Selectividad Septiembre 2009 SEPTIEMBRE Opción A

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Selectividad Septiembre 2009 SEPTIEMBRE 2009. Opción A"

Transcripción

1 SEPTIEMBRE 2009 Opción A 1.- Como cada año, el inicio del curso académico, una tienda de material escolar prepara una oferta de 600 cuadernos, 500 carpetas y 400 bolígrafos para los alumnos de un IES, empaquetando el material de dos formas distintas. El primer paquete contiene 2 cuadernos, 1 carpeta y 2 bolígrafos, mientras que el segundo contiene 3 cuadernos, 1 carpeta y 1 bolígrafo. El primer paquete se vende al precio de 6,50 euros, mientras que el segundo se vende a 7 euros. Usando técnicas de programación lineal, cuántos paquetes de cada tipo han de realizar para obtener la máxima recaudación? A cuánto asciende dicha recaudación? 2.- a) El beneficio obtenido por una empresa depende del capital inicial z invertido en la empresa a través de la expresión h (z) = z 2 + 6z 5. Para qué valores de z la empresa obtiene beneficios máximos? Para qué valores de z la empresa obtiene beneficios positivos? b) Los beneficios obtenidos por otras empresas A y B dependen de los capitales x e y invertidos, respectivamente, en dichas empresas mediante las funciones f (x) = x 1 en la empresa A y g (y) = y 5 en la empresa B. Qué valores de x e y permiten que la expresión f (x) g (y) tome el mayor valor posible si la inversión total está fijada en x + y = 10? 3.- Hay una epidemia de gripe. Un síntoma muy común es el dolor de cabeza, pero este síntoma también se presenta en personas que tienen un catarro común y en personas que no tienen ningún trastorno serio. La probabilidad de tener dolor de cabeza, padeciendo gripe, catarro y no teniendo nada serio es 0.99, 0.5 y respectivamente. Por otra parte, se sabe que el 10 % de la población tiene gripe, el 15 % catarro y el resto nada serio. Se desea saber: a) Elegida al azar una persona, qué probabilidad hay de que tenga dolor de cabeza? b) Se sabe que una determinada persona tiene dolor de cabeza, cuál es la probabilidad de que tenga gripe? 4.- Suponemos que las notas del último examen para 120 alumnos siguen una distribución normal cuya media y desviación típica son µ = 5.5 y σ = 2.04, respectivamente. Si tomamos una muestra de 30 alumnos que han hecho dicho examen, cuál es la distribución de la media muestral basada en esos 30 alumnos? pto. Matemáticas 1 / 9 IES Ramón Olleros

2 Opción B 1.- Compramos tres regalos A, B y C para tres amigos. Sabemos que hemos pagado 117 euros por los tres regalos tras habernos hecho un descuento del 10 % sobre el precio total. Además sabemos que el precio del regalo C es el doble que el del regalo A y que el regalo C es 20 euros más caro que el regalo B. Cuánto hemos gastado en cada regalo? 1 si 8 x < ada la función f (x) = x + 2 si 4 x < 2 8/ x si x 2 a) Representa gráficamente f (x). b) Estudia su continuidad y crecimiento. c) Representa gráficamente f (x). 3.- Una máquina envasadora de café molido envasa paquetes de café que siguen una distribución normal de media µ = 500 g y desviación típica σ = 35 g. Los paquetes se embalan en cajas de 100 paquetes de café. a) Calcula la probabilidad de que la media de los pesos de los paquetes de una caja sea menor que 495 g. b) Calcula la probabilidad de que una caja de 100 paquetes pese más de 51 kg. 4.- Un opositor conoce como para aprobar 45 de los 90 temas que componen el temario. Si el examen consiste en elegir 1 tema de entre 3 extraídos al azar, cuál es la probabilidad de que suspenda el examen? pto. Matemáticas 2 / 9 IES Ramón Olleros

3 SOLUCIONES Opción A 1.- Como cada año, el inicio del curso académico, una tienda de material escolar prepara una oferta de 600 cuadernos, 500 carpetas y 400 bolígrafos para los alumnos de un IES, empaquetando el material de dos formas distintas. El primer paquete contiene 2 cuadernos, 1 carpeta y 2 bolígrafos, mientras que el segundo contiene 3 cuadernos, 1 carpeta y 1 bolígrafo. El primer paquete se vende al precio de 6,50 euros, mientras que el segundo se vende a 7 euros. Usando técnicas de programación lineal, cuántos paquetes de cada tipo han de realizar para obtener la máxima recaudación? A cuánto asciende dicha recaudación? Sean x e y el número de cada uno de los paquetes respectivamente. A partir del enunciado del problema podemos establecer las siguientes condiciones: 2x + 3y 600 x + y 500 2x + y 400 x 0 y 0 La función a maximizar es: F (x, y) = 6,50x + 7y ibujemos la región factible: Los vértices de esta región son los puntos: O = (0, 0) A = (0, 200) B = (150, 100) C = (200, 0) El máximo de la función objetivo se presentará en uno de estos puntos. Veamos en cual: F (0, 0) = 6, = 0 F (0, 200) = 6, = 1400 F (150, 100) = 6, = 1675 F (200, 0) = 6, = 1300 pto. Matemáticas 3 / 9 IES Ramón Olleros

