Aplicaciones lineales continuas

Save this PDF as:
Tamaño: px
Comenzar la demostración a partir de la página:

Download "Aplicaciones lineales continuas"

Transcripción

1 Lección 13 Aplicaciones lineales continuas Como preparación para el cálculo diferencial, estudiamos la continuidad de las aplicaciones lineales entre espacios normados. En primer lugar probamos que todas las normas en R N son equivalentes, un teorema debido a F. Hausdorff que anteriormente hemos anunciado alguna vez. Seguidamente damos diversas caracterizaciones de la continuidad de una aplicación lineal entre espacios normados. Este resultado permite definir la norma de una aplicación lineal continua, con lo que el conjunto de todas las aplicaciones de este tipo entre dos espacios normados, se convierte a su vez en un espacio normado Teorema de Hausdorff Hemos venido estudiando, siempre en el ambiente general de los espacios métricos, diversas propiedades de los subconjuntos de un espacio normado, así como de las funciones definidas en un subconjunto de un espacio normado y con valores en otro. Algunas de estas propiedades, como la compacidad, la conexión o la continuidad, sólo involucran la topología de los espacios considerados, con lo que está claro de antemano que se conservan al sustituir las normas de dichos espacios por otras equivalentes. Para otras propiedades que no son topológicas, como la complitud, la acotación o la continuidad uniforme, hemos ido comprobando que también se conservan al cambiar las normas por otras equivalentes. El siguiente teorema deja claro que, para estudiar todas estas propiedades en R N, podemos usar cualquier norma, no sólo la euclídea, la de la suma o la del máximo, sino cualquier otra. Teorema (Hausdorff, 1932). Todas las normas en R N son equivalentes. Demostración. Bastará ver que toda norma en R N es equivalente a la norma de la suma 1. Sea {e k : k I N } la base usual de R N y tomemos ρ = máx { } e k : k I N. Por ser una norma, para todo x R N tenemos x = N k=1 x(k)e k N N x(k) e k ρ x(k) = ρ x 1 k=1 k=1 73

2 13. Aplicaciones lineales continuas 74 Hemos conseguido, así de fácilmente, una de las dos desigualdades que buscamos: ρ R + : x ρ x 1 x R N (1) Debemos ahora encontrar λ R + que verifique λ x 1 x, también para todo x R N. En particular, si x 1 = 1 se deberá tener x λ, lo que nos indica cómo encontrar λ. Consideramos por tanto el conjunto S = {x R N : x 1 = 1}, que es cerrado y acotado, luego compacto, para la topología usual de R N. Ahora veremos que la función : R N R es continua, pues de hecho, usando en R N la norma 1, dicha función es lipschitziana: x y x y ρ x y 1 x,y R N Deducimos que la función tiene mínimo en el conjunto compacto S, y tomamos λ = mín{ x : x S} Como λ = x 0 para algún x 0 S, será λ R +. Además, para x R N \ {0} tenemos: x S, luego λ x x 1 x 1 = x es decir, λ x 1 x x 1 Esta desigualdad es obvia para x = 0 y hemos probado que λ R + : λ x 1 x x R N (2) En vista de (1) y (2) las normas y 1 son equivalentes, como queríamos. Para resaltar mejor el contenido del teorema anterior, es conveniente hacer un enunciado que, formalmente, es más general: Teorema. Todas las normas en un espacio vectorial de dimensión finita son equivalentes. Demostración. Sea X un espacio vectorial de dimensión finita, y sea N N su dimensión, con lo que existe una biyección lineal Φ : R N X. Dos normas cualesquiera en X, 1 y 2, se trasladan a R N mediante Φ. Concretamente, basta definir, para todo y R N, y 1 = Φ(y) 1 y y 2 = Φ(y) 2 Es completamente evidente que de esta forma se obtienen dos normas en R N que, por el teorema anterior, son equivalentes, es decir, existen constantes λ,ρ R N tales que λ y 1 y 2 ρ y 1 y R N Entonces, para cada x X podemos tomar y = Φ 1 (x) para obtener λ x 1 = λ y 1 y 2 = x 2 = y 2 ρ y 1 = ρ x 1 luego las normas de partida en X también son equivalentes, como queríamos.

