Raíces cuadradas y radicales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Raíces cuadradas y radicales"

Transcripción

1 Raíces cuadradas y radicales Raíz cuadrada - la raíz cuadrada de x, donde x, es igual a c (donde c si c 2 = x. Se usa la notación para representar la raíz cuadrada principal de x. Al símbolo se le llama radical y x es el radicando. Observa que la raíz cuadrada principal es siempre positiva. Ejemplos: porque 3 2 = 9 y 3 > 0. porque 5 2 = 25 y 5 > 0. porque (1/2) 2 = 1/4 y 1/2 > 0. porque 0 2 = 0. El opuesto de la raíz cuadrada principal de x está dado por negativo. Por ejemplo,, de manera que será Cuando tenemos, estamos considerando ambas raíces: la principal(positiva) y la negativa. Por tanto,. La raíz cuadrada de un número negativo no está definida como número real ya que ningún número real elevado al cuadrado puede dar por resultado un número negativo. Por ejemplo, no está definido como número real porque no existe un número que al cuadrarse nos de -1. De manera que ninguna de las siguientes raíces cuadradas están definidas:,. Cuando estudiamos anteriormente el tema de conjuntos, vimos que todo número racional se puede representar como un decimal que termina o como un decimal que no termina, pero se repite (decimal periódico). Siempre que el radicando sea un cuadrado perfecto, el resultado de la raíz cuadrada será un número racional. Si usas tu calculadora (haciendo uso de la tecla de raíz cuadrada) puedes comprobar que son todos números racionales porque se pueden expresar como decimales que terminan o que se repiten. Sin embargo, cuando el radicando no es un cuadrado

2 Raíces Cuadradas y Radicales p. 2 perfecto, el resultado es un número irracional porque son decimales que no terminan ni se repiten. Ejemplos:,. Raíces de orden mayor Cuando tenemos la expresión, n representa el índice del radical e indica el tipo de raíz que estamos buscando. Si n = 2, estamos trabajando con raíz cuadrada y el índice no se escribe, si n = 3, estamos trabajando con raíz cúbica, si n = 4, estamos trabajando con la raíz cuarta, etc. De manera que si x es un número real, la raíz enésima de x se representa con el símbolo donde si. Ejemplos: porque 3 3 = 27 porque 2 4 = 16 porque (-2) 3 = -8 porque (-2) 5 = -32 Ejemplo: no está definido porque no existe un número real que al elevarse a la cuarta potencia nos dé negativo uno. Observa que si el radicando(x) es negativo y el índice (n) es par, y el índice es impar, no es un número real. Sin embargo, si el radicando es negativo es un número real negativo. No es lo mismo que. no es un número real porque ningún número real elevado a la cuarta potencia da por resultado -81. Sin embargo, opuesto de Forma exponencial de que es 3. Por tanto, es el Cuando trabajamos con radicales, estamos trabajando con exponentes racionales. Por definición, (si x es negativo n debe ser impar). A menos que se indique lo contrario, supondremos que todas las variables en el radicando representan números reales no negativos y que el radicando es un número no negativo. De esta manera no será necesario indicar que la variable es no negativa siempre que tengamos un radical con un índice par.

3 Raíces Cuadradas y Radicales p. 3 Ejemplo: Escribe cada expresión en forma exponencial (con exponentes racionales). a) b) c) d) Respuestas: a) b) c) d) De igual forma, las expresiones exponenciales pueden convertirse en expresiones radicales, si invertimos el procedimiento. Ejemplo: Expresa en forma radical (sin exponentes racionales). a) b) c) d) Respuestas: a) b) c) d) Simplificación de raíces cuadradas Un número es un cuadrado perfecto si es el cuadrado de una expresión. Ejemplos de números que son cuadrados perfectos: 1, 4, 9, 16, 25, 36, 49, 64, 81, 100,... ya que se pueden expresar como 1 2, 2 2, 3 2, 4 2, 5 2, 6 2, etc. Las variables con exponentes también pueden ser cuadrados perfectos. Ejemplos de cuadrados perfectos: x 2, x 4, x 6, x 8,... ya que se pueden expresar como (x) 2, (x 2 ) 2, (x 3 ) 2, (x 4 ) 2,...Observa que todos los exponentes de las variables son pares o múltiplos de dos. Al simplificar una raíz cuadrada lo que hacemos es remover del radicando todo factor que sea un cuadrado perfecto. En el caso en que el radicando no sea un cuadrado perfecto, hacemos uso de la regla del producto para raíces cuadradas:

4 Raíces Cuadradas y Radicales p. 4 Observa que expresamos el radicando como producto de factores donde al menos uno de los factores sea un cuadrado perfecto, si es posible. Observa que en este ejemplo, el factor cuadrado perfecto más cercano a 32 es 16, pero también pudimos haber trabajado el ejercicio de la siguiente manera: Los factores de 10 son 1, 2, 5 y 10. Como ninguno de ellos es un cuadrado perfecto (excepto el 1), no puede simplificarse. Cuando el radicando contiene una variable, si ésta está elevada a un exponente par, entonces es un cuadrado perfecto. Es importante indicar que sólo si x asume un valor no negativo. Por ejemplo: si x = 3: Sin embargo si x = -3: Por tanto, podemos concluir que Tal como indicamos anteriormente, asumiremos que toda variable en el radicando asume un valor real no negativo y no tendremos la necesidad de trabajar con valores absolutos. porque (x 2 ) 2 = x 4. x 8 porque (x 8 ) 2 = x 16. Observa que para hallar la raíz cuadrada de una variable elevada a un exponente par divides entre dos el exponente original. Si la variable está elevada a un exponente impar, el factor cuadrado perfecto mayor tiene un exponente que es uno menos que el exponente original.

