

PARA EMPEZAR. con los numeradores mayores que el de ella, y otras tres con los denominadores menores que el de ella.

PARA EMPEZAR. con los numeradores mayores que el de ella, y otras tres con los denominadores menores que el de ella. NÚMEROS REALES PARA EMPEZAR Representa los números enteros 5,,, y. 5 Escribe un ejemplo de cada una de las interpretaciones de fracción. Partes de una cantidad: de los alumnos de mi clase usa gafas. 5

Más detalles

PROBLEMAS RESUELTOS DE OPTIMIZACIÓN

PROBLEMAS RESUELTOS DE OPTIMIZACIÓN Problemas de optimiación Ejercicio PROBLEMAS RESUELTOS DE OPTIMIZACIÓN Un banco lana al mercado un plan de inversión cua rentabilidad R(, en euros, viene dada en función de la cantidad invertida, en euros,

Más detalles

BOLETIN Nº 5 MATEMÁTICAS 3º ESO Ecuaciones y sistemas Curso 2011/12

BOLETIN Nº 5 MATEMÁTICAS 3º ESO Ecuaciones y sistemas Curso 2011/12 BOLETIN Nº MATEMÁTICAS º ESO Ecuaciones sistemas Curso / ) ( ) ) ( ) 8 ( ) ) ) 8 ( ) ( ) ) ( )( ) ) ( )( ) ( ) ) ( ) ( ) ( ) ( ) 8) ( ) 8( ) ( ) ) ( ) ( 8) ( ) ) (8 ) ( ) ( ) ) ( ) ( ) (8 ) ) ( ) ( ) (

Más detalles

Variables que se relacionan... líneas insertadas < coste del anuncio (i) Variable A 1 2 6 5 10 20

Variables que se relacionan... líneas insertadas < coste del anuncio (i) Variable A 1 2 6 5 10 20 Estudiar en el libro de Texto: No PROBLEMAS. PROPORCIONALIDAD (1) Proporcionalidad directa e inversa Ejemplo 1. Proporcionalidad directa En un diario leemos que los anuncios que se pueden insertar en él

Más detalles

MEDIDA DE SUPERFICIES. ÁREAS DE FIGURAS PLANAS

MEDIDA DE SUPERFICIES. ÁREAS DE FIGURAS PLANAS MEDIDA DE SUPERFICIES. ÁREAS DE FIGURAS PLANAS Se llama área o superficie de un polígono el plano comprendido entre sus lados. Ejemplo: Áreas de polígonos Área del triángulo Área cuadrado Área rectángulo

Más detalles

SELECCIÓ D ACTIVITATS RESOLTES 4RT ESO MATEMÁTIQUES B

SELECCIÓ D ACTIVITATS RESOLTES 4RT ESO MATEMÁTIQUES B SELECCIÓ D ACTIVITATS RESOLTES 4RT ESO MATEMÁTIQUES B Ejercicio nº 1.- a) Escribe en forma decimal cada uno de estos números: A = 9,7 10 9 B = 3,85 10 7 b) Expresa en notación científica las siguientes

Más detalles

EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos

EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos EL TRIÁNGULO 1. EL TRIÁNGULO. PRIMERAS PROPIEDADES El triángulo es un polígono que tiene tres lados y tres ángulos. Es, por tanto, el polígono más simple y el conocimiento de sus características y propiedades

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte En esta unidad vamos a estudiar los números racionales, esto es, los que se pueden expresar en

Más detalles

SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA

SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA DEPARTAMENTO DE PREPARATORIA ABIERTA MATEMÁTICAS II GUIA DE ESTUDIO

Más detalles

11 SUCESIONES. PROGRESIONES

11 SUCESIONES. PROGRESIONES EJERCICIOS PROPUESTOS. Con cerillas se han construido las figuras. a) Cuántas cerillas se necesitan para formar una figura con 5 hexágonos? b) Cuántas cerillas se necesitan para formar una figura con n

Más detalles

Ejercicios de Matemáticas

Ejercicios de Matemáticas Ejercicios de Matemáticas 82. Me encargaron un trabajo. Ayer realicé la mitad del mismo y hoy 1/3 del total. Qué fracción del trabajo llevo realizada? 83. De un depósito que contiene 240 litros de agua

Más detalles

NOMBRE Y APELLIDOS. 8. En una papelería, una docena de lápices cuesta 13. Cuál es el precio total de la venta de 288 lápices?

