EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores

Save this PDF as:
Tamaño: px
Comenzar la demostración a partir de la página:

Download "EJERCICIOS DE MATEMÁTICAS I HOJA 4. Ejercicio 1. Se consideran los vectores"

Transcripción

1 EJERCICIOS DE MATEMÁTICAS I HOJA 4 Ejercicio 1. Se consideran los vectores u 1 = (1, 1, 0, 1), u 2 = (0, 2, 1, 0), u 3 = ( 1, 1, 1, 1), u 4 = (2, 2, 1, 0) de R 4. Expresa, si es posible, los vectores u = (1, 1, 1, 3) y v = (1, 2, 0, 0) como combinación lineal de los u i. A la vista de los resultados que has obtenido, ¾son los u i sistema generador de R 4? ¾Son linealmente independientes? Ejercicio 2. Se consideran los vectores u 1 = (2, 0, 1, 1), u 2 = (0, 1, 2, 1), u 3 = (1, 1, 0, 2) de R 4. ¾Pueden formar sistema generador de R 4? Encuentra, si es posible, un valor de α para que el vector u = (3, 0, 0, α) sea combinación lineal de los u i. Encuentra, si es posible, un valor de β para que el vector v = (0, β, β, 2) sea combinación lineal de los u i. Ejercicio 3. Dados los vectores u 1 = (1, 2, 1), u 2 = ( 1, 0, 2), u 3 = (0, 2, 1), estudiar si son linealmente independientes. Si añadimos un vector más a la colección anterior, ¾seguirán siendo linealmente independientes? ¾Y si quitamos un vector en lugar de añadirlo? Ejercicio 4. Determinar para qué valor de α son linealmente dependientes los siguientes vectores: u 1 = (0, 1, α, 0), u 2 = ( 1, 0, 1, α), u 3 = (1, 0, α, 1), u 4 = ( 1, 1, 0, 1). ¾Para qué valores de α forman base de R 4 los vectores u i? Ejercicio 5. Para cada una de los siguiente subespacios determina una base, su dimensión, y unas ecuaciones implícitas: 1) H 1 := L((2, 1, 0, 2), ( 1, 2, 0, 1)), 2) H 2 := L((0, 1, 2, 1), ( 1, 2, 1, 0), ( 1, 4, 3, 2)), 3) H 3 := L((2, 1, 0), ( 1, 2, 1)). Responde además las siguientes cuestiones. i) ¾Pertenece el vector u = (1, 1, 3, 1) a H 1 o a H 2? ii) ¾Y el vector v = (0, 1, 2) a H 3? iii) Calcula, si es posible, para qué valores de α pertence w = (α, 1, 1) a H 3. iv) Pon ejemplos de vectores que no pertenezcan a H 1, H 2 y H 3. v) Pon ejemplos de vectores que sí pertenezcan a H 1, H 2 y H 3. Ejercicio 6. Encuentra bases y ecuaciones implícitas de los siguientes subespacios. 1) H 1 = L((1, 2, 1)), 2) H 2 = L(( 1, 0, 2, 2), (1, 1, 0, 1), ( 1, 2, 6, 8)), 3) H 3 = L((1, 0), (0, 1)), 4) H 4 = L((2, 1, 2, 1), ( 1, 0, 2, 1), (3, 2, 6, 3)). 1

2 2 Ejercicio 7. Dados unos vectores u 1, u 2,..., u m de R n, demuestra que puede escribirse el vector 0 como combinación lineal suya. Teniendo esto en cuenta, responde a la siguiente pregunta: dada una colección de vectores de R n entre los cuales está el vector 0, ¾pueden ser linealmente independientes? Ejercicio 8. Dados los vectores u 1 = (1, 2, 1, 0), u 2 = ( 1, 0, 1, 0), u 3 = (0, 2, 1, 1), comprueba que son linealmente independientes. Responde además las siguientes cuestiones. i) ¾Puedes añadir un vector a los u i de modo que sigan siendo linealmente independientes? ii) ¾Puedes añadir uno (o más) vectores a los u i de modo que sean base de R 4? iii) ¾Puedes encontrar un vector que dependa linealmente de los u i? iv) ¾Puedes añadir dos vectores a los u i de modo que sigan siendo linealmente independientes? Ejercicio 9. La renería HappyOil produce gasolina mezclando tres tipos de petróleo procedentes de Libia, Venezuela y Brasil. La vende en dos tipos de barriles, ambos de 50 litros, pero con distinta proporción de cada tipo de petróleo: Libia Venezuela Brasil Tipo I Tipo II Una gasolinera en España quiere fabricar una mezcla que contenga un 34 % de petróleo procedente de Libia, un 26 % de Venezuela y un 40 % de Brasil. ¾Pueden fabricar esta gasolina a partir de los barriles que produce HappyOil? ¾Y si quieren fabricar una mezcla que contenga un 20 % de petróleo libio, un 20 % venezolano y un 60 % brasileño? Ejercicio 10. Inventa un problema similar al anterior y resuélvelo.