5 Raíces Cuadradas y Radicales p. 5.. Observa que porque (x 3 ) 2 = x 6. Suma y resta de raíces cuadradas Sólo los radicales semejantes se pueden sumar o restar. Los radicales semejantes son aquellos que tienen el mismo índice y el mismo radicando. Para sumar (restar) radicales semejantes, se suman o restan sus coeficientes numéricos y se multiplica el resultado por el radical semejante. Los radicales son semejantes porque son raíces cuadradas de radicandos iguales. Por tanto, A veces es posible convertir radicales no semejantes en semejantes simplificando primero. Observa que no se suman los radicandos, o sea,

6 Raíces Cuadradas y Radicales p. 6 Observa que no se restan los radicandos, o sea,. Ejemplo: Multiplicación de raíces cuadradas Al multiplicar raíces cuadradas se multiplican los radicandos utilizando la regla del producto que vimos anteriormente y luego se simplifica si es posible. Regla del producto para raíces cuadradas: Usamos la propiedad distributiva:

7 Raíces Cuadradas y Radicales p. 7 Usaremos la técnica de PIES para multiplicar los binomios: P I E S División de raíces cuadradas Al dividir raíces cuadradas, se usa la regla del cociente para raíces cuadradas:, Ejemplos: Simplifica a) b) c) d) Respuestas: a)

8 Raíces Cuadradas y Radicales p. 8 b) c) d) Cuando el denominador contiene un raíz cuadrada, es común eliminar el radical por medio de la racionalización del denominador. Para racionalizar un denominador, multiplicamos el numerador y el denominador de la fracción por una raíz cuadrada, de tal manera que el radicando del denominador se convierta en un cuadrado perfecto. Ejemplos: Simplifica a) b) c) d) Respuestas: a) b) c) d) Otro procedimiento: Procedimiento 1: Procedimiento 2:

9 Raíces Cuadradas y Radicales p. 9 Procedimiento 3:

BOLETIN Nº 4 MATEMÁTICAS 3º ESO Operaciones con radicales

BOLETIN Nº 4 MATEMÁTICAS 3º ESO Operaciones con radicales Radicales " Raíz: se llama raíz de un número o de una expresión algebraica a todo número o expresión algebraica que elevada a una potencia "n"; reproduce la expresión dada. " Elementos de la raíz. - Radical:

Más detalles

DEPARTAMENTO DE MATEMÁTICAS

DEPARTAMENTO DE MATEMÁTICAS UNIDAD 1 Números racionales e irracionales 2º ESO Contenidos, objetivos y criterios de evaluación ÍNDICE DE LA UNIDAD 1. El conjunto de los números racionales. 1.1. Operaciones con fracciones. 1.1.1 Suma

Más detalles

2 Potencias y radicales

2 Potencias y radicales 89 _ 09-008.qxd //08 09: Página Potencias y radicales INTRODUCCIÓN Los alumnos ya han trabajado con potencias de exponente positivo y han efectuado multiplicaciones y divisiones de potencias y potencias

Más detalles

SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA

SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA SECRETARIA DE EDUCACIÓN PÚBLICA SUBSECRETARIA DE EDUCACIÓN MEDIA SUPERIOR DIRECCIÓN DE BACHILLERATOS ESTATALES Y PREPARATORIA ABIERTA DEPARTAMENTO DE PREPARATORIA ABIERTA MATEMÁTICAS II GUIA DE ESTUDIO

Más detalles

a) Da una aproximación (con un número entero de metros) para las medidas del largo y del ancho del campo.

a) Da una aproximación (con un número entero de metros) para las medidas del largo y del ancho del campo. Modelos de EXAMEN Ejercicio nº 1.- Nos dicen que la medida de un campo de forma rectangular es de 45,236 m de largo por 38,54 m de ancho. Sin embargo, no estamos seguros de que las cifras decimales dadas

Más detalles

Guía de estudio. Para la primera evaluación de álgebra octavo 2015

Guía de estudio. Para la primera evaluación de álgebra octavo 2015 Guía de estudio Para la primera evaluación de álgebra octavo 2015 Encontrará una serie de ejercicios que tienen como finalidad hacer un breve repaso sobre lo abordado durante este periodo en clase de álgebra,

Más detalles

UNIDAD I NÚMEROS REALES

UNIDAD I NÚMEROS REALES UNIDAD I NÚMEROS REALES Los números que se utilizan en el álgebra son los números reales. Hay un número real en cada punto de la recta numérica. Los números reales se dividen en números racionales y números

Más detalles

Introducción al Cálculo Simbólico a través de Maple

Introducción al Cálculo Simbólico a través de Maple 1 inn-edu.com ricardo.villafana@gmail.com Introducción al Cálculo Simbólico a través de Maple A manera de introducción, podemos decir que los lenguajes computacionales de cálculo simbólico son aquellos

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

Números Reales y Fundamentos de Álgebra

Números Reales y Fundamentos de Álgebra CONARE Proyecto RAMA Números Reales y Fundamentos de Álgebra Master Pedro Díaz Navarro Temas de pre-cálculo Enero 2007 Master. Pedro Díaz Navarro 31 de julio de 2007 Índice 1. Los Números Reales 1 1.1.

Más detalles

Deseamos, pues, al alumno el mayor de los éxitos en su intento.

