La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1.

Tamaño: px
Comenzar la demostración a partir de la página:

Download "La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1."

Transcripción

1 LF.3.A1.2-Steve Cole-Determining Domain and Ranges- La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1.2 Qué es Dominio? Es un grupo de valores de las variables independientes por el cual una función o relación es definida. Típicamente, es un grupo de valores en X que le da aumento a los valores reales en Y. O sea: Dominio es la variable independiente que usualmente llamamos los valores de X. Qué es Rango? Rango es el grupo de valores asumidos por una función o relación, sobre todo los valores permitidos con variables independientes. También se llaman variables dependientes. Usualmente el grupo de los valores en Y de una función o relación. O sea, el rango es el dependiente del dominio y usualmente son los valores en Y en nuestros ordenes de pares. Cómo encontraremos el dominio y el rango? Primero necesitamos entender que es un orden de pares. Es paréntesis en un orden de pares con nuestras X que es nuestro valor independiente primero, después una coma, y segundo, el valor dependiente. Ahora, el dominio es todos los valores de X en el orden de pares. El rango es todos los valores en Y en orden de pares. Notas al mencionar el dominio y el rango, si el número se repite, tu solo lo escribes una vez, cuando escribes el dominio y el rango.

2 1. Veremos nuestro ejemplo: Tenemos el orden de pares: A) (2,3), )-2,3), (-4,-3), y (2,6) Busca el dominio, primero. Recuerda, el dominio es el valor independiente y los valores independientes en un orden de pares quieren decir primero. Entonces, veremos todos los valores que esta de primero en los valores en X en el orden de pares. Cuando escribimos el dominio lo hacemos del valor más pequeño al mayor valor. Si vemos estos valores seria: D= {-4, -2, 2} veremos que el valor de 2 ocurre dos veces, cuando escribimos el dominio solo lo escribimos una vez. Buscaremos el rango: es el valor dependiente. Los valores dependientes son los últimos en un orden de pares. En este tenemos los rangos en rojo y ahora lo escribiremos desde el menor valor al mayor valor. Si los escribimos tendremos del menor al mayor. R= {-3, 3, 6} De nuevo, notaras el numero 3. Este valor estas dos veces, cuando escribimos el rango, solo lo hacemos una vez. Notaras cuando escribimos el dominio y el rango los grupos de números se denotan por la llave, a si es que reconocemos que es un grupo de dominio y rango. 2. Veremos otro ejemplo: B) (3,-2), (3,4), (3,6), y (3,4) Buscaremos el dominio: D= 3 Recuerda, dominio son los valores de X que se encuentran de primero y si lo escribimos de menor a mayor Un momento! Todos son el número 3, y notas que ocurren 4 veces, solo lo escribimos una sola vez.

3 Busca el rango: El rango son los valores dependientes que están de último en el orden de pares, y si lo escribimos de menor a mayor el rango seria: {-4, -2, 4, 6} 3. Ahora busca el dominio y el rango, en vez de escribir el orden de pares, usaremos una tabla de valores. Cómo encuentras el dominio? X (dominio) 1, 2, 3 Y (rango) 3, 5, 7 El dominio es los valores de X, los valores independientes en Este caso son 1, 2, 3. S los escribimos de menor a mayor, que ya están en ese orden, estos serian nuestro dominio= {1, 2,3} Ahora, para encontrar el rango: estos son los valores dependientes en este caso los valores de Y. Escribimos 3, 5,7, de menor a mayor, que ya están escritos en ese orden. Y nuestro rango= {3, 5,7} 4. Ahora, encuentra el dominio y rango por esta tabla de valores: X -2, 5, 2, -4, 1 Y -5, 6, 14, 6, -7 Es el mismo punto, el dominio son los valores independientes que es los valores de X. Los escribimos de menor a mayor, los valores son: D= {-4, -2, 1, 2, 5}

4 Busca el rango que son los valores dependientes o valores en Y. Los escribimos de menor a mayor seria: R= {-7, -5, 6, 14} Mira que 6 ocurre dos veces, pero solo lo escribimos una vez. 5. Ahora, buscaremos el dominio y el rango en una grafica: Lo primero que haremos es identificar el orden de pares que cada uno de estos puntos describen. Este es llamado función descriptiva, porque son individuales orden de pares. No como una línea que se identificara con una ecuación. Entonces, veremos donde estos puntos están. Vamos a buscar estos orden de 7 pares, si hacemos esto tenemos 6 (2,7), (2,5), 4,3), y (6,1) Ahora, busca el dominio, que son los valores de X, los valores independientes, y los escribimos desde el menor hasta el mayor. No los repitas. D= {2, 4,6} El rango son los valores de Y que son los valores dependientes y de nuevo, los escribimos de menor a mayor. Estos son R= {1, 3, 5, 7}