3 3 EJERCICIOS DE MATEMÁTICAS I HOJA 4 SOLUCIONES Ejercicio 1. Para expresar u como combinación lineal de los u i planteamos la ecuación (1, 1, 1, 3) = λ 1 (1, 1, 0, 1) + λ 2 (0, 2, 1, 0) + λ 3 ( 1, 1, 1, 1) + λ 4 (2, 2, 1, 0), que al desarrollar da lugar al sistema de ecuaciones λ 1 λ 3 +2λ 4 = 1 λ 1 +2λ 2 +λ 3 +2λ 4 = 1 λ 2 +λ 3 +λ 4 = 1 λ 1 +λ 3 = 3 Puesto que no sabemos de antemano de qué tipo será este sistema, lo mejor es resolverlo por el método de Gauss. Señalamos los pivotes en negrita: Ya vemos que la cuarta ecuación es redundante y el sistema es compatible indeterminado. El hecho de que sea compatible signica que u efectivamente sí que se puede escribir como combinación lineal de los u i, pero en este caso además nos piden que encontremos valores concretos para los λ i. Es decir, debemos encontrar una solución del sistema, de las innitas que tiene. Si tomamos λ 4 como parámetro, tenemos libertad para elegir su valor nosotros, y podemos escoger por ejemplo λ 4 = 0. Reescribimos el sistema que queda, λ 1 λ 3 = 1 2λ 2 = 2 2λ 3 = 4 y esto se resuelve inmediatamente, dando la solución λ 1 = 1, λ 2 = 1, λ 3 = 2 y, por supuesto, λ 4 = 0. Siempre podemos comprobar la solución. En efecto, (1, 1, 1, 3) = ( 1)(1, 1, 0, 1) + 1(0, 2, 1, 0) 2( 1, 1, 1, 1) + 0(2, 2, 1, 0), y esta es sólo una de las maneras de escribir u como combinación lineal de los u i (si hubiéramos elegido otro valor para λ 4 nos habría salido un resultado distinto, pero también válido). Al intentar repetir el mismo argumento para v observamos que el sistema que resulta es incompatible, y así concluimos que v no es combinación lineal de los u i. En particular los u i no son un sistema generador de R 4, y en consecuencia no pueden ser linealmente independientes (si lo fuesen, formarían base de R 4 y sí que serían sistema generador).

4 4 Ejercicio 2. Los tres vectores dados no pueden ser sistema generador de R 4, porque para ello necesitaríamos cuatro vectores o más. Se nos pide encontrar un valor de α de tal modo que (3, 0, 0, α) sea combinación lineal de los u i. Al igual que en el ejercicio anterior, planteamos la ecuación (3, 0, 0, α) = λ 1 (2, 0, 1, 1) + λ 2 (0, 1, 2, 1) + λ 3 (1, 1, 0, 2) y estamos interesados en saber si tiene solución (ahora no nos interesa calcular una solución concreta, porque no se piden valores concretos para los λ i ). Desarrollándola llegamos al sistema 2λ 1 +λ 3 = 3 λ 2 +λ 3 = 0 λ 1 +2λ 2 = 0 λ 1 +λ 2 +2λ 3 = α cuyas matrices de coecientes y ampliada son A = y A = α Para que este sistema tenga solución debe ser rg(a) = rg(a ). El rango de A se calcula enseguida y resulta ser 3, así que si el rango de A ha de ser 3, entonces det(a ) = 0. Desarrollando, queda α = 3α 3 = 0 α = 1.. Es decir, sólo si α = 1 el vector (3, 0, 0, α) es combinación lineal de los u i. El valor de β se calcula del mismo modo, y sale β = 3. Ejercicio 3. Al hacer el determinante de la matriz formada con los vectores propuestos sale 4, así que efectivamente los vectores forman base de R 3. Si les añadimos un vector más dejarán de ser linealmente independientes (en R 3 no puede haber colecciones de más de tres vectores independientes), y si suprimimos uno de los vectores los dos restantes seguirán siendo, sin duda, independientes. Ejercicio 4. Para que sean dependientes los u i el rango de la matriz formada con ellos debe ser menor que 4 o, lo que en este caso es lo mismo, su determinante debe ser cero. Calculamos α 1 α 0 = 2α + 2 = 0 α = 1. 0 α 1 1 Por tanto para α = 1 los u i son dependientes, y son independientes para α 1. Precisamente para estos últimos valores es cuando forman base de R 4. Ejercicio 5. La manera de resolver este tipo de ejercicios está detallada en la hoja de teoría Subespacios vectoriales, que tenéis subida en Moodle. Por eso damos una versión resumida aquí.

5 5 1) Los dos vectores que generan H 1 son claramente linealmente independientes, así que son base de H 1. La dimensión de H 1 es, por tanto, igual a 2. Para sacar las ecuaciones implícitas utilizamos la condición rg 2 1 x 1 2 y 0 0 z 2 1 t = 2. Como el menor señalado en negrita es distinto de cero, lo que ha de suceder es que los dos menores de orden 3 que se obtienen orlándolo se anulen. Es decir, quedan las ecuaciones 2 1 x 1 2 y 0 0 z = 5z = 0 y 2 1 x 1 2 y 2 1 t = 3x 4y + 5t = 0. Estas dos son las ecuaciones implícitas de H 1. 2) Ahora de los tres vectores que generan H 2 sobra uno; por ejemplo nos quedamos con los dos primeros y descartamos el tercero. Una base de H 2 es entonces {(0, 1, 2, 1), ( 1, 2, 1, 0)}, de manera que dim H 2 = 2. Finalmente, unas ecuaciones implícitas de H 2 son 5x + 2y + z = 0 y 2x y + t = 0. 3) Aquí es de nuevo claro que los dos vectores propuestos son independientes, así que forman base de H 3 y la dimensión de H 3 es 2. En este caso H 3 sólo tiene una ecuación implícita, que es x 2y + 5z = 0. Las cuestiones que se preguntan a continuación son inmediatas utilizando lo que ya hemos calculado: i) El vector (1, 1, 3, 1) pertenece a H 2 porque cumple sus ecuaciones implícitas, pero no a H 1 porque no cumple las suyas (con que no cumpla alguna de las dos es suciente para garantizar que no pertenece). ii) No, porque no cumple la ecuación implícita de H 3. iii) Para que (α, 1, 1) pertenezca a H 3 debe cumplir su ecuación implícita; es decir, α = 0. Por tanto debe ser α = 3. iv) Vectores que no pertenecen a los H i : por ejemplo, (0, 0, 1, 0) no pertenece a ninguno de ellos. v) Vectores que pertenecen a los H i : por ejemplo, el vector nulo pertenece a todos ellos. Ejercicio 6. Procedemos como en el ejercicio anterior. 1) Base {(1, 2, 1)}, ecuaciones implícitas 2x + y = 0 y x + z = 0. 2) Base {( 1, 0, 2, 2), (1, 1, 0, 1)}, ecuaciones implícitas 2x + 2y z = 0 y 2x + 3y t = 0. 3) Base {(1, 0), (0, 1)}, no tiene ecuaciones implícitas. 4) Base {(2, 1, 2, 1), ( 1, 0, 2, 1)}, ecuaciones implícitas 2x 6y z = 0 y x 3y t = 0. Ejercicio 7. El vector 0 se puede escribir como combinación lineal de los u i sin más que elegir todos los escalares iguales a cero: 0 = 0u 1 + 0u u m.