3 13. Aplicaciones lineales continuas 75 Expliquemos el interés de este enunciado que, como hemos visto, es equivalente al teorema de Hausdorff. La clave está en que, al hablar de R N, inevitablemente tenemos en mente su base usual, la que permite identificar cada vector de R N con una N-upla de números reales. Sin embargo, al hablar de un espacio vectorial de dimensión N, digamos X, está claro que no estamos pensando en ninguna base concreta de X. El primer enunciado nos dice que, una vez que fijamos una base de X e identificamos X con R N, todas las normas en X tienen la misma topología, pero esa topología podría aparentemente depender de la forma en que hemos identificado X con R N, es decir de la base que hayamos fijado en X. El segundo enunciado deja claro que no hay tal dependencia, en el espacio X hay una topología común a todas las normas, que no depende de ninguna base que podamos fijar en X para identificarlo con R N. La situación cambia drásticamente cuando consideramos espacios vectoriales de dimensión infinita. Aunque no vamos a demostrarlo, porque tampoco vamos a tener ocasión de usarlo, conviene conocer el siguiente resultado: si X es un espacio vectorial de dimensión infinita, existen dos normas en X que no son equivalentes. En muchos resultados que hemos ido estudiando anteriormente, se hablaba de una norma en R N cuya topología sea la usual de R N. Está claro ahora que la última hipótesis era redundante, la misma afirmación es cierta para cualquier norma en R N, y de hecho, para cualquier espacio normado de dimensión finita. Por ejemplo: los subconjuntos acotados de un espacio vectorial de dimensión finita son los mismos para todas las normas en dicho espacio. El teorema de complitud de R N también toma ahora su forma definitiva: Todo espacio normado de dimensión finita es un espacio de Banach. A menudo, un espacio vectorial de dimensión finita nos aparece como subespacio de otro, que puede ser de dimensión infinita. Por ejemplo, fijado k N {0}, en el espacio vectorial C [0,1] de todas las funciones continuas de [0,1] en R, podemos considerar el subespacio formado por las funciones polinómicas de grado menos o igual que k, que tiene dimensión k + 1. Para esta situación, el resultado anterior tiene una consecuencia importante: Si X es un espacio normado arbitrario, todo subespacio de dimensión finita de X es un subconjunto cerrado de X. En efecto, si Y es un subespacio de X que tenga dimensión finita, viendo Y como subespacio normado de X, tenemos que Y es completo, luego es cerrado Continuidad de aplicaciones lineales Para una aplicación lineal entre espacios normados, vamos a caracterizar de varias formas su continuidad. La propiedad más débil que podemos considerar, que nuestra aplicación lineal sea continua en un punto, es equivalente a la propiedad más fuerte que se nos puede ocurrir, que dicha aplicación sea lipschitziana. Su constante de Lipschitz servirá después para definir la norma de una aplicación lineal continua. Por otra parte, vemos también que la continuidad de una aplicación lineal equivale a que conserve los conjuntos acotados. Resumimos en un solo enunciado toda esta información.

4 13. Aplicaciones lineales continuas 76 Teorema. Sean X,Y espacios normados y T : X Y una aplicación lineal. Las siguientes afirmaciones son equivalentes: (i) Existe x 0 X tal que T es continua en x 0. (ii) T es continua en 0. (iii) T es continua. (iv) T es uniformemente continua. (v) T es lipschitziana. (vi) Existe una constante M R + 0 tal que T (x) x para todo x X. (vii) T está acotada en cada subconjunto acotado de X, es decir: si A es un subconjunto acotado de X, entonces T (A) es un subconjunto acotado de Y. (viii) T está acotada en la bola cerrada unidad de X, es decir, T (B) es un subconjunto acotado de Y, donde B = {x X : x 1}. (ix) T está acotada en la esfera unidad de X, es decir, T (S) es un subconjunto acotado de Y, donde S = {x X : x = 1}. Demostración. Empezamos observando que (i) (ii). Si T es continua en un punto x 0 X y {x n } es una sucesión de vectores de X tal que {x n } 0, tenemos {x n + x 0 } x 0, luego {T (x n + x 0 )} T (x 0 ), de donde {T (x n )} = {T (x n + x 0 ) T (x 0 )} 0, y esto prueba que T es continua en 0. Recíprocamente, de (ii) se deduce (i) con x 0 = 0. Con las afirmaciones (ii) a (ix) haremos dos ciclos, de forma que todas ellas resultarán ser equivalentes a (vi). (ii) (vi). De la continuidad de T en 0 deducimos claramente que δ > 0 : z X, z δ T (z) 1 Dado x X \ {0}, tomando z = δx/ x tenemos claramente z = δ, luego T (x) = x δ x T (z) δ Como esta desigualdad es obvia cuando x = 0, hemos probado (vi) con M = 1/δ. (vi) (v). De (vi) deducimos que T (x) T (z) = T (x z) x z, para x,z X. (v) (iv) (iii) (ii). Las tres implicaciones son evidentes. Hemos cerrado un ciclo, mostrando que las seis primeras afirmaciones del enunciado son equivalentes. Con otro ciclo completaremos la demostración. (vi) (vii). Si A es un subconjunto acotado de X y ρ R + verifica que x ρ para todo x A, tenemos claramente y M ρ para todo y T (A). (vii) (viii) (ix). Basta pensar que B es un subconjunto acotado de X y que S B. (ix) (vi). Por hipótesis, existe M R + 0 tal que z M para todo z S. Dado x X, podemos escribir x = x z con z S, para obtener T (x) = T (z) x M x.