5 6. Busca el rango de la siguiente grafica. Esta es diferente, porque es una ecuación continua o descriptiva de algunos puntos. Cómo haremos esto? Algunos problemas te dirán que busques el dominio o el rango de esta grafica. Y para escribir con grafica en vez de buscar valores particulares, buscarías un rango de valores. Piensa de esta con una línea vertical, cualquier valor de Y que la línea vertical pasa, seria parte de tu rango. Traza una línea horizontal, mueve la línea vertical cruza la grafica, esta representa el orden de tu rango. Ahora, el mayor punto que pasaría será cero, este sería una parte de nuestro rango cuando lo escribiremos y el valor menor tenemos que seguir con la línea horizontal hacia abajo y va por siempre hacia abajo eso es que las flechas quieren decir. Esto quiere decir que es negativo o infinito, y lo escribiremos del menor al valor mayor, seria: {-,0] (negativo infinito coma cero). Notas el negativo infinito no sabemos que es, usamos paréntesis, cero es un valor particular usaremos los braquete. Recuerda, está escrito de menor a mayor de arriba hacia abajo, o también podemos escribir este como una ecuación, una desigualdad, seria: negativo infinito, es menor que Y, menor o igual a cero, (- <Y 0). De nuevo, no podemos incluir - porque no sabemos el valor de este, pero si podemos incluir cero, porque es un valor particular. 7. Vamos a buscar el dominio y el rango de la siguiente ecuación, Si Y= 2x +1 y el dominio es {-1, 0, 2} Cuál es el rango?

6 X Y Primeramente vamos a escribir nuestra tabla de valores. Los valores de X ya lo sabemos, son {-1, 0, 2}. Cómo buscaremos el valor en Y? Usaremos la ecuación, entonces si sustituiremos el valor de X en la ecuación podemos encontrar el valor de Y. Entonces el valor de -1 es, Y= 2(-1) +1 que es -1. Ahora, sustituye el valor de X=0 en la ecuación Y= (0) +1 Ahora, con el 2, Y= 2(2) +1 = = 5 Ahora sabemos nuestro dominio que es igual a {-1, 0, 2,} y el rango son los valores de Y del menor al mayor serian {-1, 1, 5} = 1 8. Veremos este problema. Una estación de gasolina compro una caja de chocolates por $ La ganancia que la estación de gasolina obtendrá al vender los chocolates está representada por la función p=.75c 80. Dónde p representa la ganancia y c el numero de chocolates? Cuál sería el rango de esta función cuando el dominio es {100, 150, 200}?

7 Recuerda X es la variable independiente. Cuál sería la variable independiente? Una variable en la ecuación posiblemente tendrá sus valores libremente escogidos sin consideración de otros valores de otras variables. En este caso la ganancia depende en el costo entonces el costo es la variable independiente. Entonces nuestros valores en X serán representados por C y los valores de Y serán representado por p. En vez de usar XY usamos C y P. Ahora ya sabemos el dominio, los valores de C, buscamos el rango, seria los valores para P. Aquí tendremos nuestra tabla de valores. Recuerda no usaremos XY usaremos C y P. C P Para buscar los valores en P necesitamos usar nuestra ecuación, y sustituir los valores de C en la ecuación para encontrar los valores en P. Si hacemos esto, el primer valor seria 100, sustituyendo tendremos: P=.75 (100) -80 = -5 Ahora, si sustituimos 150 tendremos, P=.75 (150) -80 = 32.5 Si sustituimos 200 por C, tendremos, P=.75 (200) -80= 70 Esta es una lección de dominio y rango, recuerda el siempre es el valor independiente el valor que esta primero en el orden de los pares, o sea el valor de X. Y, es el rango es siempre el valor dependiente, el valor que esta de segundo en el orden de pares.

8

La Lección de Hoy es Distancia entre dos puntos. El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1

La Lección de Hoy es Distancia entre dos puntos. El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1 La Lección de Hoy es Distancia entre dos puntos El cuál es la expectativa para el aprendizaje del estudiante CGT.5.G.1 La formula de la distancia dada a dos pares es: d= (x 2 -x 1 ) 2 + (y 2 -y 1 ) 2 De

Más detalles

Funciones, x, y, gráficos

Funciones, x, y, gráficos Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre

Más detalles

Un Bisector Perpendicular puede ser una línea, una raya, y otro segmento.