6 6 En consecuencia, si una colección de vectores contiene al cero, no pueden ser linealmente independientes porque al menos uno de ellos (el cero) se obtiene a partir de los restantes. Ejercicio 8. Los u i son independientes porque el rango de la matriz formada con ellos es 3. i) Sí que se les puede añadir un vector preservando su independencia lineal; por ejemplo el (1, 0, 0, 0). ii) Los u i junto con (1, 0, 0, 0) son cuatro vectores independientes de R 4, y por tanto forman base. iii) El (0, 0, 0, 0) depende linealmente de ellos, y hay muchos más. Por ejemplo, también el (1, 2, 1, 0), que no es otro que el propio u 1, o u 1 + u 2 + u 3 = (0, 4, 3, 1), etc. iv) No. Cinco vectores de R 4 nunca pueden ser linealmente independientes. Ejercicio 9. Puesto que este problema se resolvió detalladamente en clase, sólo recordamos los pasos esenciales. Expresamos las mezclas de los tres tipos de petróleo mediante vectores (L, V, B), donde L, V y B son los porcentajes de petróleo libio, venezolano y brasileño respectivamente. Así, los barriles de tipo I vienen expresados por el vector (40, 20, 40) y los de tipo II por el vector (30, 30, 40). Si la gasolinera española desea fabricar la mezcla (34, 26, 40), deberá combinar los barriles de tipo I y tipo II en una proporción desconocida que tendrá que determinar resolviendo la ecuación En forma de sistema, queda (34, 26, 40) = λ 1 (40, 20, 40) + λ 2 (30, 30, 40) λ 2 = 34 20λ 1 +30λ 2 = 26 40λ 1 +40λ 2 = 40 y resulta ser compatible determinado con solución λ 1 = 2 5, λ 2 = 3 5. Estas son, por tanto, las proporciones en las que la gasolinera debe combinar los barriles de tipo I y II para obtener la mezcla que desea. La otra situación que se nos plantea, obtener una mezcla (20, 20, 60), se aborda exactamente igual. La ecuación da lugar al sistema (20, 20, 60) = λ 1 (40, 20, 40) + λ 2 (30, 30, 40) 40λ 1 +30λ 2 = 20 20λ 1 +30λ 2 = 20 40λ 1 +40λ 2 = 60 que ahora resulta ser incompatible. Por tanto no es posible obtener la mezcla de 20 % de petróleo libio, 20 % venezolano y 60 % brasileño a partir de los barriles de tipo I y II.

E 1 E 2 E 2 E 3 E 4 E 5 2E 4

E 1 E 2 E 2 E 3 E 4 E 5 2E 4 Problemas resueltos de Espacios Vectoriales: 1- Para cada uno de los conjuntos de vectores que se dan a continuación estudia si son linealmente independientes, sistema generador o base: a) (2, 1, 1, 1),

Más detalles

Tema 2. Espacios Vectoriales. 2.1. Introducción

Tema 2. Espacios Vectoriales. 2.1. Introducción Tema 2 Espacios Vectoriales 2.1. Introducción Estamos habituados en diferentes cursos a trabajar con el concepto de vector. Concretamente sabemos que un vector es un segmento orientado caracterizado por

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1

Cómo?: Resolviendo el sistema lineal homógeneo que satisfacen las componentes de cualquier vector de S. x4 = x 1 x 3 = x 2 x 1 . ESPACIOS VECTORIALES Consideremos el siguiente subconjunto de R 4 : S = {(x, x 2, x 3, x 4 )/x x 4 = 0 x 2 x 4 = x 3 a. Comprobar que S es subespacio vectorial de R 4. Para demostrar que S es un subespacio

Más detalles

Matrices equivalentes. El método de Gauss

Matrices equivalentes. El método de Gauss Matrices equivalentes. El método de Gauss Dada una matriz A cualquiera decimos que B es equivalente a A si podemos transformar A en B mediante una combinación de las siguientes operaciones: Multiplicar

Más detalles

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS

1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1 1. SOLUCIONES A LOS EJERCICIOS PROPUESTOS 1.1. ESPACIOS VECTORIALES 1. Analizar cuáles de los siguientes subconjuntos de R 3 son subespacios vectoriales. a) A = {(2x, x, 7x)/x R} El conjunto A es una

Más detalles

Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales

Matemáticas I: Hoja 3 Espacios vectoriales y subespacios vectoriales Matemáticas I: Hoa 3 Espacios vectoriales y subespacios vectoriales Eercicio 1. Demostrar que los vectores v 1, v 2, v 3, v 4 expresados en la base canónica forman una base. Dar las coordenadas del vector

Más detalles

(Ec.1) 2α + β = b (Ec.4) (Ec.3)

(Ec.1) 2α + β = b (Ec.4) (Ec.3) Problema 1. Hallar t R para que el vector x = (3, 8, t) pertenezca al subespacio engendrado por los vectores u = (1, 2, 3) y v = (1, 3, 1). Solución del problema 1. x L{ u, v} si, y sólo si, existen α,

Más detalles

Cambio de representaciones para variedades lineales.