4 Por tanto la máxima recaudación es de 1675 euros y se consigue elaborando 150 paquetes del primer tipo (2 cuadernos, 1 carpeta y 2 bolígrafos) y 100 paquetes del segundo tipo (3 cuadernos, 1 carpeta y 1 bolígrafo). 2.- a) El beneficio obtenido por una empresa depende del capital inicial z invertido en la empresa a través de la expresión h (z) = z 2 + 6z 5. Para qué valores de z la empresa obtiene beneficios máximos? Para qué valores de z la empresa obtiene beneficios positivos? b) Los beneficios obtenidos por otras empresas A y B dependen de los capitales x e y invertidos, respectivamente, en dichas empresas mediante las funciones f (x) = x 1 en la empresa A y g (y) = y 5 en la empresa B. Qué valores de x e y permiten que la expresión f (x) g (y) tome el mayor valor posible si la inversión total está fijada en x + y = 10? a) Calculemos los máximos de la función h (z) = z 2 + 6z 5. Para ello calculemos la derivada primera: h (z) = 2z + 6 Igualándola a cero obtenemos los puntos singulares: h (z) = 0 2z + 6 = 0 z = 3 Como h (z) = 2 h (3) = 2 < 0 Máximo Por tanto, para z = 3 los beneficios son máximos (h (3) = = 4). Por otra parte, los beneficios serán positivos si h (z) > 0, esto es: z 2 + 6z 5 > 0 Para resolver esta inecuación, calculamos las raíces del primer miembro: z 2 + 6z 5 = 0 z = 1 y z = 5 Por tanto los beneficios serán positivos para z (1, 5). b) En este caso, tenemos que calcular los valores de x e y permiten que la expresión f (x) g (y) tome el mayor valor posible, es decir, debemos maximizar la función f(x) g (y): f (x) g (y) = (x 1) (y 5) Esta función depende de dos variables, pero como conocemos que la inversión total está fijada de antemano (x + y = 10), podemos expresar la función a maximizar en función de una única variable: x + y = 10 y = 10 x La función a maximizar, h (x), queda entonces como: h (x) = (x 1) (10 x 5) = (x 1) (5 x) = x 2 + 6x 5 Esta función es la misma que en el apartado anterior y por tanto los valores que hacen máxima la expresión f (x) g (y) son x = 3 e y = Hay una epidemia de gripe. Un síntoma muy común es el dolor de cabeza, pero este síntoma también se presenta en personas que tienen un catarro común y en personas que no tienen ningún trastorno serio. La probabilidad de tener dolor de cabeza, padeciendo gripe, catarro y no teniendo nada serio es 0.99, 0.5 y respectivamente. Por otra parte, se sabe que el 10 % de la población tiene gripe, el 15 % catarro y el resto nada serio. Se desea saber: a) Elegida al azar una persona, qué probabilidad hay de que tenga dolor de cabeza? b) Se sabe que una determinada persona tiene dolor de cabeza, cuál es la probabilidad de que tenga gripe? pto. Matemáticas 4 / 9 IES Ramón Olleros

5 En primer lugar, consideremos los siguientes sucesos: : tener dolor de cabeza : no tener dolor de cabeza G: tener gripe C: tener catarro S: estar sano (no tener nada serio) Para resolver los dos apartados del ejercicio, hagamos el siguiente diagrama de árbol: 0.99 G 0, C S a) La probabilidad de que tenga dolor de cabeza (teorema de la probabilidad total): P () = P (G) P ( / G) + P (C) P ( / C) + P (S) P ( / S) = = 0,10 0,99 + 0,15 0,5 + 0,75 0,004 = 0,752 b) La probabilidad de que tenga gripe, sabiendo que la persona tiene dolor de cabeza viene dada por (teorema de Bayes): P( / G) P( G) P (G / ) = = 0,99 0,10 = 0,1316 P( ) 0, Suponemos que las notas del último examen para 120 alumnos siguen una distribución normal cuya media y desviación típica son µ = 5,5 y σ = 2,04, respectivamente. Si tomamos una muestra de 30 alumnos que han hecho dicho examen, cuál es la distribución de la media muestral basada en esos 30 alumnos? Para contestar a esta cuestión, recordemos lo que nos dice el Teorema Central del Límite : Si tenemos una población con media µ y desviación típica σ y de ella extraemos aleatoriamente todas las posibles muestras, de tamaño n, al obtener las medias de todas estas muestras, y considerarlas una distribución de datos (la distribución muestral de medias), comprobaríamos que: La media de los datos, es la media µ de la población, es decir la media de las medias de las muestras, es igual que la media de la población. Estas medias se distribuyen alrededor de la media de la población, con una desviación típica (llamada desviación típica de la media) igual a la de la población dividida por la raíz de n, es decir, la desviación típica de la media es: σ pto. Matemáticas 5 / 9 IES Ramón Olleros n

6 La distribución de las medias muestrales, es una distribución de tipo normal, siempre que la población de procedencia lo sea, o incluso si no lo es, siempre que el tamaño de las muestras sea lo suficientemente grande (n 30). En consecuencia, si una población tiene media µ y desviación típica σ, y tomamos muestras de tamaño n (de tamaño al menos 30, o cualquier tamaño, si la población es normal ), las medias de estas muestras siguen aproximadamente la distribución: σ N µ, n En el caso que nos ocupa, como la población de partida se distribuye normalmente, con media µ = 5,5 y desviación típica σ = 2,04, entonces la distribución de la media muestral basada en esos 30 alumnos es: σ N µ, n = 2,04 N 5,5; N (5,5; 0,37) 30 pto. Matemáticas 6 / 9 IES Ramón Olleros