Un Bisector Perpendicular puede ser una línea, una raya, y otro segmento. CGT.5.G.4-Pam Beach- Equations of Perpendicular Bisectors of Segments. La lección de hoy es sobre Ecuaciones de Bisectores Perpendiculares y segmentos. El cuál es la expectativa para el aprendizaje del

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

La lección de hoy es sobre Resolver Ecuaciones. El cuál es la expectativa para el aprendizaje del estudiante SEI.2.A1.1

La lección de hoy es sobre Resolver Ecuaciones. El cuál es la expectativa para el aprendizaje del estudiante SEI.2.A1.1 SEI.2.A1.1-Solving Equations-Student Learning Expectation. La lección de hoy es sobre Resolver Ecuaciones. El cuál es la expectativa para el aprendizaje del estudiante SEI.2.A1.1 En esta lección aprenderemos

Más detalles

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades:

DOMINIO Y RANGO página 89. Cuando se grafica una función existen las siguientes posibilidades: DOMINIO Y RANGO página 89 3. CONCEPTOS Y DEFINICIONES Cuando se grafica una función eisten las siguientes posibilidades: a) Que la gráfica ocupe todo el plano horizontalmente (sobre el eje de las ). b)

Más detalles

Transformación de gráfica de funciones

Transformación de gráfica de funciones Transformación de gráfica de funciones La graficación de las funciones es como un retrato de la función. Nos auda a tener una idea de cómo transforma la función los valores que le vamos dando. A partir

Más detalles

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009

Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios. Dra. Noemí L. Ruiz Limardo 2009 Lección 1-Introducción a los Polinomios y Suma y Resta de Polinomios Dra. Noemí L. Ruiz Limardo 2009 Objetivos de la Lección Al finalizar esta lección los estudiantes: Identificarán, de una lista de expresiones

Más detalles

Cap. 24 La Ley de Gauss

Cap. 24 La Ley de Gauss Cap. 24 La Ley de Gauss Una misma ley física enunciada desde diferentes puntos de vista Coulomb Gauss Son equivalentes Pero ambas tienen situaciones para las cuales son superiores que la otra Aquí hay

Más detalles

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo:

DOMINIO Y RANGO DE UNA FUNCIÓN I N D I C E. martilloatomico@gmail.com. Página. Titulo: Titulo: DOMINIO Y RANGO I N D I C E Página DE UNA FUNCIÓN Año escolar: 4to. Año de Bachillerato Autor: José Luis Albornoz Salazar Ocupación: Ing Civil. Docente Universitario País de residencia: Venezuela

Más detalles

Características de funciones que son inversas de otras

Características de funciones que son inversas de otras Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =

Más detalles

Profr. Efraín Soto Apolinar. Función Inversa

Profr. Efraín Soto Apolinar. Función Inversa Función Inversa Una función es una relación entre dos variables, de manera que para cada valor de la variable independiente eiste a lo más un único valor asignado a la variable independiente por la función.

Más detalles

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { }

I. RELACIONES Y FUNCIONES 1.1. PRODUCTO CARTESIANO { } I. RELACIONES Y FUNCIONES PAREJAS ORDENADAS Una pareja ordenada se compone de dos elementos x y y, escribiéndose ( x, y ) donde x es el primer elemento y y el segundo elemento. Teniéndose que dos parejas

Más detalles

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales:

A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales: ADICIÓN Y RESTA DE NUMEROS REALES ADICIÓN L a adición o suma de números reales se representa mediante el símbolo más (+) y es considerada una operación binaria porque se aplica a una pareja de números,

Más detalles

En muchas ocasiones resulta muy útil que la información contenida en un libro de Excel se visualice gráficamente.

En muchas ocasiones resulta muy útil que la información contenida en un libro de Excel se visualice gráficamente. Un grafico es una representación de los datos de una hoja de cálculo a través de figuras o líneas que permiten un análisis e interpretación más claros de los mismos. En muchas ocasiones resulta muy útil

Más detalles

Funciones polinomiales de grados 3 y 4

Funciones polinomiales de grados 3 y 4 Funciones polinomiales de grados 3 y 4 Ahora vamos a estudiar los casos de funciones polinomiales de grados tres y cuatro. Vamos a empezar con sus gráficas y después vamos a estudiar algunos resultados

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta: Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.

Más detalles

A continuación voy a colocar las fuerzas que intervienen en nuestro problema.