Deseamos, pues, al alumno el mayor de los éxitos en su intento. INTRODUCCIÓN Todo debería hacerse tan sencillo como sea posible, pero no más Albert Einstein, físico Cuanto más trabajo y practico, más suerte parezco tener Gary Player, jugador profesional de golf E studiar

Más detalles

Límite de una función

Límite de una función Límite de una función Idea intuitiva de límite El límite de la función f(x) en el punto x 0, es el valor al que se acercan las imágenes (las y) cuando los originales (las x) se acercan al valor x 0. Es

Más detalles

Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina

Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina Nivel Medio I-104 Provincia del Neuquén Patagonia Argentina www.faena.edu.ar info@faena.edu.ar TERCER BLOQUE MATEMATICA Está permitida la reproducción total o parcial de parte de cualquier persona o institución

Más detalles

Ejercicio 3: -Realiza las siguientes operaciones, y después, calcula el dominio resultante. Grupo F7

Ejercicio 3: -Realiza las siguientes operaciones, y después, calcula el dominio resultante. Grupo F7 Ejercicio 3: -Realiza las siguientes operaciones, y después, calcula el dominio resultante. Grupo F7 Apartado A Sabiendo que f(x)= 3x+3 y g(x)= x^2-7 la operación f(x)+g(x) consiste en sumar los miembros

Más detalles

CONTENIDO: Operaciones algebraicas con polinomios. División sintética. Operaciones con exponentes racionales.

CONTENIDO: Operaciones algebraicas con polinomios. División sintética. Operaciones con exponentes racionales. CONTENIDO: Operaciones algebraicas con polinomios. División sintética. Operaciones con exponentes racionales. Definir los conceptos básicos del Algebra Elemental. Conocer los procedimientos para sumar,

Más detalles

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-)

Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) CÁLCULO MATEMÁTICO BÁSICO LOS NUMEROS ENTEROS Son números enteros los números naturales y pueden ser de dos tipos: positivos (+) y negativos (-) Si un número aparece entre barras /5/, significa que su

Más detalles

Capítulo 2 Números Reales

Capítulo 2 Números Reales Introducción Capítulo Números Reales La idea de número aparece en la historia del hombre ligada a la necesidad de contar objetos, animales, etc. Para lograr este objetivo, usaron los dedos, guijarros,

Más detalles

Simplificación de radicales

Simplificación de radicales Simplificación de radicales Raiz Cuadrada El opuesto de cuadrar es tomar la raiz cuadrada de un número. Un número b es una raiz cuadrada de otro número a, si b 2 = a. 9 porque 2 9 64 8 porque 8 2 64 Martin-Gay,

Más detalles

Matemáticas. 1 o ESO. David J. Tarifa García. info@esobachilleratouniversidad.com.es

Matemáticas. 1 o ESO. David J. Tarifa García. info@esobachilleratouniversidad.com.es Matemáticas 1 o ESO David J. Tarifa García info@esobachilleratouniversidad.com.es 1 Matemáticas - 1 o ESO 2 Índice 1 Tema 1. Los números naturales 6 1.1 Suma de números naturales................................

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo

Polinomios: Definición: Se llama polinomio en x de grado n a una expresión del tipo Polinomios: Definición: Se llama polinomio en "x" de grado "n" a una expresión del tipo P (x) = a 0 x n + a 1 x n 1 +... + a n Donde n N (número natural) ; a 0, a 1, a 2,..., a n son coeficientes reales

Más detalles

MATEMÁTICAS CIENCIAS SOCIALES I MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS. Germán Ibáñez http://www.otrapagina.com/matematicas. 8 de septiembre de 2015

MATEMÁTICAS CIENCIAS SOCIALES I MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS. Germán Ibáñez http://www.otrapagina.com/matematicas. 8 de septiembre de 2015 MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS CIENCIAS SOCIALES I tetraedro cubo octaedro dodecaedro icosaedro 8 de septiembre de 05 Germán Ibáñez http://www.otrapagina.com/matematicas . Índice general.

Más detalles

TÍTULO: ARITMETICA TEORICO PRACTICA: CON 7008 EJERCICIOS Y PROBLEMAS

TÍTULO: ARITMETICA TEORICO PRACTICA: CON 7008 EJERCICIOS Y PROBLEMAS TÍTULO: ARITMETICA TEORICO PRACTICA: CON 7008 EJERCICIOS Y PROBLEMAS Disponibilidad La naturaleza. Cuerpos y fenómenos naturales 3 Volumen de los cuerpos 3 Limite de los cuerpos. Superficie 4 Trayecto

Más detalles

FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal.

FRACCIONES. Una fracción tiene dos términos, numerador y denominador, separados por una raya horizontal. FRACCIONES Las fracciones representan números (son números, mucho más exactos que los enteros o los decimales), Representa una o varias partes de la unidad. Una fracción tiene dos términos, numerador y

Más detalles

Matemática SECRETARÍA ACADÉMICA AREA INGRESO. - Septiembre de 2010 -

Matemática SECRETARÍA ACADÉMICA AREA INGRESO. - Septiembre de 2010 - SECRETARÍA ACADÉMICA AREA INGRESO - Septiembre de 00 - SECRETARÍA ACADÉMICA ÁREA INGRESO UNIVERSIDAD TECNOLÓGICA NACIONAL Zeballos 000 Rosario - Argentina www.frro.utn.edu.ar e-mail: ingreso@frro.utn.edu.ar

Más detalles

Ejercicios Resueltos del Tema 4

Ejercicios Resueltos del Tema 4 70 Ejercicios Resueltos del Tema 4 1. Traduce al lenguaje algebraico utilizando, para ello, una o más incógnitas: La suma de tres números consecutivos Un número más la mitad de otro c) El cuadrado de la

Más detalles

Potencias y Raíces. 100 Ejercicios para practicar con soluciones

Potencias y Raíces. 100 Ejercicios para practicar con soluciones Potencias y Raíces. 00 Ejercicios para practicar con soluciones Cuál es el área de un cuadrado cuyo lado mide cm? Expresa el resultado en forma de potencia. El área de un cuadrado es: A Por tanto, el área

Más detalles

MATEMÁTICAS CIENCIAS NATURALEZA I MATEMÁTICAS. e πi +1=0 MATEMÁTICAS MATEMÁTICAS. Germán Ibáñez http://www.otrapagina.