5 13. Aplicaciones lineales continuas 77 Comentemos brevemente la utilidad de las distintas caracterizaciones que hemos obtenido para la continuidad de una aplicación lineal. La equivalencia entre las afirmaciones (i), (ii) y (iii) nos dice lo que ocurre cuando un aplicación lineal no es continua: no puede ser continua en ningún punto de X. Nunca nos encontraremos aquí en situación tan desagradable, pues veremos enseguida que toda aplicación lineal, de R N en cualquier espacio normado, es continua. La equivalencia entre las afirmaciones (iii), (iv) y (v) sí es importante, tres propiedades que en general, para una función entre espacios métricos, o incluso entre espacios normados, están muy lejos de ser equivalentes, resultan serlo cuando trabajamos con aplicaciones lineales. La afirmación (vi) es la que suele usarse para probar la continuidad de una aplicación lineal, pues se trata de una desigualdad que en la práctica suele ser fácil de comprobar. Su equivalencia con (v) es bastante obvia, pues como T es lineal, para M R + 0 se tiene: T (x) M x x X T (x) T (z) M x z x,z X En efecto, para la implicación hacia la derecha se usa x z en vez de x como hemos hecho en la demostración, y la otra es obvia tomando z = 0. Por tanto, la constante de Lipschitz M 0, que es la mínima constante que verifica la desigualdad de la derecha, también es la mínima constante que verifica la de la izquierda, es decir, M 0 = mín { M R + } 0 : T (x) M x x X = sup { T (x) / x : x X \ {0} } (3) Las caracterización de la continuidad dada por (vii), tiene también un significado útil: una aplicación lineal T : X Y es continua si, y sólo si, conserva la acotación. Además, en vista de (viii) y (ix), para comprobar en la práctica que T conserva la acotación, no es necesario manejar todos los subconjuntos acotados de X, basta usar su bola cerrada unidad B, o si se prefiere, sólo la esfera unidad S. De hecho, cuando comprobamos que T está acotada en S, podemos obtener directamente su constante de Lipschitz. Basta observar que la expresión de M 0 obtenida en (3) sólo involucra los valores de T en los vectores de la forma x/ x con x X \ {0}, es decir, todos los vectores de S. Se tiene por tanto: M 0 = sup { T (u) : u S } (4) También podemos usar B en lugar de S, pues de (4) y (3) deducimos que M 0 sup { T (v) : v B } sup { M 0 v : v B } = M 0 (5) Probamos ahora una importante consecuencia del teorema de Hausdorff, que ya hemos anunciado: Si X es un espacio normado de dimensión finita, toda aplicación lineal de X en cualquier otro espacio normado, es continua. Sea Y otro espacio normado y T : X Y una aplicación lineal. Definimos una nueva norma T en X, de la siguiente forma x T = x + T (x) x X

6 13. Aplicaciones lineales continuas 78 La comprobación de que T es efectivamente una norma en X, no tiene dificultad, es pura rutina. Como X tiene dimensión finita, el teorema de Hausdorff nos dice que T es equivalente a la norma de partida en X, luego existe una constante ρ R + tal que x T x para todo x X. Pero entonces está bien claro que y esto prueba que T es continua. T (x) x T ρ x x X Norma de una aplicación lineal continua Si X e Y son espacios normados arbitrarios, denotaremos siempre por L(X,Y ) al espacio vectorial de todas las aplicaciones lineales y continuas de X en Y, cuya suma y producto por escalares vienen definidos, para T 1,T 2 L(X,Y ) y λ R, por ( ) ( ) T1 + T 2 (x) = T1 (x) + T 2 (x) x X y λt1 (x) = λt1 (x) La norma de una aplicación lineal continua T L(X,Y ), que se denota por T, es por definición la constante de Lipschitz de T. Según hemos visto en la igualdades (3), (4) y (5), disponemos de varias expresiones de esta constante: T = mín { M R + } 0 : T (x) M x x X = sup { T (x) : x X, x = 1 } = sup { T (x) : x X, x 1 } Antes de comprobar que efectivamente hemos definido una norma en el espacio vectorial L(X,Y ), explicamos la forma en que dicha norma se utiliza habitualmente. Como ya se ha dicho, se suele probar que una aplicación lineal T : X Y es continua, hallando M R + 0 tal que T (x) M x para todo x X. Entonces, T M y se tendrá la igualdad cuando la constante M sea la mínima posible, es decir, cuando la desigualdad conseguida sea inmejorable. Si por el contrario ya sabemos que T L(X,Y ), podemos escribir T (x) T x x X (6) y estaremos usando la mejor desigualdad posible. Esta situación es la que tendremos siempre en lo que sigue, pues X será un espacio normado de dimensión finita. En general, comprobar que efectivamente tenemos una norma en L(X,Y ) es bien fácil. Para T 1,T 2 L(X,Y ), usando (6) se tiene: ( ) T 1 + T 2 (x) T1 (x) + T 2 (x) ( T 1 + T 2 ) x x X Esta desigualdad prueba que T 1 + T 2 es continua como ya sabíamos, pero también nos dice que T 1 + T 2 T 1 + T 2. Para la homogeneidad por homotecias se puede razonar de forma análoga, pero es más directo pensar que, para T L(X,Y ) y λ R se tiene: λt = sup { λt (x) : x X, x = 1 } = sup { λ T (x) : : x X, x = 1 } = λ T Finalmente es obvio que de T = 0 se deduce T = 0.