Cambio de representaciones para variedades lineales. Cambio de representaciones para variedades lineales 18 de marzo de 2015 ALN IS 5 Una variedad lineal en R n admite dos tipos de representaciones: por un sistema de ecuaciones implícitas por una familia

Más detalles

Tema 3. Espacios vectoriales

Tema 3. Espacios vectoriales Tema 3. Espacios vectoriales Estructura del tema. Definición y propiedades. Ejemplos. Dependencia e independencia lineal. Conceptos de base y dimensión. Coordenadas Subespacios vectoriales. 0.1. Definición

Más detalles

Subespacios vectoriales en R n

Subespacios vectoriales en R n Subespacios vectoriales en R n Víctor Domínguez Octubre 2011 1. Introducción Con estas notas resumimos los conceptos fundamentales del tema 3 que, en pocas palabras, se puede resumir en técnicas de manejo

Más detalles

Ecuaciones de primer grado con dos incógnitas

Ecuaciones de primer grado con dos incógnitas Ecuaciones de primer grado con dos incógnitas Si decimos: "las edades de mis padres suman 120 años", podemos expresar esta frase algebraicamente de la siguiente forma: Entonces, Denominamos x a la edad

Más detalles

VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes.

VECTORES EN EL ESPACIO. 1. Determina el valor de t para que los vectores de coordenadas sean linealmente dependientes. VECTORES EN EL ESPACIO. Determina el valor de t para que los vectores de coordenadas (,, t), 0, t, t) y(, 2, t) sean linealmente dependientes. Si son linealmente dependientes, uno de ellos, se podrá expresar

Más detalles

1 Espacios y subespacios vectoriales.

1 Espacios y subespacios vectoriales. UNIVERSIDAD POLITÉCNICA DE CARTAGENA Departamento de Matemática Aplicada y Estadística Espacios vectoriales y sistemas de ecuaciones 1 Espacios y subespacios vectoriales Definición 1 Sea V un conjunto

Más detalles

Espacios generados, dependencia lineal y bases

Espacios generados, dependencia lineal y bases Espacios generados dependencia lineal y bases Departamento de Matemáticas CCIR/ITESM 14 de enero de 2011 Índice 14.1. Introducción............................................... 1 14.2. Espacio Generado............................................

Más detalles

Diagonalización de matrices

Diagonalización de matrices diagonalizacion.nb Diagonalización de matrices Práctica de Álgebra Lineal, E.U.A.T., Grupos ºA y ºB, 2005 Algo de teoría Qué es diagonalizar una matriz? Para estudiar una matriz suele ser conveniente expresarla

Más detalles

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases.

Tema III. Capítulo 2. Sistemas generadores. Sistemas libres. Bases. Tema III Capítulo 2 Sistemas generadores Sistemas libres Bases Álgebra Lineal I Departamento de Métodos Matemáticos y de Representación UDC 2 Sistemas generadores Sistemas libres Bases 1 Combinación lineal

Más detalles

Selectividad Junio 2008 JUNIO 2008 PRUEBA A

Selectividad Junio 2008 JUNIO 2008 PRUEBA A Selectividad Junio 008 JUNIO 008 PRUEBA A 3 a x + a y =.- Sea el sistema: x + a y = 0 a) En función del número de soluciones, clasifica el sistema para los distintos valores del parámetro a. b) Resuélvelo

Más detalles

3.- DETERMINANTES. a 11 a 22 a 12 a 21

3.- DETERMINANTES. a 11 a 22 a 12 a 21 3.- DETERMINANTES. 3.1. -DEFINICIÓN Dada una matriz cuadrada de orden n, se llama determinante de esta matriz (y se representa por A o deta al polinomio cuyos términos son todos los productos posibles

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Ejercicio Dada la matriz A = 0 2 0 a) Escribir explícitamente la aplicación lineal f : 2 cuya matriz asociada con respecto a las bases canónicas es A. En primer lugar definimos las

Más detalles

Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 2012

Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 2012 Grupo: Matrícula: Nombre: Algebra Matricial y Optimización Segundo Examen Parcial Maestro Eduardo Uresti, Semestre Enero-Mayo 22. (pts) Sea A una matriz cuadrada. Indique validez a cada una de las siguientes

Más detalles

1. ESPACIOS VECTORIALES

1. ESPACIOS VECTORIALES 1 1. ESPACIOS VECTORIALES 1.1. ESPACIOS VECTORIALES. SUBESPACIOS VECTORIALES Denición 1. (Espacio vectorial) Decimos que un conjunto no vacío V es un espacio vectorial sobre un cuerpo K, o K-espacio vectorial,

Más detalles

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR}

Ejemplo 1.2 En el capitulo anterior se demostró que el conjunto. V = IR 2 = {(x, y) : x, y IR} Subespacios Capítulo 1 Definición 1.1 Subespacio Sea H un subconjunto no vacio de un espacio vectorial V K. Si H es un espacio vectorial sobre K bajo las operaciones de suma y multiplicación por escalar

Más detalles

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario)

Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES. ÁLGEBRA PARA INGENIEROS (Solucionario) Capitán de fragata ingeniero AGUSTÍN E. GONZÁLEZ MORALES ÁLGEBRA PARA INGENIEROS (Solucionario) 2 Í N D I C E CAPÍTULO : MATRICES, DETERMINANTES Y SISTEMAS DE ECUACIONES LINEALES CAPÍTULO 2: ESPACIOS VECTORIALES

Más detalles

Tema 3: Producto escalar

Tema 3: Producto escalar Tema 3: Producto escalar 1 Definición de producto escalar Un producto escalar en un R-espacio vectorial V es una operación en la que se operan vectores y el resultado es un número real, y que verifica

Más detalles

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2.

PROBLEMA 1. 1. [1.5 puntos] Obtener la ecuación de la recta tangente en el punto ( 2, 1) a la curva dada implícitamente por y 3 +3y 2 = x 4 3x 2. PROBLEMA. ESCUELA UNIVERSITARIA POLITÉCNICA DE SEVILLA Ingeniería Técnica en Diseño Industrial Fundamentos Matemáticos de la Ingeniería Soluciones correspondientes a los problemas del Primer Parcial 7/8.