MATEMÁTICAS CIENCIAS NATURALEZA I MATEMÁTICAS. e πi +1=0 MATEMÁTICAS MATEMÁTICAS. Germán Ibáñez http://www.otrapagina. MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS CIENCIAS NATURALEZA I e πi +=0 icosaedro octaedro cubo tetraedro de julio de 0 Germán Ibáñez http://www.otrapagina.com/matematicas dodecaedro . Índice general.

Más detalles

Números y calculadoras

Números y calculadoras Números y calculadoras Jornadas investigación en el aula de Matemáticas Sentido numérico Encarnación Amaro Parrado IES Virgen de la Cabeza de Marmolejo Agustín Carrillo de Albornoz Torres IES Sierra Morena

Más detalles

Qué son los monomios?

Qué son los monomios? Qué son los monomios? Recordemos qué es una expresión algebraica. Definición Una expresión algebraica es aquella en la que se utilizan letras, números y signos de operaciones. Si se observan las siguientes

Más detalles

Biblioteca Virtual Ejercicios Resueltos

Biblioteca Virtual Ejercicios Resueltos EJERCICIO 13 13 V a l o r n u m é r i c o Valor numérico de expresiones compuestas P r o c e d i m i e n t o 1. Se reemplaza cada letra por su valor numérico 2. Se efectúan las operaciones indicadas Hallar

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Un grupo de variables representadas por letras junto con un conjunto de números combinados con operaciones de suma, resta, multiplicación, división, potencia o etracción de raíces

Más detalles

NÚMEROS COMPLEJOS página 181 NÚMEROS COMPLEJOS

NÚMEROS COMPLEJOS página 181 NÚMEROS COMPLEJOS página 181 11.1 RECORRIDO HISTÓRICO Para comprender el por qué y para qué existen los números complejos y todo lo que se hace con ellos es necesario, aunque sea de manera muy sintética, hacer un breve

Más detalles

Iniciación a las Matemáticas para la ingenieria

Iniciación a las Matemáticas para la ingenieria Iniciación a las Matemáticas para la ingenieria Los números naturales 8 Qué es un número natural? 11 Cuáles son las operaciones básicas entre números naturales? 11 Qué son y para qué sirven los paréntesis?

Más detalles

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O.

I.E.S.MEDITERRÁNEO CURSO 2015 2016 DPTO DE MATEMÁTICAS PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. PROGRAMA DE RECUPERACIÓN DE LOS APRENDIZAJES NO ADQUIRIDOS EN MATEMÁTICAS DE 3º DE E.S.O. Este programa está destinado a los alumnos que han promocionado a cursos superiores sin haber superado esta materia.

Más detalles

Números reales. Objetivos. Antes de empezar.

Números reales. Objetivos. Antes de empezar. 1 Números reales Objetivos En esta quincena aprenderás a: Clasificar los números reales en racionales e irracionales. Aproximar números con decimales hasta un orden dado. Calcular la cota de error de una

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y

Más detalles

3. Aplicar adición y sustracción en números del 0 al Adición, sustracción y resolución de problemas. 4. Reconocer, escribir y aplicar números

3. Aplicar adición y sustracción en números del 0 al Adición, sustracción y resolución de problemas. 4. Reconocer, escribir y aplicar números TABLA DE ESPECIFICACIÓN PRUEBA DE SÍNTESIS MATEMÁTICA PRIMER SEMESTRE 2015 Nivel: 1 BÁSICO Profesor (a) (es) (as) Ana María Casals y Margarita Sánchez Fecha de Aplicación: 22 de junio del 2015 Números

Más detalles

HOSTOS COMMUNITY COLLEGE DEPARTAMENTO DE MATEMATICAS. MAT 1604 ó ubicación por el examen de C- MAT o COMPASS.

HOSTOS COMMUNITY COLLEGE DEPARTAMENTO DE MATEMATICAS. MAT 1604 ó ubicación por el examen de C- MAT o COMPASS. HOSTOS COMMUNITY COLLEGE DEPARTAMENTO DE MATEMATICAS MAT 020 ALGEBRA ELEMENTAL CREDITOS ACADEMICOS: 2.0 EQUIVALENCIA EN HORAS: 4.5 HORAS DE CLASE: 4.5 PREREQUISITO: MAT 1604 ó ubicación por el examen de

Más detalles

Cuadernillo de Apuntes de Matemáticas I. Luis Ignacio Sandoval Paéz

Cuadernillo de Apuntes de Matemáticas I. Luis Ignacio Sandoval Paéz Cuadernillo de Apuntes de Matemáticas I Luis Ignacio Sandoval Paéz 1 Índice Números reales 1.1 Clasificación de los números reales. 5 1.2 Propiedades. 7 1.3Interpretación geométrica de los números reales.

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán, de una lista de expresiones

Más detalles

DERIVADAS. El proceso de calcular la derivada se denomina derivación. Se dice que es derivable en c si existe, es decir, existe

DERIVADAS. El proceso de calcular la derivada se denomina derivación. Se dice que es derivable en c si existe, es decir, existe DERIVADAS DEFINICION DE LA DERIVADA DE UNA FUNCION La derivada de una función respecto de (x) es la función (se lee f prima de (x) y está dad por: lim El proceso de calcular la derivada se denomina derivación.