A continuación voy a colocar las fuerzas que intervienen en nuestro problema. ísica EL PLANO INCLINADO Supongamos que tenemos un plano inclinado. Sobre él colocamos un cubo, de manera que se deslice sobre la superficie hasta llegar al plano horizontal. Vamos a suponer que tenemos

Más detalles

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f) MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

PARTE 3 ECUACIONES DE EQUIVALENCIA FINANCIERA T E M A S

PARTE 3 ECUACIONES DE EQUIVALENCIA FINANCIERA T E M A S PARTE 3 ECUACIONES DE EQUIVALENCIA FINANCIERA Valor del dinero en el tiempo Conceptos de capitalización y descuento Ecuaciones de equivalencia financiera Ejercicio de reestructuración de deuda T E M A

Más detalles

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b La función lineal Una función polinomial de grado uno tiene la forma: y = a 0 + a 1 x El semestre pasado estudiamos la ecuación de la recta. y = m x + b En la notación de funciones polinomiales, el coeficiente

Más detalles

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula:

b) Para encontrar los intervalos de crecimiento y decrecimiento, hay que derivar la función. Como que se trata de un cociente, aplicamos la fórmula: 1. Dada la función f(x) = : a) Encontrar el dominio, las AH y las AV. b) Intervalos de crecimiento, decrecimiento, máximos y mínimos relativos. c) Primitiva que cumpla que F(0) = 0. a) Para encontrar el

Más detalles

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal)

Unidad I. 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Unidad I Sistemas numéricos 1.1 Sistemas numéricos (Binario, Octal, Decimal, Hexadecimal) Los computadores manipulan y almacenan los datos usando interruptores electrónicos que están ENCENDIDOS o APAGADOS.

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

Divisibilidad y números primos

Divisibilidad y números primos Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Universidad Diego Portales Facultad de Economía y Empresa. 1. Reputación. Apuntes de Teoría de Juegos Profesor: Carlos R. Pitta

Universidad Diego Portales Facultad de Economía y Empresa. 1. Reputación. Apuntes de Teoría de Juegos Profesor: Carlos R. Pitta En estas notas revisaremos los conceptos de reputación desde la perspectiva de información incompleta. Para ello usaremos el juego del ciempiés. Además, introduciremos los conceptos de juegos de señales,

Más detalles

DESIGUALDADES E INECUACIONES

DESIGUALDADES E INECUACIONES DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia

Más detalles

LECCIÓN 1 5 PROBLEMAS RESUELTOS

LECCIÓN 1 5 PROBLEMAS RESUELTOS LECCIÓN 1 5 PROBLEMAS RESUELTOS Problema 1. Cuántos triángulos se pueden contar en la figura? A. 6 B. 8 C. 2 D. 4 E. 12 Solución. La figura está compuesta por dos triángulos superpuestos, uno de ellos

Más detalles

Medias Móviles: Señales para invertir en la Bolsa

Medias Móviles: Señales para invertir en la Bolsa www.gacetafinanciera.com Medias Móviles: Señales para invertir en la Bolsa Juan P López..www.futuros.com Las medias móviles continúan siendo una herramienta básica en lo que se refiere a determinar tendencias

Más detalles

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8 Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características

Más detalles

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,

Más detalles

1. Definición 2. Operaciones con funciones

1. Definición 2. Operaciones con funciones 1. Definición 2. Operaciones con funciones 3. Estudio de una función: Suma y diferencia Producto Cociente Composición de funciones Función reciproca (inversa) Dominio Recorrido Puntos de corte Signo de

Más detalles

Combinar correspondencia

Combinar correspondencia Combinar correspondencia Mediante la opción Combinar correspondencia Word2010 nos permite incluir en un documento, datos almacenados en otro sitio. De esta forma podremos obtener copias de un mismo documento

Más detalles

Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim

Para la oblicua hacemos lo mismo, calculamos el límite en el menos infinito : = lim. 1 ( ) = = lim ) Sea la función: f(x) = ln( x ): a) Dar su Dominio y encontrar sus asíntotas verticales, horizontales y oblicuas. b) Determinar los intervalos de crecimiento y decrecimiento, los máximos y mínimos, los

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

Relaciones y funciones

Relaciones y funciones Relaciones y funciones En matemáticas, una relación es un conjunto de pares ordenados. Como si se tratara de coordenadas de puntos, un conjunto de pares ordenados, forma una relación. Relación Es un conjunto

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

5 Ecuaciones lineales y conceptos elementales de funciones

5 Ecuaciones lineales y conceptos elementales de funciones Programa Inmersión, Verano 206 Notas escritas por Dr. M Notas del cursos. Basadas en los prontuarios de MATE 300 y MATE 3023 Clase #6: martes, 7 de junio de 206. 5 Ecuaciones lineales y conceptos elementales