Más detalles

4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA

4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA 4º ESO 1. ECUAC. 2º GRADO Y UNA INCÓGNITA Una ecuación con una incógnita es de segundo grado si el exponente de la incógnita es dos. Ecuaciones de segundo grado con una incógnita son: Esta última ecuación

Más detalles

Segundo de Bachillerato Geometría en el espacio

Segundo de Bachillerato Geometría en el espacio Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto

Más detalles

FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES

FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES FORMA CANONICA DE JORDAN Y ECUACIONES DIFERENCIALES LINEALES A COEFICIENTES CONSTANTES Eleonora Catsigeras 6 de mayo de 997 Notas para el curso de Análisis Matemático II Resumen Se enuncia sin demostración

Más detalles

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas.

Definición 1.1.1. Dados dos números naturales m y n, una matriz de orden o dimensión m n es una tabla numérica rectangular con m filas y n columnas. Tema 1 Matrices Estructura del tema. Conceptos básicos y ejemplos Operaciones básicas con matrices Método de Gauss Rango de una matriz Concepto de matriz regular y propiedades Determinante asociado a una

Más detalles

GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008

GEOMETRÍA ANALÍTICA 2º Curso de Bachillerato 22 de mayo de 2008 1. Sean los puntos A (1, 0,-1) y B (,-1, 3). Calcular la distancia del origen de coordenadas a la recta que pasa por A y B. Calculemos la recta que pasa por A y B. El vector AB es (1,-1,4) y por tanto

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Concepto de aplicación lineal T : V W Definición: Si V y W son espacios vectoriales con los mismos escalares (por ejemplo, ambos espacios vectoriales reales o ambos espacios vectoriales

Más detalles

UNIDAD 1. LOS NÚMEROS ENTEROS.

UNIDAD 1. LOS NÚMEROS ENTEROS. UNIDAD 1. LOS NÚMEROS ENTEROS. Al final deberás haber aprendido... Interpretar y expresar números enteros. Representar números enteros en la recta numérica. Comparar y ordenar números enteros. Realizar

Más detalles

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial.

y λu = Idea. Podemos sumar vectores y multiplicar por un escalar. El resultado vuelve a ser un vector Definición de espacio vectorial. Espacios vectoriales Espacios y subespacios R n es el conjunto de todos los vectores columna con n componentes. Además R n es un espacio vectorial. Ejemplo Dados dos vectores de R por ejemplo u = 5 v =

Más detalles

Espacios vectoriales. Bases. Coordenadas

Espacios vectoriales. Bases. Coordenadas Capítulo 5 Espacios vectoriales. Bases. Coordenadas OPERACIONES ENR n Recordemos que el producto cartesiano de dos conjuntos A y B consiste en los pares ordenados (a,b) tales que a A y b B. Cuando consideramos

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES Capítulo 7 SISTEMAS DE ECUACIONES LINEALES 7.1. Introducción Se denomina ecuación lineal a aquella que tiene la forma de un polinomio de primer grado, es decir, las incógnitas no están elevadas a potencias,

Más detalles

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades:

Nota 1. Los determinantes de orden superior a 3 se calculan aplicando las siguientes propiedades: Capítulo 1 DETERMINANTES Definición 1 (Matriz traspuesta) Llamaremos matriz traspuesta de A = (a ij ) a la matriz A t = (a ji ); es decir la matriz que consiste en poner las filas de A como columnas Definición

Más detalles

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta:

Esta es la forma vectorial de la recta. Si desarrollamos las dos posibles ecuaciones, tendremos las ecuaciones paramétricas de la recta: Todo el mundo sabe que dos puntos definen una recta, pero los matemáticos son un poco diferentes y, aún aceptando la máxima universal, ellos prefieren decir que un punto y un vector nos definen una recta.

Más detalles

Anexo 1: Demostraciones

Anexo 1: Demostraciones 75 Matemáticas I : Álgebra Lineal Anexo 1: Demostraciones Espacios vectoriales Demostración de: Propiedades 89 de la página 41 Propiedades 89- Algunas propiedades que se deducen de las anteriores son:

Más detalles

Práctica de Aplicaciones Lineales

Práctica de Aplicaciones Lineales practica5.nb 1 Práctica de Aplicaciones Lineales Aplicaciones lineales y matrices Las matrices también desempeñan un papel muy destacado en el estudio de las aplicaciones lineales entre espacios vectoriales

Más detalles

Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por f(1,3,4)=(2,6,8), f(1,1,1)=(2,6,8) y f(0,1,1)=(0,0,0).

Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por f(1,3,4)=(2,6,8), f(1,1,1)=(2,6,8) y f(0,1,1)=(0,0,0). Problema 1. (4 puntos) Sea f la aplicación lineal de R³ en R³ definida por f(1,3,4)=(2,6,8), f(1,1,1)=(2,6,8) y f(0,1,1)=(0,0,0). a) Demostrad que (1,3,4), (1,1,1) i (0,1,1) son una base de R³. b) Decid

Más detalles

8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES.

8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES. Prácticas de Matemáticas I y Matemáticas II con DERIVE 8. ESPACIOS VECTORIALES Y APLICACIONES LINEALES. 8.. DEPENDENCIA E INDEPENDENCIA LINEAL DE VECTORES. COMBINACIÓN LINEAL. EJEMPLO 8.. Estudiar si el

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES

LÍMITES Y CONTINUIDAD DE FUNCIONES Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos

Más detalles

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente.