Más detalles

modulodematematica@gmail.com https://www.facebook.com/groups/modulomat

modulodematematica@gmail.com https://www.facebook.com/groups/modulomat modulodematematica@gmail.com https://www.facebook.com/groups/modulomat Matemática Ingreso 0 UADER Facultad de Ciencias de la Gestión Estimado Estudiante: El material que presentamos a continuación es un

Más detalles

SERVICIO DE DESCARGA DE VIDEOS DE MATEMATICAS

SERVICIO DE DESCARGA DE VIDEOS DE MATEMATICAS SERVICIO DE DESCARGA DE VIDEOS DE MATEMATICAS (Actualizado el 08 de septiembre de 2009) Esta es la lista de videos que tenemos disponibles para descargar hasta la fecha actual. Esta lista se va actualizando

Más detalles

CREDITOS ALG. 5/4/06 12:23 PM Page 1 ÁLGEBRA

CREDITOS ALG. 5/4/06 12:23 PM Page 1 ÁLGEBRA ÁLGEBRA ÁLGEBRA MANUAL DE PREPARACIÓN PRE-UNIVERSITARIA IDEA, DISEÑO Y REALIZACIÓN Departamento de Creación Editorial de Lexus Editores LEXUS EDITORES S.A. Av. Del Ejército 05 Miraflores, Lima-Perú www.lexuseditores.com

Más detalles

4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA

4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA 4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA Una ecuación con una incógnita es de segundo grado si el exponente de la incógnita es dos. Ecuaciones de segundo grado con una incógnita son: Esta última ecuación

Más detalles

Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de

Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de Programa de Algebra Superior Caracterización de la asignatura: Esta materia se agregó al plan de estudios de las ingenierías como reforzamiento de las bases matemáticas para mejorar el aprendizaje de los

Más detalles

EJERCICIOS PROPUESTOS. c) 5 2 d) 5 2 3

EJERCICIOS PROPUESTOS. c) 5 2 d) 5 2 3 Potencias y raíces EJERCICIOS PROPUESTOS. Escribe como potencias positivas las negativas, y viceversa. a) 8 b) 6 a) b) 6 c) 8 c) d) d). Expresa estas potencias como potencias únicas y calcula las operaciones.

Más detalles

EJERCICIOS RESUELTOS DE NÚMEROS COMPLEJOS

EJERCICIOS RESUELTOS DE NÚMEROS COMPLEJOS EJERCICIOS RESUELTOS DE NÚMEROS COMPLEJOS 1. Dados = -+4i, z = 5-i, z = y z 4 =7i, calcular: a) ( - z ) z b) z 4 + z z 4 c) + z 4-5z d) + z -1 f) z g) ( + 1 ) 1 z z h) z 1 z i) z j) e) z -1 z + z 4 a)

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

La Lección de Hoy es Distancia entre dos puntos. El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1

La Lección de Hoy es Distancia entre dos puntos. El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1 La Lección de Hoy es Distancia entre dos puntos El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1 La formula de la distancia dada a dos pares es: d= (x 2 -x 1 ) 2 + (y 2 -y 1 ) 2 De

Más detalles

Límites: tipos de indeterminaciones 6

Límites: tipos de indeterminaciones 6 Índice Páginas Cálculo de límites. Tipos de Indeterminación. Límites cuando tiende a ±. Posibilidades : a) Obtenemos solución directamente. b) Indeterminación c) Indeterminación - d) Indeterminación 5

Más detalles

Unidad 1. Las fracciones.

Unidad 1. Las fracciones. Unidad 1. Las fracciones. Ubicación Curricular en España: 4º, 5º y 6º Primaria, 1º, 2º y 3º ESO. Objetos de aprendizaje. 1.1. Concepto de fracción. Identificar los términos de una fracción. Escribir y

Más detalles

MANEJO DE EXPRESIONES ALGEBRAICAS. Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas

MANEJO DE EXPRESIONES ALGEBRAICAS. Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas MANEJO DE EXPRESIONES ALGEBRAICAS Al finalizar el capítulo el alumno manejará expresiones algebraicas para la solución de problemas 34 Reforma académica 003 MAPA CURRICULAR Matemáticas I Aritmética y Álgebra

Más detalles

UNIVERSIDAD NACIONAL DE VILLA MERCEDES. Curso de Formación en Matemáticas

UNIVERSIDAD NACIONAL DE VILLA MERCEDES. Curso de Formación en Matemáticas UNIVERSIDAD NACIONAL DE VILLA MERCEDES Curso de Formación en Matemáticas - 06 - Autor: Lic. Esp. Fernando Javier Quiroga Villegas OBJETIVOS DEL CURSO Objetivo General: Afianzar los conocimientos adquiridos

Más detalles

Polinomios y Ecuaciones

Polinomios y Ecuaciones Ejercicios de Cálculo 0 Prof. María D. Ferrer G. Polinomios y Ecuaciones.. Polinomios: Un polinomio o función polinómica es una epresión de la forma: n n n P a a a a a a = n + n + n + + + + 0 () Los números

Más detalles

La imaginación es más importante que el conocimiento. Albert Einstein. Unidad 6. Suma y resta d e monomios y polinomios. Objetivos

La imaginación es más importante que el conocimiento. Albert Einstein. Unidad 6. Suma y resta d e monomios y polinomios. Objetivos La imaginación es más importante que el conocimiento. Albert Einstein Unidad 6 Suma y resta d e monomios y polinomios Objetivos mat emát ic as 1 Introducción C uando estábamos en primaria la maestra nos