7 Opción B 1.- Compramos tres regalos A, B y C para tres amigos. Sabemos que hemos pagado 117 euros por los tres regalos tras habernos hecho un descuento del 10 % sobre el precio total. Además sabemos que el precio del regalo C es el doble que el del regalo A y que el regalo C es 20 euros más caro que el regalo B. Cuánto hemos gastado en cada regalo? Llamemos a, b y c al precio pagado por cada uno de los regalos A, B y C respectivamente. Con los datos del enunciado podemos plantear el siguiente sistema de ecuaciones: 0,9 ( a + b + c) = 117 a + b + c = 130 c = 2a 2a + c = 0 c = b + 20 b + c = 20 Resolvamos dicho sistema por el método de Gauss: f f + f f f + f El sistema equivalente obtenido es pues: a + b + c = 130 2b + 3c = 260 5c = 300 espejando c de la última ecuación se obtiene c = 60. Sustituyendo este dato en la segunda ecuación y despejando b se obtiene b = 40. Finalmente sustituyendo b y c en la primera ecuación y despejando a obtenemos a = si 8 x < ada la función f (x) = x + 2 si 4 x < 2 8/ x si x 2 a) Representa gráficamente f (x). b) Estudia su continuidad y crecimiento. c) Representa gráficamente f (x). a) Nos encontramos ante una función definida a trozos, cuyo dominio de definición es [ 8, + ). El primer trozo ( 8 x < 4), es una función constante, y por tanto su representación gráfica es una recta horizontal que corta al eje OY en el punto (0, 1). El segundo trozo ( 4 x < 2), es una función afín cuya representación gráfica es una recta. Para representarla, podemos hacer una tabla de valores: x f (x) El tercer trozo (x 2), es una hipérbola que tiene una asíntota horizontal (cuando x tiende a + ) que 8 es y = 0 (ya que = 0). La manera más fácil de representarla es mediante una tabla de valores: xlim + x pto. Matemáticas 7 / 9 IES Ramón Olleros

8 x f (x) Con todo lo anterior tenemos que la representación gráfica de la función es: b) El estudio de la continuidad y el crecimiento lo podemos hacer directamente observando la gráfica. A la vista de la misma se puede ver que en el tramo 8 x < 4, la función es constante. En el punto x = 4 la función presenta una discontinuidad de salto finito. En el tramo 4 x < 2 la función es creciente y además es continua para x = 2. Finalmente, en el tramo x 2, la función es decreciente. c) Para representar gráficamente f (x), debemos tener en cuenta es que su gráfica se puede obtener a partir de la de f (x), reflejando la parte que esté por debajo del eje OX sobre este. Así, la gráfica pedida es: pto. Matemáticas 8 / 9 IES Ramón Olleros

9 3.- Una máquina envasadora de café molido envasa paquetes de café que siguen una distribución normal de media µ = 500 g y desviación típica σ = 35 g. Los paquetes se embalan en cajas de 100 paquetes de café. a) Calcula la probabilidad de que la media de los pesos de los paquetes de una caja sea menor que 495 g. b) Calcula la probabilidad de que una caja de 100 paquetes pese más de 51 kg. a) La media de los pesos de los paquetes, X, sigue una distribución (por ser la población de los paquetes de café una distribución normal): σ X N µ, n = 35 N 500, = N (500, 3,5) 100 Nos piden la probabilidad P ( X < 495). Por tanto: P ( X < 495) = P Z < 3,5 P (Z < 1,43) = 1 P (Z < 1,43) = 1 0,9236 = 0,0764 b) Si consideramos la caja como suma de los 100 paquetes, entonces debemos tener en cuenta que la variable aleatoria suma, S, se distribuye según: S N (nµ, σ n ) = N ( g, 35g 100 ) = N (50000g, 350g) = N (50 kg, 0,35 Kg) Por tanto, la probabilidad pedida es P (S > 51): P (S > 51) = P Z > 0,35 P (Z > 2,86) = 1 P (Z < 2,86) = 1 0,9979 = 0, Un opositor conoce como para aprobar 45 de los 90 temas que componen el temario. Si el examen consiste en elegir 1 tema de entre 3 extraídos al azar, cuál es la probabilidad de que suspenda el examen? Consideremos el suceso: C = tema no conocido por el opositor El opositor suspenderá el examen si de los temas extraídos no conoce bien. Si utilizamos la notación C i para indicar que el opositor no conoce el tema i extraído (i = 1, 2, 3), entonces la probabilidad de que suspenda el examen viene dada por: P (Suspender) = P ( 1 C ) P ( 2 C / 1 C ) P ( 3 C / 1 C 2 C ) = = = 0,1208 pto. Matemáticas 9 / 9 IES Ramón Olleros

Selectividad Septiembre 2013 OPCIÓN B

Selectividad Septiembre 2013 OPCIÓN B Pruebas de Acceso a las Universidades de Castilla y León ATEÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

SEPTIEMBRE 2005. Opción A

SEPTIEMBRE 2005. Opción A Selectividad Septiembre 005 SEPTIEMBRE 005 Opción A 4 5.- Calcula dos matrices cuadradas A y B sabiendo que A + 3B = y que A B =..- Se considera la parábola p (x) = 0,5 x +,5 x y sea s (x) la línea poligonal

Más detalles

Selectividad Junio 2008 JUNIO 2008 PRUEBA A

Selectividad Junio 2008 JUNIO 2008 PRUEBA A Selectividad Junio 008 JUNIO 008 PRUEBA A 3 a x + a y =.- Sea el sistema: x + a y = 0 a) En función del número de soluciones, clasifica el sistema para los distintos valores del parámetro a. b) Resuélvelo

Más detalles

OPCIÓN A 0 1 X = 1 12. Podemos despejar la matriz X de la segunda ecuación ya que la matriz. 1 1 ; Adj 0 1 X =

OPCIÓN A 0 1 X = 1 12. Podemos despejar la matriz X de la segunda ecuación ya que la matriz. 1 1 ; Adj 0 1 X = Selectividad Junio 011 Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUMNO/A DEBERÁ ESCOGER UNO DE

Más detalles

MADRID / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / OPCIÓN A/ EXAMEN COMPLETO

MADRID / JUNIO 06 LOGSE / MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES / OPCIÓN A/ EXAMEN COMPLETO EXAMEN COMPLETO INSTRUCCIONES GENERALES Y VALORACIÓN INSTRUCCIONES: El examen presenta dos opciones: A y B. El alumno deberá elegir una de ellas y contestar razonadamente a los cuatro ejercicios de que