Aplicaciones Lineales y Multilineales Continuas

Aplicaciones Lineales y Multilineales Continuas Capítulo 4 Aplicaciones Lineales y Multilineales Continuas La conexión entre las estructuras vectorial y topológica de los espacios normados, se pone claramente de manifiesto en el estudio de las aplicaciones

Más detalles

1. Producto escalar, métrica y norma asociada

1. Producto escalar, métrica y norma asociada 1. asociada Consideramos el espacio vectorial R n sobre el cuerpo R; escribimos los vectores o puntos de R n, indistintamente, como x = (x 1,..., x n ) = n x i e i i=1 donde e i son los vectores de la

Más detalles

Parte I. Iniciación a los Espacios Normados

Parte I. Iniciación a los Espacios Normados Parte I Iniciación a los Espacios Normados Capítulo 1 Espacios Normados Conceptos básicos Sea E un espacio vectorial sobre un cuerpo K = R ó C indistintamente. Una norma sobre E es una aplicación de E

Más detalles

Caracterización de los campos conservativos

Caracterización de los campos conservativos Lección 5 Caracterización de los campos conservativos 5.1. Motivación y enunciado del teorema Recordemos el cálculo de la integral de línea de un gradiente, hecho en la lección anterior. Si f : Ω R es

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

Variedades Diferenciables. Extremos Condicionados

Variedades Diferenciables. Extremos Condicionados Capítulo 16 Variedades Diferenciables. Extremos Condicionados Vamos a completar lo visto en los capítulos anteriores sobre el teorema de las Funciones Implícitas y Funciones Inversas con un tema de iniciación

Más detalles

Apuntes de Matemática Discreta 9. Funciones

Apuntes de Matemática Discreta 9. Funciones Apuntes de Matemática Discreta 9. Funciones Francisco José González Gutiérrez Cádiz, Octubre de 004 Universidad de Cádiz Departamento de Matemáticas ii Lección 9 Funciones Contenido 9.1 Definiciones y

Más detalles

(x + y) + z = x + (y + z), x, y, z R N.

(x + y) + z = x + (y + z), x, y, z R N. TEMA 1: EL ESPACIO R N ÍNDICE 1. El espacio vectorial R N 1 2. El producto escalar euclídeo 2 3. Norma y distancia en R N 4 4. Ángulo y ortogonalidad en R N 6 5. Topología en R N 7 6. Nociones topológicas

Más detalles

Espacios de Hilbert. 10.1. Producto Escalar y Norma. Tema 10

Espacios de Hilbert. 10.1. Producto Escalar y Norma. Tema 10 Tema 10 Espacios de Hilbert Vamos a desarrollar en lo que sigue los resultados básicos acerca de los espacios de Hilbert, un tipo muy particular de espacios de Banach con propiedades especiales que están

Más detalles

Subconjuntos destacados en la

Subconjuntos destacados en la 2 Subconjuntos destacados en la topología métrica En este capítulo, introducimos una serie de conceptos ligados a los puntos y a conjuntos que por el importante papel que juegan en la topología métrica,

Más detalles

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1 . ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Concepto de aplicación lineal T : V W Definición: Si V y W son espacios vectoriales con los mismos escalares (por ejemplo, ambos espacios vectoriales reales o ambos espacios vectoriales

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

Semana 08 [1/15] Axioma del Supremo. April 18, 2007. Axioma del Supremo

Semana 08 [1/15] Axioma del Supremo. April 18, 2007. Axioma del Supremo Semana 08 [1/15] April 18, 2007 Acotamiento de conjuntos Semana 08 [2/15] Cota Superior e Inferior Antes de presentarles el axioma del supremo, axioma de los números reales, debemos estudiar una serie

Más detalles

Análisis III. Joaquín M. Ortega Aramburu

Análisis III. Joaquín M. Ortega Aramburu Análisis III Joaquín M. Ortega Aramburu Septiembre de 1999 Actualizado en julio de 2001 2 Índice General 1 Continuidad en el espacio euclídeo 5 1.1 El espacio euclídeo R n...............................

Más detalles

Espacios generados, dependencia lineal y bases

Espacios generados, dependencia lineal y bases Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................