Más detalles

5 Expresiones algebraicas

5 Expresiones algebraicas 8948 _ 04-008.qxd /9/07 :0 Página 9 Expresiones algebraicas INTRODUCCIÓN RESUMEN DE LA UNIDAD El lenguaje algebraico sirve para expresar situaciones relacionadas con la vida cotidiana, utilizando letras

Más detalles

APUNTES Y PROBLEMAS DE MATEMÁTICAS ESPECIALES

APUNTES Y PROBLEMAS DE MATEMÁTICAS ESPECIALES APUNTES Y PROBLEMAS DE MATEMÁTICAS ESPECIALES 6 TREVERIS multimedia Introducción Los Apuntes: Estos apuntes resumen y adaptan el contenido del libro oficial de Matemáticas Especiales del Curso de Acceso

Más detalles

MATEMATICAS FUNDAMENTALES PARA INGENIEROS

MATEMATICAS FUNDAMENTALES PARA INGENIEROS BERNARDO ACEVEDO FRIAS OMAR EVELIO OSPINA ARTEAGA LUIS ALVARO SALAZAR SALAZAR MATEMATICAS FUNDAMENTALES PARA INGENIEROS UNIVERSIDAD NACIONAL DE COLOMBIA SEDE MANIZALES Índice general 1. NÚMEROS Y EXPRESIONES

Más detalles

INSTITUTO UNIVERSITARIO DE TECNOLOGÍA VENEZUELA CURSO PROPEDÉUTICO TALLER DE MATEMÁTICA

INSTITUTO UNIVERSITARIO DE TECNOLOGÍA VENEZUELA CURSO PROPEDÉUTICO TALLER DE MATEMÁTICA INSTITUTO UNIVERSITARIO DE TECNOLOGÍA VENEZUELA CURSO PROPEDÉUTICO TALLER DE MATEMÁTICA CARACAS, MARZO DE 2013 ESTUDIO DEL SISTEMA DECIMAL CONTENIDO Base del sistema decimal Nomenclatura Ordenes Subordenes

Más detalles

CÁLCULO ALGEBRAICO. Dra. Patricia Kisbye Dr. David Merlo

CÁLCULO ALGEBRAICO. Dra. Patricia Kisbye Dr. David Merlo CÁLCULO ALGEBRAICO Dra. Patricia Kisbye Dr. David Merlo INTRODUCCIÓN Estas notas han sido elaboradas con el fin de ofrecer al ingresante a las carreras de la FaMAF herramientas elementales del cálculo

Más detalles

TÍTULO: MATEMÁTICAS V8 Disponibilidad Conjuntos numéricos 6 El meteosat y el mapa del tiempo (Lectura) 6 Operaciones básicas en los números naturales

TÍTULO: MATEMÁTICAS V8 Disponibilidad Conjuntos numéricos 6 El meteosat y el mapa del tiempo (Lectura) 6 Operaciones básicas en los números naturales TÍTULO: MATEMÁTICAS V8 Disponibilidad Conjuntos numéricos 6 El meteosat y el mapa del tiempo (Lectura) 6 Operaciones básicas en los números naturales 7 Potenciación 7 Radicación 7 Propiedades de los números

Más detalles

CURSO DE AMBIENTACIÓN A LA VIDA UNIVERSITARIA

CURSO DE AMBIENTACIÓN A LA VIDA UNIVERSITARIA COORDINADORA Profesora Mercedes Colombo PRESENTACIÓN El siguiente módulo está destinado a los ingresantes de las facultades de Ciencias de la Salud, Ciencias de la Administración, Ciencias Económicas,

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas UNIDAD Polinomios y fracciones algebraicas U n polinomio es una expresión algebraica en la que las letras y los números están sometidos a las operaciones de sumar, restar y multiplicar. Los polinomios,

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 3 Ecuaciones y sistemas. Inecuaciones Elaborado por la Profesora Doctora

Más detalles

MATERIAL DIDACTICO DE MATEMÁTICAS

MATERIAL DIDACTICO DE MATEMÁTICAS MATERIAL DIDACTICO DE MATEMÁTICAS Matemáticas 1 INSTITUTO TECNOLÓGICO DE ROQUE MATERIAL DIDACTICO DE MATEMÁTICAS DEPARTAMENTO CIENCIAS BÁSICAS ELABORARON: ERIKA RAMOS OJEDA RAQUEL ALDACO SEGOVIANO JORGE

Más detalles

UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS TURÍSTICAS PROGRAMA DE LA ASIGNATURA MATEMÁTICA BÁSICA

UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS TURÍSTICAS PROGRAMA DE LA ASIGNATURA MATEMÁTICA BÁSICA UNIVERSIDAD ABIERTA PARA ADULTOS UAPA CARRERA LICENCIATURA EN ADMINISTRACIÓN DE EMPRESAS TURÍSTICAS PROGRAMA DE LA ASIGNATURA MATEMÁTICA BÁSICA CLAVE: MAT 111 ; PRE REQ.: BR. ; No. CRED.: 4 I. PRESENTACIÓN:

Más detalles

Operaciones con polinomios

Operaciones con polinomios Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)

Más detalles

Polinomios. Antes de empezar

Polinomios. Antes de empezar Antes de empezar Utilidad de los polinomios Los polinomios no solo están en la base de la informática, en economía los cálculos de intereses y duración de las hipotecas se realizan con expresiones polinómicas,

Más detalles

POTENCIAS Y RAICES. POTENCIA DE UN NÚMERO El cuadrado de un número es el resultado de multiplicar ese número por sí mismo.