Más detalles

Selectividad Septiembre 2006 SEPTIEMBRE 2006

Selectividad Septiembre 2006 SEPTIEMBRE 2006 Bloque A SEPTIEMBRE 2006 1.- En una fábrica trabajan 22 personas entre electricistas, administrativos y directivos. El doble del número de administrativos más el triple del número de directivos, es igual

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de cceso a las Universidades de Castilla y León MTEMÁTICS PLICDS LS CIENCIS SOCILES EJERCICIO Nº páginas 2 Tablas OPTTIVIDD: EL LUMNO DEBERÁ ESCOGER UN DE LS DOS OPCIONES Y DESRROLLR LS PREGUNTS

Más detalles

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León

Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León Pruebas de acceso a enseñanzas universitarias oficiales de grado Castilla y León MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJECICIO Nº Páginas OPTATIVIDAD: EL ALUMNO DEBEÁ ESCOGE UNA DE LAS DOS OPCIONES

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

4. Se considera la función f(x) =. Se pide:

4. Se considera la función f(x) =. Se pide: Propuesta A 1. Queremos realizar una inversión en dos tipos de acciones con las siguientes condiciones: Lo invertido en las acciones de tipo A no puede superar los 10000 euros. Lo invertido en las acciones

Más detalles

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES

EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES EJERCICIOS RESUELTOS DE REPRESENTACIÓN GRÁFICA DE FUNCIONES REALES. Estudiar el crecimiento, el decrecimiento y los etremos relativos de las siguientes funciones: a) f( ) 7 + + b) ln f( ) c) 5 si < f(

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A (3 puntos) Una imprenta local edita periódicos y revistas. Para cada periódico necesita un cartucho de tinta negra y otro de color, y para cada revista uno de tinta negra y dos de color. Si sólo

Más detalles

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA IES Fco Ayala de Granada Sobrantes 00 (Modelo ) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 00 (Modelo ) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO Sea el recinto del plano definido

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICAS APLICAAS A LAS CIENCIAS SOCIALES Texto para los Alumnos Nº páginas: 2 y TABLAS CRITERIOS GENERALES E EVALUACIÓN Cada pregunta de la

Más detalles

Selectividad Septiembre 2008 SEPTIEMBRE 2008

Selectividad Septiembre 2008 SEPTIEMBRE 2008 Bloque A SEPTIEMBRE 008.- Una ONG organiza un convoy de ayuda humanitaria con un máimo de 7 camiones, para llevar agua potable y medicinas a una zona devastada por unas inundaciones. Para agua potable

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B 1. Una empresa tiene 3000 bolsas de ajo morado de Las

Más detalles

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Funciones de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Funciones de Antonio Francisco Roldán López de Hierro * Convocatoria de 200 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8

Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 Matemáticas C.C.S.S. Repaso de Selectividad 1. Se desea obtener dos elementos químicos a partir de las sustancias A y B. Un kilo de A contiene 8 gramos del primer elemento y 1 gramo del segundo; un kilo

Más detalles

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) PAEG Junio 0 Propuesta A Matemáticas aplicadas a las CCSS II º Bachillerato UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales

Más detalles

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y

Una función f es derivable en un punto a de su dominio si existe el límite. f(x) f(a) Si f y g son derivables en a, entonces fg es derivable en a y 4. Derivabilidad 1 Una función f es derivable en un punto a de su dominio si existe el límite f (a) = lím x a f(x) f(a) x a f(a + h) f(a) = lím, h 0 h y es un número real. El número f (a) se denomina derivada

Más detalles

Pruebas de Acceso a las Universidades de Castilla y León

Pruebas de Acceso a las Universidades de Castilla y León Pruebas de Acceso a las Universidades de Castilla y León MATEMÁTICA APLICADA A LA CIENCIA OCIALE EJERCICIO Nº páginas 2 Tablas OPTATIVIDAD: EL ALUMNO DEBERÁ ECOGER UNA DE LA DO OPCIONE Y DEARROLLAR LA

Más detalles

MATEMÁTICAS CCSS JUNIO 2010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA

MATEMÁTICAS CCSS JUNIO 2010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA IES Fco Ayala de Granada Junio de 010 (General Modelo 5) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS JUNIO 010 (COMÚN MODELO5) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 Sea el recinto definido

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES

LÍMITES Y CONTINUIDAD DE FUNCIONES Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos

Más detalles

T.1 CONVERGENCIA Y TEOREMAS LÍMITE

T.1 CONVERGENCIA Y TEOREMAS LÍMITE T.1 CONVERGENCIA Y TEOREMAS LÍMITE 1. CONVERGENCIA DE SUCESIONES DE VARIABLES ALEATORIA CONVERGENCIA CASI-SEGURA CONVERGENCIA EN PROBABILIDAD CONVERGENCIA EN MEDIA CUADRÁTICA CONVERGENCIA EN LEY ( O DISTRIBUCIÓN)

Más detalles

EJERCICIOS DE PROGRAMACIÓN LINEAL

EJERCICIOS DE PROGRAMACIÓN LINEAL EJERCICIOS DE PROGRAMACIÓN LINEAL 1. Disponemos de 210.000 euros para invertir en bolsa. Nos recomiendan dos tipos de acciones. Las del tipo A, que rinden el 10% y las del tipo B, que rinden el 8%. Decidimos

Más detalles

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES

MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES MATEMÁTICAS APLICADAS A LAS C.C. SOCIALES CAPÍTULO 7 Curso preparatorio de la prueba de acceso a la universidad para mayores de 25 años curso 2010/11 Nuria Torrado Robles Departamento de Estadística Universidad