NOMBRE Y APELLIDOS. 8. En una papelería, una docena de lápices cuesta 13. Cuál es el precio total de la venta de 288 lápices? NOMBRE Y APELLIDOS FECHA CURSO: RECUPERACIÓN 1ª ESO 1. Escribe en Romano los siguientes números a) 258 b) 2013 c) 42 d) 1589 2. Indica el valor de posición de la cifra 7 en cada uno de estos números: a)

Más detalles

7 ECUACIONES. SISTEMAS DE ECUACIONES

7 ECUACIONES. SISTEMAS DE ECUACIONES EJERCICIOS PROPUESTOS 7. Escribe estos enunciados en forma de ecuación. a) La suma de dos números consecutivos es. La suma de tres números pares consecutivos es 0. c) Un número más su quinta parte es.

Más detalles

Resuelve problemas PÁGINA 75

Resuelve problemas PÁGINA 75 PÁGINA 7 Pág. 1 Resuelve problemas 9 Una empresa de alquiler de coches cobra por día y por kilómetros recorridos. Un cliente pagó 10 por días y 400 km, y otro pagó 17 por días y 00 km. Averigua cuánto

Más detalles

ACTIVIDADES DE RECUPERACIÓN MATEMÁTICAS 1º ESO

ACTIVIDADES DE RECUPERACIÓN MATEMÁTICAS 1º ESO CURSO 10-11 ACTIVIDADES DE RECUPERACIÓN MATEMÁTICAS 1º ESO NOMBRE: GRUPO:.; Nº:. Los contenidos mínimos para la prueba extraordinaria de septiembre se encuentran en la programación, que se puede consultar

Más detalles

Ejercicios Tema 1. a) b) c) d) e) f) Ejercicio 6. Escribe en forma de intervalo y representa:

Ejercicios Tema 1. a) b) c) d) e) f) Ejercicio 6. Escribe en forma de intervalo y representa: Ejercicios Tema 1 Números Reales Ejercicio 1. Clasifica los siguientes números en el lugar que conjunto que corresponde: a) b) c) Ejercicio 2. Clasifica los siguientes números: Ejercicio 3. a) Cuáles de

Más detalles

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO

GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO GUIA SEMANAL DE APRENDIZAJE PARA EL GRADO OCTAVO IDENTIFICACIÓN AREA: Matemáticas. ASIGNATURA: Matemáticas. DOCENTE. Juan Gabriel Chacón c. GRADO. Octavo. PERIODO: Segundo UNIDAD: Polinomios TEMA: Expresiones

Más detalles

Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina

Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina www.faena.edu.ar info@faena.edu.ar TERCER BLOQUE MATEMATICA Está permitida la reproducción total o parcial de parte de cualquier persona o institución

Más detalles

Portal Fuenterrebollo Olimpiada Matemáticas Nivel II (1º 2º ESO) OLIMPIADA MATEMÁTICAS NIVEL II (1º - 2º ESO)

Portal Fuenterrebollo Olimpiada Matemáticas Nivel II (1º 2º ESO) OLIMPIADA MATEMÁTICAS NIVEL II (1º - 2º ESO) Portal Fuenterrebollo Olimpiada Matemáticas Nivel II (1º º ESO) OLIMPIADA MATEMÁTICAS NIVEL II (1º - º ESO) 1. En mi huerto cosecho una cebolla cada 4 días, un tomate cada 15 días y una lechuga cada 18

Más detalles

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,

Más detalles

Problemas Tema 1 Enunciados de problemas de Repaso 4ºESO

Problemas Tema 1 Enunciados de problemas de Repaso 4ºESO página / Problemas Tema Enunciados de problemas de Repaso 4ºESO Hoja. Calcula las medidas de un rectángulo cuya superficie es de 40 metros cuadrados, sabiendo que el largo es 6 metros mayor que el triple

Más detalles

PROPUESTA DE ACTIVIDADES PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE MATEMÁTICAS SEGUNDO CURSO EDUCACIÓN SECUNDARIA OBLIGATORIA.