Más detalles

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR} Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar

Más detalles

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos

Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Apuntes de Matemática Discreta 1. Conjuntos y Subconjuntos Francisco José González Gutiérrez Cádiz, Octubre de 2004 Universidad de Cádiz Departamento de Matemáticas ii Lección 1 Conjuntos y Subconjuntos

Más detalles

Teorema de Green. 6.1. Curvas de Jordan

Teorema de Green. 6.1. Curvas de Jordan Lección 6 Teorema de Green En la lección anterior, previa caracterización de los campos conservativos, hemos visto que un campo irrotacional puede no ser conservativo. Tenemos por tanto una condición fácil

Más detalles

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

Diferenciabilidad. Definición 1 (Función diferenciable). Cálculo. Segundo parcial. Curso 2004-2005

Diferenciabilidad. Definición 1 (Función diferenciable). Cálculo. Segundo parcial. Curso 2004-2005 Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 2004-2005 Diferenciabilidad. 1. Definición de función diferenciable Después del estudio de los ites de funciones

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

DESIGUALDADES E INECUACIONES

DESIGUALDADES E INECUACIONES DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia

Más detalles

CAPÍTULO II. 4 El grupo afín

CAPÍTULO II. 4 El grupo afín CAPÍTULO II 4 El grupo afín En geometría clásica, antes de la aparición de los espacios vectoriales, se hablaba de puntos en lugar de vectores. Para nosotros serán términos sinónimos salvo que, cuando

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

Escenas de episodios anteriores

Escenas de episodios anteriores Clase 16/10/2013 Tomado y editado de los apuntes de Pedro Sánchez Terraf Escenas de episodios anteriores objetivo: estudiar formalmente el concepto de demostración matemática. caso de estudio: lenguaje

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1 1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1.1. ESPACIOS VECTORIALES 1. Analizar cuáles de los siguientes subconjuntos de R 3 son subespacios vectoriales. a) A = {(2x, x, 7x)/x R} El conjunto A es una

Más detalles

1. El teorema de la función implícita para dos y tres variables.

1. El teorema de la función implícita para dos y tres variables. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Aplicaciones de la derivación parcial.. El teorema de la función implícita para dos tres variables. Una ecuación con dos incógnitas. Sea f :( x, ) U f(

Más detalles

Tema 3. Problemas de valores iniciales. 3.1. Teoremas de existencia y unicidad

Tema 3. Problemas de valores iniciales. 3.1. Teoremas de existencia y unicidad Tema 3 Problemas de valores iniciales 3.1. Teoremas de existencia y unicidad Estudiaremos las soluciones aproximadas y su error para funciones escalares, sin que ésto no pueda extenderse para funciones

Más detalles

4 APLICACIONES LINEALES. DIAGONALIZACIÓN

4 APLICACIONES LINEALES. DIAGONALIZACIÓN 4 APLICACIONES LINEALES DIAGONALIZACIÓN DE MATRICES En ocasiones, y con objeto de simplificar ciertos cálculos, es conveniente poder transformar una matriz en otra matriz lo más sencilla posible Esto nos

Más detalles

March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO

March 25, 2010 CAPÍTULO 2: LÍMITES Y CONTINUIDAD DE FUNCIONES EN EL ESPACIO EUCLÍDEO March 25, 2010 CAPÍTULO 2: LÍMITE Y CONTINUIDAD DE FUNCIONE EN EL EPACIO EUCLÍDEO 1. Producto Escalar en R n Definición 1.1. Dado x = (x 1,..., x n ), y = (y 1,..., y n ) R n, su producto escalar está

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONTINUAS. La mayor parte de las funciones que manejamos, a nivel elemental, presentan en sus gráficas una propiedad característica que es la continuidad. La continuidad de una función definida

Más detalles

Campos conservativos. f(x) = f (x) = ( f x 1

Campos conservativos. f(x) = f (x) = ( f x 1 Capítulo 1 Campos conservativos En este capítulo continuaremos estudiando las integrales de linea, concentrándonos en la siguiente pregunta: bajo qué circunstancias la integral de linea de un campo vectorial

Más detalles

Listas de vectores y conjuntos de vectores

Listas de vectores y conjuntos de vectores Listas de vectores y conjuntos de vectores La explicación de los temas Dependencia lineal y Bases en el curso de Álgebra Lineal se puede basar en uno de los siguientes dos conceptos (o en ambos): ) listas

Más detalles

Aplicaciones abiertas y cerradas

Aplicaciones abiertas y cerradas 44 3. POSICIÓN DE UN PUNTO CON RESPECTO A UN CONJUNTO Tema 7. Aplicaciones abiertas y cerradas Hasta ahora nos hemos centrado en propiedades de puntos con respecto a conjuntos, y las únicas propiedades

Más detalles

1. Funciones de varias variables: representaciones gráficas, límites y continuidad.

1. Funciones de varias variables: representaciones gráficas, límites y continuidad. GRADO DE INGENIERÍA AEROESPACIAL. CURSO 0.. Funciones de varias variables: representaciones gráficas, límites y continuidad. En el análisis de los problemas de la ciencia y de la técnica, las cantidades

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Tema 3 Aplicaciones Lineales 3.1 Introducción Se presentan en este tema las aplicaciones entre espacios vectoriales, particularmente las aplicaciones lineales, que de una manera informal pueden definirse