Más detalles

EJERCICIOS RESUELTOS TEMA 3

EJERCICIOS RESUELTOS TEMA 3 EJERCICIOS RESUELTOS TEMA 3 Observación: En todos los ejercicios se ha puesto A, como notación de contrario de A. Ejercicio nº 1.- En una urna hay 15 bolas numeradas de 2 al 16. Extraemos una bola al azar

Más detalles

Funciones definidas a trozos

Funciones definidas a trozos Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad

Más detalles

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Probabilidad de ntonio Francisco Roldán López de Hierro * Convocatoria de 2007 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa

Más detalles

REPRESENTACIÓN DE FUNCIONES

REPRESENTACIÓN DE FUNCIONES REPRESENTACIÓN DE FUNCIONES Tema 4: Representación de funciones Índice:. Información obtenida de la función... Dominio de la función.. Simetrías..3. Periodicidad.4. Puntos de corte con los ejes..5. Ramas

Más detalles

M a t e m á t i c a s I I 1

M a t e m á t i c a s I I 1 Matemáticas II Matemáticas II ANDALUCÍA CNVCATRIA JUNI 009 SLUCIÓN DE LA PRUEBA DE ACCES AUTR: José Luis Pérez Sanz pción A Ejercicio En este límite nos encontramos ante la indeterminación. Agrupemos la

Más detalles

Propuesta A. 2 0 b) Dada la ecuación matricial: X =, despeja y calcula la matriz X (0.75 ptos) 1 1

Propuesta A. 2 0 b) Dada la ecuación matricial: X =, despeja y calcula la matriz X (0.75 ptos) 1 1 Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (014) Materia: MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II El alumno deberá contestar a una de las dos opciones propuestas A o B. Se

Más detalles

PRUEBA ESPECÍFICA PRUEBA 2014

PRUEBA ESPECÍFICA PRUEBA 2014 PRUEBA DE ACCESO A LA UNIVERSIDAD MAYORES DE 5 AÑOS PRUEBA ESPECÍFICA PRUEBA 014 PRUEBA SOLUCIONARIO HAUTAPROBAK 5 URTETIK 014ko MAIATZA DE 5 AÑOS MAYO 014 Aclaraciones previas Tiempo de duración de la

Más detalles

CPE (SEGUNDO CURSO) = P [T 1 ]P [T 2 ]... P [T 525,600 ] = (1 10 8 ) 525,600 = 0.9948

CPE (SEGUNDO CURSO) = P [T 1 ]P [T 2 ]... P [T 525,600 ] = (1 10 8 ) 525,600 = 0.9948 1/10 CPE (SEGUNDO CURSO PRÁCICA 1 SOLUCIONES (Curso 2015 2016 1. Suponiendo que los sucesos terremotos y huracanes son independientes y que en un determinado lugar la probabilidad de un terremoto durante

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las

Más detalles

Tema 5. Variables aleatorias discretas

Tema 5. Variables aleatorias discretas Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso

Más detalles

Tema 7. Límites y continuidad de funciones

Tema 7. Límites y continuidad de funciones Matemáticas II (Bachillerato de Ciencias) Análisis: Límites y continuidad de funciones 55 Límite de una función en un punto Tema 7 Límites y continuidad de funciones Idea inicial Si una función f está

Más detalles

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice

Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice Tema 1: Fundamentos de lógica, teoría de conjuntos y estructuras algebraicas: Apéndice 1 Polinomios Dedicaremos este apartado al repaso de los polinomios. Se define R[x] ={a 0 + a 1 x + a 2 x 2 +... +

Más detalles

Problemas + PÁGINA 37

Problemas + PÁGINA 37 PÁGINA 37 Pág. Problemas + 6 Un grupo de amigos ha ido a comer a una pizzería y han elegido tres tipos de pizza, A, B y C. Cada uno ha tomado /2 de A, /3 de B y /4 de C; han pedido en total 7 pizzas y,

Más detalles

Experimentación con Descartes na Aula. Galicia 2008

Experimentación con Descartes na Aula. Galicia 2008 Experimentación con Descartes na Aula. Galicia 2008 Follas de traballo Se traballará coas páxinas web da unidade á vez que se completan as follas de traballo, e se realizarán as actividades propostas que

Más detalles

1. Hallar los extremos de las funciones siguientes en las regiones especificadas:

1. Hallar los extremos de las funciones siguientes en las regiones especificadas: 1 1. DERIVACIÓN 1. Hallar los extremos de las funciones siguientes en las regiones especificadas: b) f(x) x (x 1) en el intervalo [, ] y en su dominio. DOMINIO. D R. CORTES CON LOS EJES. Cortes con el

Más detalles

Interpolación polinómica

Interpolación polinómica 9 9. 5 9. Interpolación de Lagrange 54 9. Polinomio de Talor 57 9. Dados dos puntos del plano (, ), (, ), sabemos que ha una recta que pasa por ellos. Dicha recta es la gráfica de un polinomio de grado,

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE Septiembre 2008

PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE Septiembre 2008 UNIVERSIDAD DE MURCIA REGIÓN DE MURCIA CONSEJERÍA DE EDUCACIÓN, CIENCIA E INVESTIGACIÓN UNIVERSIDAD POLITÉCNICA DE CARTAGENA PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOGSE Septiembre

Más detalles

Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut

Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut Clases de apoyo de matemáticas Fracciones y decimales Escuela 765 Lago Puelo Provincia de Chubut Este texto intenta ser un complemento de las clases de apoyo de matemáticas que se están realizando en la

Más detalles

Problemas Resueltos del Tema 1

Problemas Resueltos del Tema 1 Tema 1. Probabilidad. 1 Problemas Resueltos del Tema 1 1- Un estudiante responde al azar a dos preguntas de verdadero o falso. Escriba el espacio muestral de este experimento aleatorio.. El espacio muestral