Más detalles

Traslación de puntos

Traslación de puntos LECCIÓN CONDENSADA 9.1 Traslación de puntos En esta lección trasladarás figuras en el plano de coordenadas definirás una traslación al describir cómo afecta un punto general (, ) Una regla matemática que

Más detalles

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS

UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS UNIDAD 6. POLINOMIOS CON COEFICIENTES ENTEROS Unidad 6: Polinomios con coeficientes enteros. Al final deberás haber aprendido... Expresar algebraicamente enunciados sencillos. Extraer enunciados razonables

Más detalles

Cómo creo las bandejas del Registro de Entrada /Salida y de Gestión de Expedientes?

Cómo creo las bandejas del Registro de Entrada /Salida y de Gestión de Expedientes? Preguntas frecuentes Cómo creo las bandejas del Registro de Entrada /Salida y de Gestión de Expedientes? Atención! Esta opción es de configuración y solamente la prodrá realizar el administrador de la

Más detalles

Porcentajes. Cajón de Ciencias. Qué es un porcentaje?

Porcentajes. Cajón de Ciencias. Qué es un porcentaje? Porcentajes Qué es un porcentaje? Para empezar, qué me están preguntando cuando me piden que calcule el tanto por ciento de un número? "Porcentaje" quiere decir "de cada 100, cojo tanto". Por ejemplo,

Más detalles

Preparándose para el Aprendizaje en Línea (e-learning) Guía del Participante

Preparándose para el Aprendizaje en Línea (e-learning) Guía del Participante Preparándose para el Aprendizaje en Línea (e-learning) Guía del Participante Crescenciano Olvera Contenido. Propósito y Objetivos...3 Guía del Estudiante - Introducción...4 Acceso al sitio Web de los cursos....4

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

Profr. Efraín Soto Apolinar. Factorización

Profr. Efraín Soto Apolinar. Factorización Factorización La factorización es la otra parte de la historia de los productos notables. Esto es, ambas cosas se refieren a las mismas fórmulas, pero en los productos notables se nos daba una operación

Más detalles

Actividades con GeoGebra

Actividades con GeoGebra Conectar Igualdad - "Netbooks Uno a Uno" Actividades con GeoGebra Nociones básicas, rectas Silvina Ponce Dawson Introducción. El GeoGeobra es un programa que permite explorar nociones matemáticas desde

Más detalles

Ofertas, Descuentos y Reembolsos

Ofertas, Descuentos y Reembolsos Ofertas, Descuentos y Reembolsos Objetivos En esta lección aprenderás a: determinar el monto del descuento de un artículo en oferta determinar el costo de un artículo después de una reembolso calcular

Más detalles

Espacios generados, dependencia lineal y bases

Espacios generados, dependencia lineal y bases Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................

Más detalles

VI Olimpiada de Informática del estado de Guanajuato Solución Examen Teórico

VI Olimpiada de Informática del estado de Guanajuato Solución Examen Teórico I.- En todos los problemas siguientes de esta sección, encuentra qué número (o números) debe seguir según la sucesión, y explica el por qué. 1) 1, 4, 27, 256,? (5 puntos) R = 3125 Observa que 1=1 1, 4=2

Más detalles

Bajá videos de YouTube con Huayra

Bajá videos de YouTube con Huayra Bajá videos de YouTube con Huayra Nota: Este tutorial fue pensado y realizado para usar el anvegador por defecto de Huayra: Chromium Con este tutorial vas a poder ver cómo bajar videos de YouTube a tu

Más detalles

3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada?

3. Una pelota se lanza desde el suelo hacia arriba. En un segundo llega hasta una altura de 25 m. Cuál será la máxima altura alcanzada? Problemas de Cinemática 1 o Bachillerato Caída libre y tiro horizontal 1. Desde un puente se tira hacia arriba una piedra con una velocidad inicial de 6 m/s. Calcula: a) Hasta qué altura se eleva la piedra;

Más detalles

6. VECTORES Y COORDENADAS

6. VECTORES Y COORDENADAS 6. VECTORES Y COORDENADAS Página 1 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2 1. TRASLACIONES. VECTORES

Más detalles

Tema 2 : NÚMEROS ENTEROS. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.