POTENCIAS Y RAICES. POTENCIA DE UN NÚMERO El cuadrado de un número es el resultado de multiplicar ese número por sí mismo. POTENCIAS Y RAICES POTENCIA DE UN NÚMERO El cuadrado de un número es el resultado de multiplicar ese número por sí mismo. 3 2 3 x 3 9 5 2 5 x 5 25 El cubo de un número es el resultado de multiplicar el

Más detalles

1. Una función de X en Y es una regla de correspondencia que asocia a cada elemento de X con un único elemento de Y

1. Una función de X en Y es una regla de correspondencia que asocia a cada elemento de X con un único elemento de Y UNIDAD I. FUNCIONES POLINOMIALES Conceptos clave: Sean X y Y dos conjuntos no vacíos. 1. Una función de X en Y es una regla de correspondencia que asocia a cada elemento de X con un único elemento de Y

Más detalles

MATEMÁTICA APLICADA PARA INGRESANTES

MATEMÁTICA APLICADA PARA INGRESANTES MATEMÁTICA APLICADA PARA INGRESANTES 2015 v TECNICATURA SUPERIOR EN HIGIENE Y SEGURIDAD EN EL TRABAJO. TECNICATURA SUPERIOR EN MECATRONICA. TECNICATURA SUPERIOR EN MANTENIMIENTO INDUSTRIAL. TECNICATURA

Más detalles

FÓRMULAS DEL PRODUCTO Y DEL COCIENTE

FÓRMULAS DEL PRODUCTO Y DEL COCIENTE CAPÍTULO 5 FÓRMULAS DEL PRODUCTO Y DEL COCIENTE 5.1 FÓRMULA DE LA RAÍZ CUADRADA Antes de practicar las fórmulas (7) y (8) del procto y del cociente, conviene decir una fórmula para la raíz cuadrada, en

Más detalles

. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente.

. Definición: Dos o más términos son semejantes cuando tienen las mismas letras y afectadas por el mismo exponente. Ejercicios Resueltos del Algebra de Baldor. Consultado en la siguiente dirección electrónica http://www.quizma.cl/matematicas/recursos/algebradebaldor/index.htm. Definición: Dos o más términos son semejantes

Más detalles

Lección 9: Polinomios

Lección 9: Polinomios LECCIÓN 9 c) (8 + ) j) [ 9.56 ( 9.56)] 8 q) (a x b) d) ( 5) 4 k) (6z) r) [k 0 (k 5 k )] e) (. 0.) l) (y z) s) (v u ) 4 f) ( 5) + ( 4) m) (c d) 7 t) (p + q) g) (0 x 0.) n) (g 7 g ) Lección 9: Polinomios

Más detalles

REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS

REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS REGLA DE RUFFINI. FACTORIZACIÓN DE POLINOMIOS Si en una división de polinomios el divisor es de la forma (x - a) se puede aplicar la regla de Ruffini para obtener el cociente y el resto de la división.

Más detalles

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ):

1º) Siempre que se pueda, hay que sacar factor común: :a b ± a c ± a d ± = a (b ± c ± d ± ): Pág. 1 de 7 FAC T O R I Z AC I Ó N D E P O L I N O M I O S Factorizar (o descomponer en factores) un polinomio consiste en sustituirlo por un producto indicado de otros de menor grado tales que si se multiplicasen

Más detalles

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS

CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS CONVOCATORIA 2016 GUÍA DE ESTUDIO PARA PRUEBA DE ADMISIÓN DE MATEMÁTICAS Guía de Estudio para examen de Admisión de Matemáticas CONTENIDO PRESENTACIÓN... 3 I. ARITMÉTICA... 4 1. OPERACIONES CON FRACCIONES...

Más detalles

Operaciones Fundamentales del Álgebra. Operaciones con Fracciones Algebraicas.. E xponentes y Radicales 99. Ecuaciones Lineales o de Primer Grado

Operaciones Fundamentales del Álgebra. Operaciones con Fracciones Algebraicas.. E xponentes y Radicales 99. Ecuaciones Lineales o de Primer Grado ÍNDICE COMPETENCIA Operaciones Fundamentales del Álgebra 5 COMPETENCIA Operaciones con Fracciones Algebraicas.. 7 COMPETENCIA E ponentes y Radicales 99 COMPETENCIA Ecuaciones Lineales o de Primer Grado

Más detalles

La derivada de una función también se puede obtener como el límite del cociente de incrementos, conocido como la regla de los cuatro pasos.

La derivada de una función también se puede obtener como el límite del cociente de incrementos, conocido como la regla de los cuatro pasos. Regla de los cuatro pasos La derivada de una función también se puede obtener como el límite del cociente de incrementos, conocido como la regla de los cuatro pasos. f ( ) lím 0 f ( ) f ( ) El procedimiento

Más detalles

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte

Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte Ámbito Científico-Tecnológico Módulo III Bloque 2 Unidad 1 Quien parte y reparte, se lleva la mejor parte En esta unidad vamos a estudiar los números racionales, esto es, los que se pueden expresar en

Más detalles

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN

4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN 4º ESO MATEMÁTICAS Opción A 1ª EVALUACIÓN Bloque 2. POLINOMIOS. (En el libro Tema 3, página 47) 1. Definiciones. 2. Valor numérico de una expresión algebraica. 3. Operaciones con polinomios: 3.1. Suma,

Más detalles

-3 es un número entero y racional porque se puede poner en forma de fracción así: es un número racional porque ya está expresado en forma de

-3 es un número entero y racional porque se puede poner en forma de fracción así: es un número racional porque ya está expresado en forma de Definición Número racional es todo valor que puede ser expresado mediante una fracción. Todas las fracciones equivalentes entre sí expresan el mismo número racional. Es decir, todo número que se pueda

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 7 PRACTICA Números reales a) Clasifica los siguientes números como racionales o irracionales: ; 9 ;, 7; ),; ; b) Alguno de ellos es entero? c) Ordénalos de menor a mayor. a) Racionales: ; 9

Más detalles

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo

Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo POLINOMIOS 1.1. DEFINICIONES Definición 1.1.1. Sea K un cuerpo. Un polinomio en x, con coeficientes en K es toda expresión del tipo p(x) = a i x i = a 0 + a 1 x + a 2 x 2 + + a n x n + ; a i, x K; n N

Más detalles

Unidad 1: Números reales.