Más detalles

LÍMITES Y CONTINUIDAD

LÍMITES Y CONTINUIDAD UNIDAD 5 LÍMITES Y CONTINUIDAD Páginas 0 y Describe las siguientes ramas: a) f () b) f () no eiste c) f () d) f () + e) f () f) f () + g) f () h) f () no eiste; f () 0 i) f () + f () + j) f () 5 4 f ()

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD

LÍMITES DE FUNCIONES. CONTINUIDAD LÍMITES DE FUNCIONES. CONTINUIDAD Página REFLEXIONA Y RESUELVE Algunos ites elementales Utiliza tu sentido común para dar el valor de los siguientes ites: a,, b,, @ c,, 5 + d,, @ @ + e,, @ f,, 0 @ 0 @

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema Representación gráfica de funciones reales de una variable real Elaborado

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS LÍMITES DE FUNCIONES. CONTINUIDAD RAMAS INFINITAS Página 7 REFLEIONA RESUELVE Aproimaciones sucesivas Comprueba que: f () =,5; f (,9) =,95; f (,99) =,995 Calcula f (,999); f (,9999); f (,99999); A la vista

Más detalles

Unidad 5 Estudio gráfico de funciones

Unidad 5 Estudio gráfico de funciones Unidad 5 Estudio gráfico de funciones PÁGINA 84 SOLUCIONES Representar puntos en un eje de coordenadas. 43 Evaluar un polinomio. a) P(-1) = 1 + + 1 1 = 3 b) P(0) = -1 c) P(-) = 8 + 8 + 1 = 17 d) P(1) =

Más detalles

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde

1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B(1, p), donde Soluciones de la relación del Tema 6. 1. a) Definimos X =número de personas con síntomas si examino sólo una persona, la cual sigue una distribución B1, p), donde p = P X = 1) = P la persona presente síntomas)

Más detalles

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1

MATEMÁTICAS CCSS II Sobrantes 2010 (Modelo 1) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 IES Fco Ayala de Granada Sobrantes 010 (Modelo ) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 1) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 a 1 1 1 3 Sean las matrices

Más detalles

ANÁLISIS DE FUNCIONES RACIONALES

ANÁLISIS DE FUNCIONES RACIONALES ANÁLISIS DE FUNCIONES RACIONALES ( x 9) Dada la función f( x) = x 4 DETERMINE: Dominio, asíntotas, intervalos de crecimiento, intervalos de concavidad, extremos relativos y puntos de inflexión, representar

Más detalles

Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática

Ejercicios de combinatoria resueltos. Matemática Discreta. 4º Ingeniería Informática 1. Un número telefónico consta de siete cifras enteras. Supongamos que la primera cifra debe ser un número entre 2 y 9, ambos inclusive. La segunda y la tercera cifra deben ser números entre 1 y 9, ambos

Más detalles

Probabilidad. Relación de problemas 5

Probabilidad. Relación de problemas 5 Relación de problemas 5 Probabilidad 1. Una asociación consta de 14 miembros, de los cuales 6 son varones y 8 son mujeres. Se desea seleccionar un comité de tres hombres y tres mujeres. Determinar de cuántas

Más detalles

Tema 2 Límites de Funciones

Tema 2 Límites de Funciones Tema 2 Límites de Funciones 2.1.- Definición de Límite Idea de límite de una función en un punto: Sea la función. Si x tiende a 2, a qué valor se aproxima? Construyendo - + una tabla de valores próximos

Más detalles

Lección 14: Problemas que se resuelven por sistemas de ecuaciones lineales

Lección 14: Problemas que se resuelven por sistemas de ecuaciones lineales GUÍA DE MATEMÁTICAS III Lección 14: Problemas que se resuelven por sistemas de ecuaciones lineales A continuación veremos algunos problemas que se resuelven con sistemas de ecuaciones algunos ejemplos

Más detalles

5Soluciones a los ejercicios y problemas Gráficamente Representamos en unos mismos ejes ambas funciones:

5Soluciones a los ejercicios y problemas Gráficamente Representamos en unos mismos ejes ambas funciones: Soluciones a los ejercicios y problemas Gráficamente Representamos en unos mismos ejes ambas funciones: Pág. y 6 Puntos de corte con los ejes: 9 (, 9) Eje : 6 0 8 ± + 8 ± 7 8 8 + 7 ( ), 0 (,8; 0) 7 ( ),

Más detalles

Tarea 7 Soluciones. Sol. Sea x el porcentaje que no conocemos, entonces tenemos la siguiente. (3500)x = 420. x = 420 3500 = 3 25

Tarea 7 Soluciones. Sol. Sea x el porcentaje que no conocemos, entonces tenemos la siguiente. (3500)x = 420. x = 420 3500 = 3 25 Tarea 7 Soluciones. Una inversión de $3500 produce un rendimiento de $420 en un año, qué rendimiento producirá una inversión de $4500 a la misma tasa de interés durante el mismo tiempo? Sol. Sea x el porcentaje

Más detalles

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Probabilidad de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Probabilidad de Antonio Francisco Roldán López de Hierro * Convocatoria de 2008 Las siguientes páginas contienen las soluciones de los ejercicios propuestos

Más detalles

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í

Continuidad y ramas infinitas. El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A = 2. lm í Unidad. Límites de funciones. Continuidad y ramas infinitas Resuelve Página 7 A través de una lupa AUMENTO DISTANCIA (dm) El aumento A producido por cierta lupa viene dado por la siguiente ecuación: A