Más detalles

La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx

La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx La nueva criba de Eratóstenes Efraín Soto Apolinar 1 F.I.M.E. U.A.N.L. San Nicolás, N.L. México. efrain@yalma.fime.uanl.mx Resumen Se dan algunas definiciones básicas relacionadas con la divisibilidad

Más detalles

Divisibilidad y números primos

Divisibilidad y números primos Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES 1 1. ESPACIOS VECTORIALES 1.1. ESPACIOS VECTORIALES. SUBESPACIOS VECTORIALES Denición 1. (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo K, o K-espacio vectorial,

Más detalles

Ejemplos y problemas resueltos de análisis complejo (2014-15)

Ejemplos y problemas resueltos de análisis complejo (2014-15) Variable Compleja I (3 o de Matemáticas y 4 o de Doble Titulación) Ejemplos y problemas resueltos de análisis complejo (04-5) Teoremas de Cauchy En estos apuntes, la palabra dominio significa, como es

Más detalles

Un problema sobre repetidas apuestas al azar

Un problema sobre repetidas apuestas al azar Un problema sobre repetidas apuestas al azar Eleonora Catsigeras 1 10 de marzo de 2003. Resumen En estas notas se da el enunciado y una demostración de un conocido resultado sobre la probabilidad de éxito

Más detalles

El Teorema de existencia y unicidad de Picard

El Teorema de existencia y unicidad de Picard Tema 2 El Teorema de existencia y unicidad de Picard 1 Formulación integral del Problema de Cauchy El objetivo del presente Tema, y del siguiente, es analizar el Problema de Cauchy para un SDO de primer

Más detalles

Tema 3. Aplicaciones lineales. 3.1. Introducción

Tema 3. Aplicaciones lineales. 3.1. Introducción Tema 3 Aplicaciones lineales 3.1. Introducción Una vez que sabemos lo que es un espacio vectorial y un subespacio, vamos a estudiar en este tema un tipo especial de funciones (a las que llamaremos aplicaciones

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Primeras definiciones Una aplicación lineal de un K-ev de salida E a un K-ev de llegada F es una aplicación f : E F tal que f(u + v) = f(u) + f(v) para todos u v E f(λ u) = λ f(u)

Más detalles

EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores

EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores EJERCICIOS DE MATEMÁTICAS I HOJA 4 Ejercicio 1. Se consideran los vectores u 1 = (1, 1, 0, 1), u 2 = (0, 2, 1, 0), u 3 = ( 1, 1, 1, 1), u 4 = (2, 2, 1, 0) de R 4. Expresa, si es posible, los vectores u

Más detalles

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES CAPÍTULO II. CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES SECCIONES 1. Dominios y curvas de nivel. 2. Cálculo de ites. 3. Continuidad. 55 1. DOMINIOS Y CURVAS DE NIVEL. Muchos problemas geométricos y físicos

Más detalles

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor

Tema 5. Aproximación funcional local: Polinomio de Taylor. 5.1 Polinomio de Taylor Tema 5 Aproximación funcional local: Polinomio de Taylor Teoría Los polinomios son las funciones reales más fáciles de evaluar; por esta razón, cuando una función resulta difícil de evaluar con exactitud,

Más detalles

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n. Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular

Más detalles

Descomposición factorial de polinomios

Descomposición factorial de polinomios Descomposición factorial de polinomios Contenidos del tema Introducción Sacar factor común Productos notables Fórmula de la ecuación de segundo grado Método de Ruffini y Teorema del Resto Combinación de

Más detalles

Bienvenidos a los concertos para violin entre el álgebra y la Geometría.

Bienvenidos a los concertos para violin entre el álgebra y la Geometría. Bienvenidos a los concertos para violin entre el álgebra y la Geometría. Capitulo 17 Atención Esta guía no pretender ser una sustituta del libro de texto del curso. Lo que busca es presentar las herramientas

Más detalles

Tema 3: Producto escalar

Tema 3: Producto escalar Tema 3: Producto escalar 1 Definición de producto escalar Un producto escalar en un R-espacio vectorial V es una operación en la que se operan vectores y el resultado es un número real, y que verifica

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

1 Espacios y subespacios vectoriales.

1 Espacios y subespacios vectoriales. UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto

Más detalles

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones:

Para representar los conjuntos, los elementos y la relación de pertenencia, mediante símbolos, tendremos en cuenta las siguientes convenciones: 2. Conjuntos 2.1 Introducción El concepto de conjunto, de singular importancia en la ciencia matemática y objeto de estudio de una de sus disciplinas más recientes, está presente, aunque en forma informal,

Más detalles

Tema 10: Límites y continuidad de funciones de varias variables

Tema 10: Límites y continuidad de funciones de varias variables Tema 10: Límites y continuidad de funciones de varias variables 1 Funciones de varias variables Definición 1.1 Llamaremos función real de varias variables atodafunciónf : R n R. Y llamaremos función vectorial