PROPUESTA DE ACTIVIDADES PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE MATEMÁTICAS SEGUNDO CURSO EDUCACIÓN SECUNDARIA OBLIGATORIA. PROPUESTA DE ACTIVIDADES PARA LA PRUEBA EXTRAORDINARIA DE SEPTIEMBRE MATEMÁTICAS SEGUNDO CURSO EDUCACIÓN SECUNDARIA OBLIGATORIA Curso 2012-2013 NOMBRE GRUPO D. José Óscar Busto Velasco D. Marcos Puig Pérez

Más detalles

UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES

UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES UNIDAD 1. NÚMEROS NATURALES Y OPERACIONES 1. SISTEMA DE NUMERACIÓN DECIMAL.. LECTURA, ESCRITURA, DESCOMPOSICIÓN Y ORDENACIÓN DE NÚMEROS NATURALES. 3. SUMA DE NÚMEROS NATURALES. PROPIEDADES. 4. RESTA DE

Más detalles

Capítulo 5: Ecuaciones de segundo grado y sistemas lineales

Capítulo 5: Ecuaciones de segundo grado y sistemas lineales º de ESO Capítulo : Ecuaciones de segundo grado sistemas lineales Autora: Raquel Hernández Revisores: Sergio Hernández María Molero Ilustraciones: Raquel Hernández Banco de Imágenes de INTEF Ecuaciones

Más detalles

EJERCICIOS PROPUESTOS. Copia y completa de modo que estas expresiones sean igualdades numéricas. a) 5 2 13 c) 2 32 b) 4 5 17 d) 4 6 18 10

EJERCICIOS PROPUESTOS. Copia y completa de modo que estas expresiones sean igualdades numéricas. a) 5 2 13 c) 2 32 b) 4 5 17 d) 4 6 18 10 5 ECUACIONES EJERCICIOS PROPUESTOS 5.1 Copia y completa de modo que estas epresiones sean igualdades numéricas. a) 5 1 c) b) 5 17 d) 6 1 10 a) 5 10 1 c) 16 b) 5 17 d) 6 1 10 5. Sustituye las letras por

Más detalles

1º E.S.O. NÚMEROS ENTEROS:

1º E.S.O. NÚMEROS ENTEROS: 1º E.S.O. NÚMEROS ENTEROS: 1. Los números naturales. Sistema de numeración decimal. Orden y representación de los números naturales. Los números grandes: millones, millardos, billones. Suma, resta y multiplicación.

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas Polinomios y fracciones algebraicas POLINOMIOS SUMA, RESTA Y MULTIPLICACIÓN POTENCIAS DIVISIÓN REGLA DE RUFFINI DIVISORES DE UN POLINOMIO FACTORIZACIÓN DE UN POLINOMIO VALOR NUMÉRICO DE UN POLINOMIO TEOREMA

Más detalles

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O.

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. Este programa está destinado a los alumnos que han promocionado a cursos superiores sin haber superado esta materia.

Más detalles

El Teorema de Pitágoras

El Teorema de Pitágoras LECCIÓN CONDENSADA 9.1 El Teorema de Pitágoras En esta lección Conocerás el Teorema de Pitágoras, que establece la relación entre las longitudes de los catetos y la longitud de la hipotenusa de un triángulo

Más detalles

DEPARTAMENTO DE MATEMÁTICAS CURSO 2014-15

DEPARTAMENTO DE MATEMÁTICAS CURSO 2014-15 º ESO DEPARTAMENTO DE MATEMÁTICAS CURSO 0- APELLIDOS... NOMBRE... CURSO... TODO EL ALUMNADO QUE NO HAYA SUPERADO LAS MATEMÁTICAS DE SU NIVEL EN LA CONVOCATORIA ORDINARIA, DEBERÁ ENTREGAR RESUELTAS ESTAS