Más detalles

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) =

Ejemplo: Resolvemos Sin solución. O siempre es positiva o siempre es negativa. Damos un valor cualquiera Siempre + D(f) = T1 Dominios, Límites, Asíntotas, Derivadas y Representación Gráfica. 1.1 Dominios de funciones: Polinómicas: D( = La X puede tomar cualquier valor entre Ejemplos: D( = Función racional: es el cociente

Más detalles

CONCEPTOS PREVIOS TEMA 2

CONCEPTOS PREVIOS TEMA 2 1.PROPORCIONALIDAD 1.1 REPARTOS PROPORCIONALES CONCEPTOS PREVIOS TEMA 2 Cuando queremos repartir una cantidad entre varias personas, siempre dividimos el total por el número de personas que forman parte

Más detalles

MOOC UJI: La Probabilidad en las PAU

MOOC UJI: La Probabilidad en las PAU 3. Definición intuitiva de probabilidad: ley de Laplace La palabra probabilidad, que usamos habitualmente, mide el grado de creencia que tenemos de que ocurra un hecho que puede pasar o no pasar. Imposible,

Más detalles

LA DISTRIBUCIÓN NORMAL, LA CALCULADORA Y LAS NUEVAS TECNOLOGÍAS Abel Martín ( * ) Rosana Álvarez García ( )

LA DISTRIBUCIÓN NORMAL, LA CALCULADORA Y LAS NUEVAS TECNOLOGÍAS Abel Martín ( * ) Rosana Álvarez García ( ) LA DISTRIBUCIÓN NORMAL, LA CALCULADORA Y LAS NUEVAS TECNOLOGÍAS Abel Martín ( * ) Rosana Álvarez García ( ) La distribución Normal tiene numerosas aplicaciones en el campo de la Probabilidad y la Estadística,

Más detalles

Los números racionales

Los números racionales Los números racionales Los números racionales Los números fraccionarios o fracciones permiten representar aquellas situaciones en las que se obtiene o se debe una parte de un objeto. Todas las fracciones

Más detalles

1. HABILIDAD MATEMÁTICA

1. HABILIDAD MATEMÁTICA HABILIDAD MATEMÁTICA SUCESIONES, SERIES Y PATRONES. HABILIDAD MATEMÁTICA Una serie es un conjunto de números, literales o dibujos ordenados de tal manera que cualquiera de ellos puede ser definido por

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

Tipo A Tipo B Min. y Máx. Gambas 2 1 50 Langostinos 3 5 180 Contenedores 1 1 50 Coste 350 550 350x + 550y

Tipo A Tipo B Min. y Máx. Gambas 2 1 50 Langostinos 3 5 180 Contenedores 1 1 50 Coste 350 550 350x + 550y IES Fco Ayala de Granada Sobrantes 010 (Modelo 6) Soluciones Germán-Jesús Rubio Luna MATEMÁTICAS CCSS II Sobrantes 010 (Modelo 6) SELECTIVIDAD ANDALUCÍA OPCIÓN A EJERCICIO 1 (.5 puntos) Un supermercado

Más detalles

El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A. 2 1 1 y C 4 2 2 1 0 0

El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máxima. OPCIÓN A. 2 1 1 y C 4 2 2 1 0 0 Prueba de Acceso a la Universidad. JUNIO 0. El alumno debe responder a una de las dos opciones propuestas, A o B. En cada pregunta se señala la puntuación máima. OPCIÓN A. Considerar las matrices 0 A 0,

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

Examen funciones 4º ESO 12/04/13

Examen funciones 4º ESO 12/04/13 Examen funciones 4º ESO 12/04/13 1) Calcula el dominio de las siguientes funciones: a. b. c. d. Calculamos las raíces del numerador y del denominador: Construimos la tabla para ver los signos: - - 0 +

Más detalles

Unidad 4 Programación lineal

Unidad 4 Programación lineal Unidad 4 Programación lineal PÁGINA 79 SOLUCIONES 1. Las regiones quedan: a) b) 2. El sistema pedido es: x y > 1 2x + y < 7 y > 1 1 PÁGINA 91 SOLUCIONES 1. Sumando los kilos de todos los sacos, obtenemos

Más detalles

Descomposición factorial de polinomios

Descomposición factorial de polinomios Descomposición factorial de polinomios Contenidos del tema Introducción Sacar factor común Productos notables Fórmula de la ecuación de segundo grado Método de Ruffini y Teorema del Resto Combinación de

Más detalles

GUÍA DE EJERCICIOS UNIDAD II

GUÍA DE EJERCICIOS UNIDAD II UNIDAD II: INTEGRAL DEFINIDA UNIVERSIDAD DE CARABOBO FACULTAD DE INGENIERÍA ESTUDIOS BÁSICOS DEPARTAMENTO DE MATEMÁTICA ANÁLISIS MATEMÁTICO II Corregido por: Prof. AOUAD Jamil Prof. LAURENTÍN María Prof.

Más detalles

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS

Eduardo Kido 26-Mayo-2004 ANÁLISIS DE DATOS ANÁLISIS DE DATOS Hoy día vamos a hablar de algunas medidas de resumen de datos: cómo resumir cuando tenemos una serie de datos numéricos, generalmente en variables intervalares. Cuando nosotros tenemos

Más detalles

Programación Lineal. Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal

Programación Lineal. Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal Programación Lineal Ficha para enseñar a utilizar el Solver de EXCEL en la resolución de problemas de Programación Lineal Ejemplo: Plan de producción de PROTRAC En esta ficha vamos a comentar cómo se construyó

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

IES Fco Ayala de Granada Septiembre de 2011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna

IES Fco Ayala de Granada Septiembre de 2011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna IES Fco Ayala de Granada Septiembre de 011 (Modelo 5) Soluciones Germán-Jesús Rubio Luna PRUEBA DE ACCESO A LA UNIVERSIDAD SEPTIEMBRE 010-011 ANDALUCÍA MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II