Tema 2 : NÚMEROS ENTEROS. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. 2010 Tema 2 : NÚMEROS ENTEROS. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León mgdl 01/01/2010 INDICE: 01. DE LOS NÚMEROS NATURALES A LOS NÚMEROS ENTEROS. 02. VALOR

Más detalles

Accesibilidad web GUÍA FUNCIONAL

Accesibilidad web GUÍA FUNCIONAL Accesibilidad web GUÍA FUNCIONAL 0 _ ÍNDICE 01_Introducción 02_Primeros pasos 03_Conceptos 04_Navegación por voz 05_Navegación por teclado 06_Navegación por sonido 07_Compatibilidad con lectores de pantalla

Más detalles

1. Una función de X en Y es una regla de correspondencia que asocia a cada elemento de X con un único elemento de Y

1. Una función de X en Y es una regla de correspondencia que asocia a cada elemento de X con un único elemento de Y UNIDAD I. FUNCIONES POLINOMIALES Conceptos clave: Sean X y Y dos conjuntos no vacíos. 1. Una función de X en Y es una regla de correspondencia que asocia a cada elemento de X con un único elemento de Y

Más detalles

Capítulo 0. Introducción.

Capítulo 0. Introducción. Capítulo 0. Introducción. Bueno, por fin está aquí el esperado (espero!!) Capítulo Cero del Tutorial de Assembler. En él estableceremos algunos conceptos que nos serán de utilidad a lo largo del Tutorial.

Más detalles

SISTEMAS DE NUMERACIÓN. www.portalelectrozona.com

SISTEMAS DE NUMERACIÓN. www.portalelectrozona.com SISTEMA DECIMAL El sistema decimal, como su nombre indica, tiene diez cifras o dígitos distintos, que son 4 5 Por lo tanto, diremos que la BASE del sistema de numeración DECIMAL es (base ). 6 7 8 9 Pongamos

Más detalles

Operaciones con polinomios

Operaciones con polinomios Operaciones con polinomios Los polinomios son una generalización de nuestro sistema de numeración. Cuando escribimos un número, por ejemplo, 2 354, queremos decir: 2 354 = 2 000 + 300 + 50 + 4 = 2)1 000)

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial

(A) Primer parcial. si 1 x 1; x 3 si x>1. (B) Segundo parcial CÁLCULO DIFERENCIAL E INTEGRAL I EVALUACIÓN GLOBAL E700 1) x 5 > 1. A) Primer parcial ) Sean las funciones ft) t +,gy) y 4&hw) w. Encontrar f/h, g f, f g y sus dominios. ) Graficar la función x + six

Más detalles

Al ejecutar esta aplicación tenemos lo siguiente: Pulsamos en Wizard mode y nos aparece lo siguiente:

Al ejecutar esta aplicación tenemos lo siguiente: Pulsamos en Wizard mode y nos aparece lo siguiente: ACCESO A LA CÁMARA Esto no es un punto conflictivo, pero lo primero que necesitamos es poder acceder a la cámara. Para ello, en primer lugar hay que conectar la cámara tanto a la alimentación como con

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

3. OPERACIONES CON FUNCIONES.

3. OPERACIONES CON FUNCIONES. 3. OPERACIONES CON FUNCIONES. Las operaciones de suma, resta, multiplicación y división entre funciones son posibles y semejantes a las correspondientes efectuadas con los números. En esta sección definiremos

Más detalles

Cuestionario: Programación en C y máscaras (II)

Cuestionario: Programación en C y máscaras (II) Este documento es un autotest de ayuda enmarcado en la asignatura Informática Industrial y corresponde al tema Programación en C, pero es abierto y puede servir para entender el funcionamiento básico de

Más detalles

PRÁCTICAS CON ROBOMIND. PARTE 1.

PRÁCTICAS CON ROBOMIND. PARTE 1. PRÁCTICAS CON ROBOMIND. PARTE 1. Robomind Cuando lo tengas instalado mueve el ratón por los diferentes botones y te saldrá una descripción para lo que sirve cada uno. Es muy sencillo, no te olvides los

Más detalles

1. Funciones y sus gráficas

1. Funciones y sus gráficas FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada

Más detalles

Profr. Efraín Soto Apolinar. Números reales

Profr. Efraín Soto Apolinar. Números reales úmeros reales En esta sección vamos a estudiar primero los distintos conjuntos de números que se definen en matemáticas. Después, al conocerlos mejor, podremos resolver distintos problemas aritméticos.