ÁLGEBRA DE MATRICES. Al consejero A no le gusta ninguno de sus colegas como presidente. ÁLGEBRA DE MATRICES Página 49 REFLEXIONA Y RESUELVE Elección de presidente Ayudándote de la tabla, estudia detalladamente los resultados de la votación, analiza algunas características de los participantes

Más detalles

1. APLICACIONES LINEALES

1. APLICACIONES LINEALES 1 1. APLICACIONES LINEALES 1. Estudiar si las siguientes aplicaciones son lineales: a) f : R 2 R 3, f(x, y) = (x + y, y, x 2y). Sí es lineal. b) f : R 2 R, f(x, y) = xy. No es lineal. Basta observar que

Más detalles

Aplicaciones lineales

Aplicaciones lineales aplicaciones_lineales.nb Aplicaciones lineales Práctica de Álgebra Lineal, E.U.A.T, Grupos ºA y ºB, 005 Aplicaciones lineales y matrices Hay una relación muy estrecha entre aplicaciones lineales y matrices:

Más detalles

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas.

x 10000 y 8000 x + y 15000 a) La región factible asociada a las restricciones anteriores es la siguiente: Pedro Castro Ortega lasmatematicas. Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Septiembre 2012 - Propuesta A 1. Queremos realizar una inversión en dos tipos

Más detalles

Tema 4: Aplicaciones lineales

Tema 4: Aplicaciones lineales Tema 4: Aplicaciones lineales Definición, primeras propiedades y ejemplos Definición. Sean V y W dos espacios vectoriales sobre un cuerpo K. Una función f : V W se dice que es una aplicación lineal si

Más detalles

DESIGUALDADES E INECUACIONES

DESIGUALDADES E INECUACIONES DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia

Más detalles

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG)

UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) PAEG Junio 0 Propuesta A Matemáticas aplicadas a las CCSS II º Bachillerato UCLM - Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales

Más detalles

Espacios Vectoriales

Espacios Vectoriales Espacios Vectoriales Departamento de Matemáticas, CCIR/ITESM 4 de enero de 2 Índice 3.. Objetivos................................................ 3.2. Motivación...............................................

Más detalles

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n.

1 v 1 v 2. = u 1v 1 + u 2 v 2 +... u n v n. v n. y v = u u = u 2 1 + u2 2 + + u2 n. Ortogonalidad Producto interior Longitud y ortogonalidad Definición Sean u y v vectores de R n Se define el producto escalar o producto interior) de u y v como u v = u T v = u, u,, u n ) Ejemplo Calcular

Más detalles

Estructuras algebraicas

Estructuras algebraicas Tema 2 Estructuras algebraicas básicas 2.1. Operación interna Definición 29. Dados tres conjuntos A, B y C, se llama ley de composición en los conjuntos A y B y resultado en el conjunto C, y se denota

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. Página 9 PRACTICA Sistemas lineales Comprueba si el par (, ) es solución de alguno de los siguientes sistemas: x + y 5 a) x y x y 5 x + y 8 El par (, ) es solución de un sistema si al sustituir x

Más detalles

OPERACIONES ELEMENTALES CON VECTORES

OPERACIONES ELEMENTALES CON VECTORES VECTORES EN 3D (O EN R 3) Presentación: este apunte te servirá para repasar y asimilar que son los vectores en un espacio tridimensional, sólo hablamos de los vectores como se utilizan en Álgebra, para

Más detalles

Valores y vectores propios de una matriz. Juan-Miguel Gracia

Valores y vectores propios de una matriz. Juan-Miguel Gracia Juan-Miguel Gracia Índice 1 Valores propios 2 Polinomio característico 3 Independencia lineal 4 Valores propios simples 5 Diagonalización de matrices 2 / 28 B. Valores y vectores propios Definiciones.-

Más detalles

Aproximación local. Plano tangente. Derivadas parciales.

Aproximación local. Plano tangente. Derivadas parciales. Univ. de Alcalá de Henares Ingeniería de Telecomunicación Cálculo. Segundo parcial. Curso 004-005 Aproximación local. Plano tangente. Derivadas parciales. 1. Plano tangente 1.1. El problema de la aproximación

Más detalles

Tema 3. Aplicaciones lineales. 3.1. Introducción

Tema 3. Aplicaciones lineales. 3.1. Introducción Tema 3 Aplicaciones lineales 3.1. Introducción Una vez que sabemos lo que es un espacio vectorial y un subespacio, vamos a estudiar en este tema un tipo especial de funciones (a las que llamaremos aplicaciones

Más detalles

1. INVERSA DE UNA MATRIZ REGULAR

1. INVERSA DE UNA MATRIZ REGULAR . INVERSA DE UNA MATRIZ REGULAR Calcular la inversa de una matriz regular es un trabajo bastante tedioso. A través de ejemplos se expondrán diferentes técnicas para calcular la matriz inversa de una matriz

Más detalles

Tema 2 : NÚMEROS ENTEROS. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco.

Tema 2 : NÚMEROS ENTEROS. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. 2010 Tema 2 : NÚMEROS ENTEROS. Primero de Educación Secundaria Obligatoria. I.e.s Fuentesaúco. Manuel González de León mgdl 01/01/2010 INDICE: 01. DE LOS NÚMEROS NATURALES A LOS NÚMEROS ENTEROS. 02. VALOR

Más detalles

QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA. La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros.

QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA. La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros. QUÉ ES LA RENTABILIDAD Y CÓMO MEDIRLA La rentabilidad mide la eficiencia con la cual una empresa utiliza sus recursos financieros. Qué significa esto? Decir que una empresa es eficiente es decir que no

Más detalles

Repaso de matrices, determinantes y sistemas de ecuaciones lineales

Repaso de matrices, determinantes y sistemas de ecuaciones lineales Tema 1 Repaso de matrices, determinantes y sistemas de ecuaciones lineales Comenzamos este primer tema con un problema de motivación. Problema: El aire puro está compuesto esencialmente por un 78 por ciento

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

Problemas y Ejercicios Resueltos. Tema 2: Espacios vectoriales.