Más detalles

TEMA 01 - NÚMEROS ENTEROS

TEMA 01 - NÚMEROS ENTEROS º ESO TEMA 0 - NÚMEROS ENTEROS º. Indica el número que corresponde a cada letra. º. Representa en una recta numérica los números: (), (-), (0), (), (-), () luego escríbelos de forma ordenada. º. Haz las

Más detalles

Operaciones con números decimales

Operaciones con números decimales Operaciones con números decimales SUMA DE NÚMEROS DECIMALES Para sumar dos o más números decimales se colocan en columna haciendo coincidir las comas; después se suman como si fuesen números naturales

Más detalles

NÚMEROS RACIONALES Y DECIMALES

NÚMEROS RACIONALES Y DECIMALES NÚMEROS RACIONALES Y DECIMALES Unidad didáctica. Números racionales y decimales CONTENIDOS Fracciones Fracciones equivalentes Amplificar fracciones Simplificar fracciones Representación en la recta numérica.

Más detalles

PLAN DE TRABAJO para el VERANO

PLAN DE TRABAJO para el VERANO PLAN DE TRABAJO para el VERANO MATEMÁTICAS 4 º ESO OPCIÓN A PENDIENTES IES JOVELLANOS Nombre: Esta colección de ejercicios ha sido diseñada con el objetivo de ayudar a preparar a aquellos alumnos y alumnas

Más detalles

ECUACIONES DE PRIMER GRADO

ECUACIONES DE PRIMER GRADO ECUACIONES DE PRIMER GRADO 1- ECUACION DE PRIMER GRADO CON UNA INCOGNITA Una ecuación de primer grado con una incógnita es una igualdad en la que figura una letra sin eponente y que es cierta para un solo

Más detalles

Fracciones. Objetivos. Antes de empezar

Fracciones. Objetivos. Antes de empezar Fracciones Objetivos En esta quincena aprenderás a: Conocer el valor de una fracción. Identificar las fracciones equivalentes. Simplificar una fracción hasta la fracción irreducible. Pasar fracciones a

Más detalles

Seminario Universitario Física. Cifras significativas

Seminario Universitario Física. Cifras significativas Seminario Universitario Física Cifras significativas Las cifras significativas son los dígitos de un número que consideramos no nulos. Son significativos todos los dígitos distintos de cero. Ej. 8723 tiene

Más detalles

PRUEBA DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES 3º ESO 2009. 1) Calcula el valor de A y B, dando el resultado de la forma más sencilla posible.

PRUEBA DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES 3º ESO 2009. 1) Calcula el valor de A y B, dando el resultado de la forma más sencilla posible. PRUEBA DE CONOCIMIENTOS Y DESTREZAS INDISPENSABLES º ESO 009 1) Calcula el valor de A y B, dando el resultado de la forma más sencilla posible. 1 A = 8 1 + 1 B = A = 8 1 = 8 = 8 = 6 4 B = = 4 4 = 4 16

Más detalles

EJERCICIOS PROPUESTOS. 40 20 b) 2 20 x 8 x 5

EJERCICIOS PROPUESTOS. 40 20 b) 2 20 x 8 x 5 EJERCICIOS PROPUESTOS. Halla el valor de x para que las siguientes fracciones sean equivalentes. a) x 4 b) x 8 a) 4 x x 4 b) x 8 x 8. Expresa estas fracciones con el mismo denominador. a), y b) 9, y 8

Más detalles

3. Potencias y raíces

3. Potencias y raíces . POTENCIAS Y RAÍCES. Potencias y raíces. POTENCIAS DE EXPONENTE ENTERO Calcula mentalmente las siguientes potencias: a) 5 b) 4 c) 0 6 d) ( ) e) ( ) 4 f) g) 4 a) 5 b) 8 c) 000 000 d) 8 e) 6 f) 8 g) 6 849

Más detalles