Más detalles

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES

21.1.2. TEOREMA DE DETERMINACIÓN DE APLICACIONES LINEALES Aplicaciones lineales. Matriz de una aplicación lineal 2 2. APLICACIONES LINEALES. MATRIZ DE UNA APLICACIÓN LINEAL El efecto que produce el cambio de coordenadas sobre una imagen situada en el plano sugiere

Más detalles

1. Números Reales 1.1 Clasificación y propiedades

1. Números Reales 1.1 Clasificación y propiedades 1. Números Reales 1.1 Clasificación y propiedades 1.1.1 Definición Número real, cualquier número racional o irracional. Los números reales pueden expresarse en forma decimal mediante un número entero,

Más detalles

ILUSTRACIÓN DEL PROBLEMA DE LA IDENTIFICABILIDAD EN LOS MODELOS MULTIECUACIONALES

ILUSTRACIÓN DEL PROBLEMA DE LA IDENTIFICABILIDAD EN LOS MODELOS MULTIECUACIONALES ILUSTRACIÓN DEL PROBLEMA DE LA IDENTIFICABILIDAD EN LOS MODELOS MULTIECUACIONALES El objetivo de este documento es ilustrar matemáticamente, y con un caso concreto, el problema de la identificación en

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

Espacios vectoriales. Bases. Coordenadas

Espacios vectoriales. Bases. Coordenadas Capítulo 5 Espacios vectoriales. Bases. Coordenadas OPERACIONES ENR n Recordemos que el producto cartesiano de dos conjuntos A y B consiste en los pares ordenados (a,b) tales que a A y b B. Cuando consideramos

Más detalles

1. Ecuaciones no lineales

1. Ecuaciones no lineales 1. Ecuaciones no lineales 1.1 Ejercicios resueltos Ejercicio 1.1 Dada la ecuación xe x 1 = 0, se pide: a) Estudiar gráficamente sus raíces reales y acotarlas. b) Aplicar el método de la bisección y acotar

Más detalles

NÚMERO REAL. 1. Axiomas de cuerpo y propiedades operatorias. Axioma 2 La suma es asociativa:

NÚMERO REAL. 1. Axiomas de cuerpo y propiedades operatorias. Axioma 2 La suma es asociativa: NÚMERO REAL El conjunto de los números racionales se nos hace insuficiente a la hora de representar con exactitud magnitudes tan reales como la diagonal de un cuadrado cuyo lado mida 1, por ejemplo, o

Más detalles

Diagonalización de matrices

Diagonalización de matrices diagonalizacion.nb Diagonalización de matrices Práctica de Álgebra Lineal, E.U.A.T., Grupos ºA y ºB, 2005 Algo de teoría Qué es diagonalizar una matriz? Para estudiar una matriz suele ser conveniente expresarla

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

TEMA 2: FUNCIONES CONTINUAS DE VARIAS VARIABLES

TEMA 2: FUNCIONES CONTINUAS DE VARIAS VARIABLES TEMA 2: FUNCIONES CONTINUAS DE VARIAS VARIABLES ÍNDICE 1. Funciones de varias variables 1 2. Continuidad 2 3. Continuidad y composición de funciones 4 4. Continuidad y operaciones algebraicas 4 5. Carácter

Más detalles

VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes.

VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes. VECTORES EN EL ESPACIO. Determina el valor de t para que los vectores de coordenadas (,, t), 0, t, t) y(, 2, t) sean linealmente dependientes. Si son linealmente dependientes, uno de ellos, se podrá expresar

Más detalles

FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES

FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES Eleonora Catsigeras 6 de mayo de 997 Notas para el curso de Análisis Matemático II Resumen Se enuncia sin demostración

Más detalles

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones

Programa para el Mejoramiento de la Enseñanza de la Matemática en ANEP Proyecto: Análisis, Reflexión y Producción. Fracciones Fracciones. Las fracciones y los números Racionales Las fracciones se utilizan cotidianamente en contextos relacionados con la medida, el reparto o como forma de relacionar dos cantidades. Tenemos entonces

Más detalles

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES )

UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) UNIVERSIDAD CARLOS III DE MADRID MATEMÁTICAS PARA LA ECONOMÍA II PROBLEMAS (SOLUCIONES ) HOJA : Límites continuidad de funciones en R n. -. Dibuja cada uno de los subconjuntos de R siguientes. Dibuja su

Más detalles

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 9. La aplicación de Poincaré

ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 9. La aplicación de Poincaré ECUACIONES DIFERENCIALES ORDINARIAS. HOJA 9. SISTEMAS PLANOS. TEOREMA DE POINCARÉ-BENDIXSON. La aplicación de Poincaré Recordemos que un subconjunto H de R n es una subvariedad de codimensión uno (o una

Más detalles

Profr. Efraín Soto Apolinar. Función Inversa

Profr. Efraín Soto Apolinar. Función Inversa Función Inversa Una función es una relación entre dos variables, de manera que para cada valor de la variable independiente eiste a lo más un único valor asignado a la variable independiente por la función.