Más detalles

COMO CREAR UNA PÁGINA WEB 2-INTRODUCCIÓN A DREAWEAVER

COMO CREAR UNA PÁGINA WEB 2-INTRODUCCIÓN A DREAWEAVER 2011 2012 COMO CREAR UNA PÁGINA WEB 2-INTRODUCCIÓN A DREAWEAVER WWW.FAUBELL.COM vicente@faubell.com Hasta ahora hemos visto una pequeña introducción a la creación de las páginas web. No te preocupes por

Más detalles

Sistemas de ecuaciones lineales

Sistemas de ecuaciones lineales Sistemas de ecuaciones lineales Índice general 1. Sistemas de ecuaciones lineales 2 2. Método de sustitución 5 3. Método de igualación 9 4. Método de eliminación 13 5. Conclusión 16 1 Sistemas de ecuaciones

Más detalles

Análisis de medidas conjuntas (conjoint analysis)

Análisis de medidas conjuntas (conjoint analysis) Análisis de medidas conuntas (conoint analysis). Introducción Como ya hemos dicho anteriormente, esta técnica de análisis nos sirve para analizar la importancia que dan los consumidores a cada uno de los

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores

EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores EJERCICIOS DE MATEMÁTICAS I HOJA 4 Ejercicio 1. Se consideran los vectores u 1 = (1, 1, 0, 1), u 2 = (0, 2, 1, 0), u 3 = ( 1, 1, 1, 1), u 4 = (2, 2, 1, 0) de R 4. Expresa, si es posible, los vectores u

Más detalles

Base de datos en Excel

Base de datos en Excel Base de datos en Excel Una base datos es un conjunto de información que ha sido organizado bajo un mismo contexto y se encuentra almacenada y lista para ser utilizada en cualquier momento. Las bases de

Más detalles

LAS ESCALAS EN AUTOCAD.

LAS ESCALAS EN AUTOCAD. LAS ESCALAS EN AUTOCAD. Introducción. Tras acabar mi etapa universitaria he llegado a la conclusión de que el 90 % de las veces el mejor profesor es uno mismo y la mejor fuente de información es la proporcionada

Más detalles

CREAR UN ÁLBUM DE FOTOGRAFÍAS

CREAR UN ÁLBUM DE FOTOGRAFÍAS CREAR UN ÁLBUM DE FOTOGRAFÍAS 1. En el menú Insertar, hacemos clic primero en Imagen y después en Nuevo álbum de fotografías. 2. En el cuadro de diálogo Álbum de fotografías, agregamos las imágenes que

Más detalles

MANUAL PARA GESTIÓN DE INCIDENCIAS INFORMÁTICAS

MANUAL PARA GESTIÓN DE INCIDENCIAS INFORMÁTICAS MANUAL PARA GESTIÓN DE INCIDENCIAS INFORMÁTICAS En este manual aprenderemos a introducir un Ticket de Soporte (Incidencia Informática) y ver todo el proceso hasta que se resuelve. Para poder escribir Tickets

Más detalles

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones:

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones: 2. Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma informal,

Más detalles

Curso Básico Word 2003 Unidad 3

Curso Básico Word 2003 Unidad 3 BORDES Y SOMBREADO... 18 Descripción... 18 Bordes... 19 Valor... 19 Estilo... 19 Color... 19 Ancho... 19 Vista previa... 19 Aplicar a... 19 Bordes de página... 21 Sombreado... 21 Botón de Borde exterior

Más detalles

GUIA PARA GENERAR PROSPECTOS Y VENTAS EN WEB

GUIA PARA GENERAR PROSPECTOS Y VENTAS EN WEB GUIA PARA GENERAR PROSPECTOS Y VENTAS EN WEB La importancia de estar en Internet -70% De los compradores antes de comprar hace búsquedas por internet. -Compañías que hacen Internet Marketing obtienen 150

Más detalles

1. Dominio, simetría, puntos de corte y periodicidad

1. Dominio, simetría, puntos de corte y periodicidad Estudio y representación de funciones 1. Dominio, simetría, puntos de corte y periodicidad 1.1. Dominio Al conjunto de valores de x para los cuales está definida la función se le denomina dominio. Se suele

Más detalles

TEMA: ECUACIONES CON NÚMEROS NATURALES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA.