Problemas y Ejercicios Resueltos. Tema 2: Espacios vectoriales. Problemas y Ejercicios Resueltos. Tema : Espacios vectoriales. Ejercicios 1.- Determinar el valor de x para que el vector (1, x, 5) R 3 pertenezca al subespacio < (1,, 3), (1, 1, 1) >. Solución. (1, x,

Más detalles

Ejercicios resueltos de vectores

Ejercicios resueltos de vectores Ejercicios resueltos de vectores 1) Sean a(2,-1,3), b(3,0,-2) y c(-2,-2,1), realiza las siguientes operaciones con vectores: a) 3a + b - c b) a -2b c) a c 2) Utilizando los vectores del ejercicio 1, comprueba

Más detalles

Características de funciones que son inversas de otras

Características de funciones que son inversas de otras Características de funciones que son inversas de otras Si f es una función inyectiva, llamamos función inversa de f y se representa por f 1 al conjunto. f 1 = a, b b, a f} Es decir, f 1 (x, y) = { x =

Más detalles

Divisibilidad y números primos

Divisibilidad y números primos Divisibilidad y números primos Divisibilidad En muchos problemas es necesario saber si el reparto de varios elementos en diferentes grupos se puede hacer equitativamente, es decir, si el número de elementos

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

Problemas resueltos de combinatoria

Problemas resueltos de combinatoria Problemas resueltos de combinatoria 1) De cuántas formas distintas pueden sentarse seis personas en una fila de butacas? 2) De cuántas formas pueden mezclarse los siete colores del arco iris tomándolos

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple

Más detalles

ESPACIOS VECTORIALES

ESPACIOS VECTORIALES ESPACIOS VECTORIALES Ejercicio 1 En un espacio vectorial {V,k}, el vector v4 tiene por coordenadas (1,2,1) respecto a los vectores { v1, v2, v3 } a) Dése las coordenadas del vector v3 respecto a { v1,

Más detalles

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre

CURSO CERO. Departamento de Matemáticas. Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre CURSO CERO Departamento de Matemáticas Profesor: Raúl Martín Martín Sesiones 18 y 19 de Septiembre Capítulo 1 La demostración matemática Demostración por inducción El razonamiento por inducción es una

Más detalles

elemento neutro y elemento unidad: inversa aditiva (opuesto): para todo λ K 0, existe un único µ K tal que λµ = 1;

elemento neutro y elemento unidad: inversa aditiva (opuesto): para todo λ K 0, existe un único µ K tal que λµ = 1; 3. Espacios Vectoriales 3.1. Definición de espacio vectorial Un cuerpo es una estructura algebraica (K, +, ) formada por un conjunto K no vacio y dos operaciones internas + y que verifican las siguientes

Más detalles

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO) Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto

Más detalles

1.3 Números racionales

1.3 Números racionales 1.3 1.3.1 El concepto de número racional Figura 1.2: Un reparto no equitativo: 12 5 =?. Figura 1.3: Un quinto de la unidad. Con los números naturales y enteros es imposible resolver cuestiones tan simples

Más detalles

Equivalencia financiera

Equivalencia financiera Equivalencia financiera 04 En esta Unidad aprenderás a: 1. Reconocer la equivalencia de capitales en distintas operaciones financieras a interés simple. 2. Calcular a interés simple los vencimientos común

Más detalles

Selectividad Septiembre 2013 OPCIÓN B

Selectividad Septiembre 2013 OPCIÓN B Pruebas de Acceso a las Universidades de Castilla y León ATEÁTICAS APLICADAS A LAS CIENCIAS SOCIALES EJERCICIO Nº páginas Tablas OPTATIVIDAD: EL ALUNO DEBERÁ ESCOGER UNA DE LAS DOS OPCIONES Y DESARROLLAR

Más detalles

Análisis de medidas conjuntas (conjoint analysis)

Análisis de medidas conjuntas (conjoint analysis) Análisis de medidas conuntas (conoint analysis). Introducción Como ya hemos dicho anteriormente, esta técnica de análisis nos sirve para analizar la importancia que dan los consumidores a cada uno de los

Más detalles

Aplicaciones lineales continuas

Aplicaciones lineales continuas Lección 13 Aplicaciones lineales continuas Como preparación para el cálculo diferencial, estudiamos la continuidad de las aplicaciones lineales entre espacios normados. En primer lugar probamos que todas

Más detalles

Espacios vectoriales y aplicaciones lineales

Espacios vectoriales y aplicaciones lineales Capítulo 3 Espacios vectoriales y aplicaciones lineales 3.1 Espacios vectoriales. Aplicaciones lineales Definición 3.1 Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea K un

Más detalles

OPERACIONES EN RÉGIMEN DE COMPUESTA

OPERACIONES EN RÉGIMEN DE COMPUESTA OPERACIONES EN RÉGIMEN DE COMPUESTA Las operaciones en régimen de compuesta se caracterizan porque los intereses, a diferencia de lo que ocurre en régimen de simple, a medida que se van generando pasan

Más detalles

ACCIONES Y OTROS TÍTULOS DE INVERSIÓN

ACCIONES Y OTROS TÍTULOS DE INVERSIÓN ACCIONES Y OTROS TÍTULOS DE INVERSIÓN TASAS EFECTIVAS DE RENDIMIENTO ANUAL Y MENSUAL: Es aquélla que se emplea en la compraventa de algunos valores en el Mercado Bursátil o Bolsa de Valores. Estas tasas

Más detalles

Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II

Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Soluciones de los ejercicios de Selectividad sobre Matrices y Sistemas de Ecuaciones Lineales de Matemáticas Aplicadas a las Ciencias Sociales II Antonio Francisco Roldán López de Hierro * Convocatoria

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Aplicaciones Lineales Primeras definiciones Una aplicación lineal de un K-ev de salida E a un K-ev de llegada F es una aplicación f : E F tal que f(u + v) = f(u) + f(v) para todos u v E f(λ u) = λ f(u)