Más detalles

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases. Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal

Más detalles

Funciones de varias variables

Funciones de varias variables Funciones de varias variables Derivadas parciales. El concepto de función derivable no se puede extender de una forma sencilla para funciones de varias variables. Aquí se emplea el concepto de diferencial

Más detalles

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial.

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial. Espacios vectoriales Espacios y subespacios R n es el conjunto de todos los vectores columna con n componentes. Además R n es un espacio vectorial. Ejemplo Dados dos vectores de R por ejemplo u = 5 v =

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

Anexo 1: Demostraciones

Anexo 1: Demostraciones 75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b

Profr. Efraín Soto Apolinar. La función lineal. y = a 0 + a 1 x. y = m x + b La función lineal Una función polinomial de grado uno tiene la forma: y = a 0 + a 1 x El semestre pasado estudiamos la ecuación de la recta. y = m x + b En la notación de funciones polinomiales, el coeficiente

Más detalles

Clasificación de métricas.

Clasificación de métricas. Clasificación de métricas. 1. El problema de clasificación. Como bien sabemos, el par formado por una métrica T 2 (esto es, un tensor 2-covariante simétrico) sobre un espacio vectorial E, (E, T 2 ), constituye

Más detalles

Números Reales. MathCon c 2007-2009

Números Reales. MathCon c 2007-2009 Números Reales z x y MathCon c 2007-2009 Contenido 1. Introducción 2 1.1. Propiedades básicas de los números naturales....................... 2 1.2. Propiedades básicas de los números enteros........................

Más detalles

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES

Tema 07. LÍMITES Y CONTINUIDAD DE FUNCIONES Tema 07 LÍMITES Y CONTINUIDAD DE FUNCIONES Límite de una función en un punto Vamos a estudiar el comportamiento de las funciones f ( ) g ( ) ENT[ ] h ( ) i ( ) en el punto Para ello, damos a valores próimos

Más detalles

Cap. 24 La Ley de Gauss

Cap. 24 La Ley de Gauss Cap. 24 La Ley de Gauss Una misma ley física enunciada desde diferentes puntos de vista Coulomb Gauss Son equivalentes Pero ambas tienen situaciones para las cuales son superiores que la otra Aquí hay

Más detalles

Cálculo Simbólico también es posible con GeoGebra

Cálculo Simbólico también es posible con GeoGebra www.fisem.org/web/union ISSN: 1815-0640 Número 34. Junio de 2013 páginas 151-167 Coordinado por Agustín Carrillo de Albornoz Cálculo Simbólico también es posible con GeoGebra Antes de exponer las posibilidades

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta: Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.

Más detalles

Transformaciones canónicas

Transformaciones canónicas apítulo 29 Transformaciones canónicas 29.1 Introducción onsideremos una transformación arbitraria de las coordenadas en el espacio de las fases de dimensión 2(3N k) (con el tiempo como un parámetro) Q

Más detalles

Tema 10: Funciones de varias variables. Funciones vectoriales. Límites y continuidad

Tema 10: Funciones de varias variables. Funciones vectoriales. Límites y continuidad Tema 10: Funciones de varias variables. Funciones vectoriales. Límites y continuidad 1 Funciones de varias variables Observación 1.1 Conviene repasar,enestepunto,lodadoeneltema8paratopología en R n : bolas,

Más detalles

Números y desigualdades

Números y desigualdades 1/59 Números y desigualdades 2/59 Distintas clases de números 3/59 Números naturales Los números naturales 1,2,3,.... El conjunto de todos ellos se representa por N. 4/59 Números enteros Los números enteros...,-2,-1,0,1,2,...

Más detalles

Lección 24: Lenguaje algebraico y sustituciones

Lección 24: Lenguaje algebraico y sustituciones LECCIÓN Lección : Lenguaje algebraico y sustituciones En lecciones anteriores usted ya trabajó con ecuaciones. Las ecuaciones expresan una igualdad entre ciertas relaciones numéricas en las que se desconoce

Más detalles

Universidad Católica del Maule. Fundamentos de Computación Especificación de tipos de datos ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS

Universidad Católica del Maule. Fundamentos de Computación Especificación de tipos de datos ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS Especificación algebraica ESPECIFICACIÓN ALGEBRAICA DE TIPOS DE DATOS Un tipo abstracto de datos se determina por las operaciones asociadas, incluyendo constantes que se consideran como operaciones sin

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1.

La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1. LF.3.A1.2-Steve Cole-Determining Domain and Ranges- La Lección de hoy es sobre determinar el Dominio y el Rango. El cuál es la expectativa para el aprendizaje del estudiante LF.3.A1.2 Qué es Dominio? Es

Más detalles

1 El espacio vectorial R n.

1 El espacio vectorial R n. Manuel Gutiérrez Departamento de Álgebra, Geometría y Topología Universidad de Málaga February 26, 2009 1 El espacio vectorial R n. La estructura de espacio vectorial es posiblemente la estructura más

Más detalles