TEMA: ECUACIONES CON NÚMEROS NATURALES ECUACIONES DE PRIMER GRADO CON UNA INCÓGNITA. TEMA: ECUACIONES CON NÚMEROS NATURALES INTRODUCCIÓN: Las ecuaciones sirven, básicamente, para resolver problemas ya sean matemáticos, de la vida diaria o de cualquier ámbito- y, en ese caso, se dice que

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple

Más detalles

Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina

Datos del autor. Nombres y apellido: Germán Andrés Paz. Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Datos del autor Nombres y apellido: Germán Andrés Paz Lugar de nacimiento: Rosario (Código Postal 2000), Santa Fe, Argentina Correo electrónico: germanpaz_ar@hotmail.com =========0========= Introducción

Más detalles

Plática de Maestro. Introducción

Plática de Maestro. Introducción Plática de Maestro Qué: ( Qué son las Características de los Personajes?) Los Personajes son las personas o los animales en un cuento. Hay que hacer observaciones de como se ven, sienten y actúan. Los

Más detalles

Aplicaciones lineales continuas

Aplicaciones lineales continuas Lección 13 Aplicaciones lineales continuas Como preparación para el cálculo diferencial, estudiamos la continuidad de las aplicaciones lineales entre espacios normados. En primer lugar probamos que todas

Más detalles

Clase 4: Probabilidades de un evento

Clase 4: Probabilidades de un evento Clase 4: Probabilidades de un evento Definiciones A continuación vamos a considerar sólo aquellos experimentos para los que el EM contiene un número finito de elementos. La probabilidad de la ocurrencia

Más detalles

Laboratorio de Física Universitaria II. FISI 3014 Primer semestre del año académico 2003-2004 Departamento de Física y Electrónica de la UPR-H

Laboratorio de Física Universitaria II. FISI 3014 Primer semestre del año académico 2003-2004 Departamento de Física y Electrónica de la UPR-H Laboratorio de Física Universitaria II. FISI 3014 Primer semestre del año académico 2003-2004 Departamento de Física y Electrónica de la UPR-H Introducción El programa de Data Studio 1.7, es una aplicación

Más detalles

El almacén: sistema de archivos

El almacén: sistema de archivos 1 de 9 19/09/2011 13:49 El almacén: sistema de archivos Como dispones ya de una plataforma Moodle y has hecho una configuración concreta, ya sea por temas, semanas o cualquier otra, el paso siguiente es

Más detalles

Práctico. Excel para la toma de decisiones. Ayudante : César Villalobos Luengo Profesora : Dra. Angélica Urrutia

Práctico. Excel para la toma de decisiones. Ayudante : César Villalobos Luengo Profesora : Dra. Angélica Urrutia Práctico Excel para la toma de decisiones Ayudante : César Villalobos Luengo Profesora : Dra. Angélica Urrutia Requisitos Para empezar, trabajaremos en esta ayudantía basados en ciertas aplicaciones, las

Más detalles

PROYECTO DE LA REAL ACADEMIA DE CIENCIAS Estímulo del talento matemático

PROYECTO DE LA REAL ACADEMIA DE CIENCIAS Estímulo del talento matemático PROYECTO DE L REL CDEMI DE CIENCIS Estímulo del talento matemático Prueba de selección 8 de junio de 2013 Nombre:... pellidos:... Fecha de nacimiento:... Teléfonos:... Información importante que debes

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES INTRODUCCIÓN En el presente documento se explican detalladamente dos importantes temas: 1. Descomposición LU. 2. Método de Gauss-Seidel. Se trata de dos importantes herramientas

Más detalles

Lección 7 - Coordenadas rectangulares y gráficas

Lección 7 - Coordenadas rectangulares y gráficas Lección 7 - Coordenadas rectangulares gráficas Coordenadas rectangulares gráficas Objetivos: Al terminar esta lección podrás usar un sistema de coordenadas rectangulares para identificar puntos en un plano

Más detalles

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1 . ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio

Más detalles

UNIVERSIDAD DEL ÉXITO WINALITE. Una nueva forma de aprender del Negocio!

UNIVERSIDAD DEL ÉXITO WINALITE. Una nueva forma de aprender del Negocio! UNIVERSIDAD DEL ÉXITO WINALITE Una nueva forma de aprender del Negocio! Capitulo 1 Mente y Fe Capitulo 2 La venta directa Capitulo 3 La Lista Capitulo 4 LLAMADAS EFECTIVAS CAPITULO 5 PRESENTACIÓN DEL NEGOCIO

Más detalles

Física de los Procesos Biológicos Curso 2005/6

Física de los Procesos Biológicos Curso 2005/6 Bibliografía: ísica, Kane, Tema 8 ísica de los Procesos Biológicos Curso 2005/6 Grupo 3 TEMA 2 BIOMECÁNICA 2.1 SÓIDO DEORMABE Parte 1 Introducción Vamos a estudiar como los materiales se deforman debido

Más detalles

Unidad: Representación gráfica del movimiento

Unidad: Representación gráfica del movimiento Unidad: Representación gráfica del movimiento Aplicando y repasando el concepto de rapidez Esta primera actividad repasa el concepto de rapidez definido anteriormente. Posición Esta actividad introduce

Más detalles