Más detalles

VII. Estructuras Algebraicas

VII. Estructuras Algebraicas VII. Estructuras Algebraicas Objetivo Se analizarán las operaciones binarias y sus propiedades dentro de una estructura algebraica. Definición de operación binaria Operaciones como la suma, resta, multiplicación

Más detalles

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B

Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B Pruebas de Acceso a Enseñanzas Universitarias Oficiales de Grado (PAEG) Matemáticas aplicadas a las Ciencias Sociales II - Junio 2012 - Propuesta B 1. Una empresa tiene 3000 bolsas de ajo morado de Las

Más detalles

1. El teorema de la función implícita para dos y tres variables.

1. El teorema de la función implícita para dos y tres variables. GRADO DE INGENIERÍA AEROESPACIAL. CURSO. Lección. Aplicaciones de la derivación parcial.. El teorema de la función implícita para dos tres variables. Una ecuación con dos incógnitas. Sea f :( x, ) U f(

Más detalles

4.- Para los siguientes conjuntos de vectores, probar si son o no subespacios vectoriales de R 4 : 2d + 1 : b, d reales. d

4.- Para los siguientes conjuntos de vectores, probar si son o no subespacios vectoriales de R 4 : 2d + 1 : b, d reales. d GRADO EN I. TELEMÁTICA. HOJA : ESPACIOS VECTORIALES. ESPACIOS NULO Y COLUMNA.- Sea W el conjunto de todos los vectores de R de la forma subespacio de R. s + t s t s t t, con s, t R. Probar que W es un.-

Más detalles

EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN

EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN EJERCICIOS DE REPASO SOBRE DERIVABILIDAD III. PROBLEMAS DE OPTIMIZACIÓN Una de las aplicaciones más comunes de los conceptos relacionados con la derivada de una función son los problemas de optimización.

Más detalles

SISTEMAS DE ECUACIONES LINEALES

SISTEMAS DE ECUACIONES LINEALES SISTEMAS DE ECUACIONES LINEALES INTRODUCCIÓN En el presente documento se explican detalladamente dos importantes temas: 1. Descomposición LU. 2. Método de Gauss-Seidel. Se trata de dos importantes herramientas

Más detalles

1. Cambios de base en R n.

1. Cambios de base en R n. er Curso de Ingeniero de Telecomunicación. Álgebra. Curso 8-9. Departamento de Matemática Aplicada II. Universidad de Sevilla. Tema 5. Cambios de Base. Aplicaciones Lineales. Teoría y Ejercicios Resueltos..

Más detalles

UNIDAD 4 Sistemas de ecuaciones lineales... 84 Introducción... 84 4.1.- Sistemas de ecuaciones lineales con dos incógnitas... 84 4.2.

UNIDAD 4 Sistemas de ecuaciones lineales... 84 Introducción... 84 4.1.- Sistemas de ecuaciones lineales con dos incógnitas... 84 4.2. FACULTAD DE INGENIERÍA - UNSJ Unidad : Sistemas de Ecuaciones Lineales UNIDAD Sistemas de ecuaciones lineales... 8 Introducción... 8.1.- Sistemas de ecuaciones lineales con dos incógnitas... 8..- Resolución

Más detalles

ESPACIO VECTORIAL ESPACIO VECTORIAL SUBESPACIO VECTORIAL BASE Y DIMENSIÓN N DE UN

ESPACIO VECTORIAL ESPACIO VECTORIAL SUBESPACIO VECTORIAL BASE Y DIMENSIÓN N DE UN Tema 5.- ESPACIOS VECTORIALES ESPACIO VECTORIAL SUBESPACIO VECTORIAL BASE Y DIMENSIÓN N DE UN ESPACIO VECTORIAL Fundamentos Matemáticosde la Ingeniería 1 Aunque históricamente el primer trabajo de Álgebra

Más detalles

2. Aritmética modular Ejercicios resueltos

2. Aritmética modular Ejercicios resueltos 2. Aritmética modular Ejercicios resueltos Ejercicio 2.1 Probar, mediante congruencias, que 3 2n+5 + 2 4n+1 es divisible por 7 cualquiera que sea el entero n 1. Trabajando módulo 7 se tiene que 3 2n+5

Más detalles

Aplicaciones Lineales

Aplicaciones Lineales Tema 3 Aplicaciones Lineales 3.1 Introducción Se presentan en este tema las aplicaciones entre espacios vectoriales, particularmente las aplicaciones lineales, que de una manera informal pueden definirse

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente.

De dos incógnitas. Por ejemplo, x + y 3 = 4. De tres incógnitas. Por ejemplo, x + y + 2z = 4. Y así sucesivamente. 3 Ecuaciones 17 3 Ecuaciones Una ecuación es una igualdad en la que aparecen ligados, mediante operaciones algebraicas, números y letras Las letras que aparecen en una ecuación se llaman incógnitas Existen

Más detalles

Análisis de los datos

Análisis de los datos Universidad Complutense de Madrid CURSOS DE FORMACIÓN EN INFORMÁTICA Análisis de los datos Hojas de cálculo Tema 6 Análisis de los datos Una de las capacidades más interesantes de Excel es la actualización

Más detalles

Espacios vectoriales y Aplicaciones lineales

Espacios vectoriales y Aplicaciones lineales Espacios vectoriales y Aplicaciones lineales Espacios vectoriales. Subespacios vectoriales Espacios vectoriales Definición Sea V un conjunto dotado de una operación interna + que llamaremos suma, y sea

Más detalles

1. (2 puntos) En la V Caminata Madrileño Manchega, los participantes caminan de Madrid

1. (2 puntos) En la V Caminata Madrileño Manchega, los participantes caminan de Madrid Matemática Discreta Segundo de Ingeniería Informática UAM Curso 2006-2007 Solucionario del examen final del 26-1-2007 Nota bene: A continuación exhibimos algunas de las distintas maneras de abordar los

Más detalles