Unidad 1: Números reales. Unidad 1: Números reales. 1 Unidad 1: Números reales. 1.- Números racionales e irracionales Números racionales: Son aquellos que se pueden escribir como una fracción. 1. Números enteros 2. Números decimales

Más detalles

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul

Matemáticas. para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Matemáticas para administración y economía Ernest F. Haeussler, Jr.* Richard S. Paul Curso Propedéutico de Matemáticas Unidad IV Secciones 6 y 8) 0.6 Operaciones con epresiones algebraicas. 0.8 fracciones

Más detalles

CIENCIAS NATURALEZA I

CIENCIAS NATURALEZA I MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS MATEMÁTICAS CIENCIAS NATURALEZA I tetraedro cubo octaedro dodecaedro icosaedro 0 de septiembre de 00 Germán Ibáñez Índice General EL NUMERO REAL. Ampliaciones sucesivas

Más detalles

1ª PARTE: OPERACIONES CON NÚMEROS 1

1ª PARTE: OPERACIONES CON NÚMEROS 1 Cuaderno de Actividades º ª PARTE: OPERACIONES CON NÚMEROS A) ENTEROS Realiza las siguientes operaciones: ) + 6 + + ) ) + ) ) ) + 8 + ) 6 ) + 9 ) ) 6) + ). + ) ) + + ) + + ) ) 6) 6) : -)+-)+9 = -8 +.+9

Más detalles

3. Un número x dividido por 12 da como cociente 7 y resto 9. a) Halla x b) Qué número tienes que sumar a x para que la división por 12 sea exacta?

3. Un número x dividido por 12 da como cociente 7 y resto 9. a) Halla x b) Qué número tienes que sumar a x para que la división por 12 sea exacta? . a) Expresa en forma polinómica: 8 b) Representa en el sistema binario el número. a) Calcula: (+).()+.(4) b) Escribe en forma de potencia: 6. Un número x dividido por da como cociente 7 y resto 9. a)

Más detalles

Matemáticas I (Álgebra) Manual de bachillerato. Primera Edición, 2009 Compilación y Asesoría Pedagógica Erika Alejandra López Estrada

Matemáticas I (Álgebra) Manual de bachillerato. Primera Edición, 2009 Compilación y Asesoría Pedagógica Erika Alejandra López Estrada Matemáticas I (Álgebra) Manual de bachillerato Primera Edición, 2009 Compilación y Asesoría Pedagógica Erika Alejandra López Estrada Coordinador editorial Alan Santacruz Farfán Revisión Alejandro Vázquez

Más detalles

RELACIÓN EJERCICIOS NÚMEROS RACIONALES Y REALES 4º B CURSO 2010-11

RELACIÓN EJERCICIOS NÚMEROS RACIONALES Y REALES 4º B CURSO 2010-11 RELACIÓN EJERCICIOS NÚMEROS RACIONALES Y REALES º B CURSO 00- Expresa las siguientes fracciones en forma decimal e indica de qué tipo es dicho cociente / /0 0/ / Entero, Decimal exacto 0 0, Periódico puro,

Más detalles

EXPRESIONES ALGEBRAICAS

EXPRESIONES ALGEBRAICAS EXPRESIONES ALGEBRAICAS Trabajar en álgebra consiste en manejar relaciones numéricas en las que una o más cantidades son desconocidas. Estas cantidades se llaman V A R I A B L ES, I N C Ó G N I T A S o

Más detalles

Profesoresdematemáticaswww.institu teofmathematics.webs.comprofesores dematemáticaswww.instituteofmathe. matics.webs.comprofesoresdematemá

Profesoresdematemáticaswww.institu teofmathematics.webs.comprofesores dematemáticaswww.instituteofmathe. matics.webs.comprofesoresdematemá Profesoresdematemáticaswww.institu teofmathematics.webs.comprofesores dematemáticaswww.instituteofmathe Matemáticas IV matics.webs.comprofesoresdematemá ENP ticaswww.instituteofmathematics.web s.comprofesoresdematematicaswww.i

Más detalles

INTRODUCCIÓN DÓNDE ENCONTRAR LA CALCULADORA WIRIS

INTRODUCCIÓN DÓNDE ENCONTRAR LA CALCULADORA WIRIS INTRODUCCIÓN La calculadora WIRIS es una plataforma de cálculo matemático online, cuyo acceso es libre. Su manejo es muy sencillo y permite hacer cálculos elementales (mínimo común múltiplo, factorización

Más detalles

Matemática 8. Programación dosificada por trimestres

Matemática 8. Programación dosificada por trimestres Matemática 8 Programación dosificada por trimestres Programación dosificada A continuación se presenta la distribución de los contenidos programáticos del Meduca en el libro Matemática 8, serie Ser competentes.

Más detalles

PENDIENTES DE MATEMÁTICAS DE 2º ESO (CURSO 2014-2015)

PENDIENTES DE MATEMÁTICAS DE 2º ESO (CURSO 2014-2015) PENDIENTES DE MATEMÁTICAS DE 2º ESO (CURSO 2014-2015) CRITERIOS E INDICADORES Se detallan a continuación los criterios de evaluación junto con sus indicadores de contenidos asociados. En negrita se indican

Más detalles