Más detalles

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES

RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES RESOLUCIÓN DE SISTEMAS DE ECUACIONES LINEALES 1 La ecuación 2x - 3 = 0 se llama ecuación lineal de una variable. Obviamente sólo tiene una solución. La ecuación -3x + 2y = 7 se llama ecuación lineal de

Más detalles

UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD. Miguel A. Jorquera

UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD. Miguel A. Jorquera UNIVERSIDADES DE ANDALUCIA PRUEBAS DE ACCESO A LA UNIVERSIDAD Miguel A. Jorquera BACHILLERATO MATEMÁTICAS II JUNIO 2 ii Índice General 1 Examen Junio 2. Opción B 1 2 SOLUCIONES del examen de junio 2 Opción

Más detalles

Matemática I Extremos de una Función. Definiciones-Teoremas

Matemática I Extremos de una Función. Definiciones-Teoremas Universidad Centroccidental Lisandro Alvarado Decanato de Agronomía Programa Ingeniería Agroindustrial Departamento de Gerencia Estudios Generales Matemática I Etremos de una Función. Definiciones-Teoremas

Más detalles

13Soluciones a los ejercicios y problemas PÁGINA 280

13Soluciones a los ejercicios y problemas PÁGINA 280 Soluciones a los ejercicios y problemas PÁGINA 0 Pág. P RACTICA Muy probable, poco probable Tenemos muchas bolas de cada uno de los siguientes colores: negro (N), rojo (R), verde (V) y azul (A), y una

Más detalles

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales

Teóricas de Análisis Matemático (28) - Práctica 4 - Límite de funciones. 1. Límites en el infinito - Asíntotas horizontales Práctica 4 - Parte Límite de funciones En lo que sigue, veremos cómo la noción de límite introducida para sucesiones se etiende al caso de funciones reales. Esto nos permitirá estudiar el comportamiento

Más detalles

Métodos generales de generación de variables aleatorias

Métodos generales de generación de variables aleatorias Tema Métodos generales de generación de variables aleatorias.1. Generación de variables discretas A lo largo de esta sección, consideraremos una variable aleatoria X cuya función puntual es probabilidad

Más detalles

POR QUÉ EL VALOR PRESENTE NETO CONDUCE A MEJORES DECISIONES DE INVERSIÓN QUE OTROS CRITERIOS? ( Brealey & Myers )

POR QUÉ EL VALOR PRESENTE NETO CONDUCE A MEJORES DECISIONES DE INVERSIÓN QUE OTROS CRITERIOS? ( Brealey & Myers ) CAPÍTULO 5 POR QUÉ EL VALOR PRESENTE NETO CONDUCE A MEJORES DECISIONES DE INVERSIÓN QUE OTROS CRITERIOS? ( Brealey & Myers ) Ya hemos trabajado antes con los principios básicos de la toma de decisiones

Más detalles

FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido

FUNCIONES. Funciones. Qué es una función? Indicadores. Contenido Indicadores FUNCIONES Calcula el valor de incógnitas usando la definición de función. Determina valores de la variable dependiente a partir de valores dados a la variable independiente. Determina los puntos

Más detalles

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO

Colegio Las Tablas Tarea de verano Matemáticas 3º ESO Colegio Las Tablas Tarea de verano Matemáticas º ESO Nombre: C o l e g i o L a s T a b l a s Tarea de verano Matemáticas º ESO Resolver la siguiente ecuación: 5 5 6 Multiplicando por el mcm(,,6) = 6 y

Más detalles

a)1 punto. b) Vértices (0,0),(0,2)(1.5,0.5)(1,0). 0.25 puntos

a)1 punto. b) Vértices (0,0),(0,2)(1.5,0.5)(1,0). 0.25 puntos c Solución óptima (1.5,0.5 Valor 3.5. 0.5 puntos. Para recaudar dinero para el viaje de fin de curso, unos estudiantes han vendido camisetas, bufandas y gorras a 10, 5 y 7 euros respectivamente. Han recaudado

Más detalles

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six

Más detalles

Tema 6: Ecuaciones e inecuaciones.

Tema 6: Ecuaciones e inecuaciones. Tema 6: Ecuaciones e inecuaciones. Ejercicio 1. Encontrar, tanteando, alguna solución de cada una de las siguientes ecuaciones: 3 a) + 5 = 69 Probamos para =,3,4,... = = 3 3 = 4 4 3 3 3 + 5 = 13. + 5 =

Más detalles

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS

LÍMITES DE FUNCIONES. CONTINUIDAD Y RAMAS INFINITAS LÍMITES DE FUNCIONES. CONTINUIDAD RAMAS INFINITAS Página 7 REFLEIONA RESUELVE Aproimaciones sucesivas Comprueba que: f () = 6,5; f (,9) = 6,95; f (,99) = 6,995 Calcula f (,999); f (,9999); f (,99999);

Más detalles

Relación de problemas: Variables aleatorias

Relación de problemas: Variables aleatorias Estadística y modelización. Ingeniero Técnico en Diseño Industrial. Relación de problemas: Variables aleatorias 1. Se lanza tres veces una moneda y se observa el número de caras. (a) Calcula la distribución

Más detalles

Límites infinitos y trigonométricos.

Límites infinitos y trigonométricos. Universidad Tecnológica del Sureste de Veracruz Química Industrial CÁLCULO DIFERENCIAL E INTEGRAL Límites infinitos y trigonométricos. NOMBRE DEL ALUMNO Morales Aguilar Itzel Garrido Navarro Arantxa Itchel

Más detalles

Representación gráfica de funciones

Representación gráfica de funciones Gráfica de una fución Representación gráfica de funciones La gráfica de una función está formada por el conjunto de puntos (x, y) para todos los valores de x pertenecientes al Dominio de la función gráfica

Más detalles