6. VECTORES Y COORDENADAS

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "6. VECTORES Y COORDENADAS"

Transcripción

1 6. VECTORES Y COORDENADAS Página 1

2 Traslaciones. Vectores Sistema de referencia. Coordenadas. Punto medio de un segmento Ecuaciones de rectas. Paralelismo. Distancias Página 2

3 1. TRASLACIONES. VECTORES MOSAICOS Te presentamos a continuación algunos tipos de mosaicos. Observa que en todos ellos hay siempre un motivo mínimo que se repite, de manera que trasladando este motivo en todas direcciones se llena el plano, es decir no quedan huecos entre las piezas, ni montan unas piezas sobre otras. Observa detenidamente cada uno de estos mosaicos. Cómo se han construido?. Podrías diseñarlos haciendo uso de tramas de puntos?. MÓDULOS PLANOS Una trama (cuadrada, isométrica, de hexágonos regulares) es ella misma un mosaico. Estos tres son los únicos mosaicos regulares que existen. Están construidos con polígonos regulares del mismo tipo. Un módulo plano es una figura plana que por sucesivas yuxtaposiciones llena el plano. El cuadrado, el triángulo equilátero y el hexágono regular son módulos planos. Página 3

4 A partir de un módulo plano pueden obtenerse otros distintos, utilizando para ello el criterio de conservar la superficie del módulo inicial. Los módulos equisuperficiales así obtenidos también llenarán el plano, por hacerlo el módulo inicial. Este proceso es el que se ha seguido para construir algunos de los mosaicos anteriores, como puedes apreciar en las figuras que siguen: Como el triángulo equilátero llena el plano, también lo hará el módulo obtenido. Observa que el área de este módulo es la misma que la del triángulo equilátero inicial. Como el hexágono regular llena el plano, también lo hará el módulo obtenido. Observa que el área de este módulo es la misma que la del hexágono regular inicial. a) Aquí tienes algunos ejemplos de módulos planos. A partir de qué polígonos se han diseñado?. b) Averigua con ayuda de tramas cómo se ha construido el siguiente mosaico: Página 4

5 DISEÑA MOSAICOS Para producir mosaicos, puedes utilizar un método modular, como el anteriormente descrito, o bien hacer uso de un método combinatorio, combinando distintas formas planas para formar el motivo mínimo. Por ejemplo, en este mosaico: el motivo mínimo está formado por el módulo que, a su vez, es combinación de otras dos piezas: Estas dos piezas no llenan el plano separadamente, pero si lo hacen conjuntamente, cuando forman el módulo anterior. Utilizando diferentes tipos de tramas de puntos, construye un mosaico. Puedes hacer uso de un método combinatorio o uno modular. Procura que el resultado sea lo más estético posible. Para ello, te vendrán bien algunas recomendaciones: No abuses de las curvas; No utilices demasiados colores; Usa siempre colores armoniosos. Qué entiendes por armoniosos?. MOSAICOS a) Haciendo uso de distintos tipos de tramas, investiga cómo se han hecho cada uno de los mosaicos que siguen. Busca un motivo mínimo, es decir, la menor porción del plano que por traslaciones sucesivas genere todo el mosaico. En cada uno de ellos, puedes transformar la pieza negra en la pieza blanca? Cómo?. Página 5

6 b) En el siguiente mosaico, qué debes hacer para transformar A en B?. Y para transformar A en C?. Explica detenidamente como lo haces. TRASLACIONES Una traslación queda definida si se conoce la dirección, sentido y longitud de la traslación. Estas tres magnitudes se representan por una flecha, llamada vector de la traslación, cuyo origen y destino indican, respectivamente, las posiciones inicial y final del objeto trasladado. a) A las siguientes figuras aplícales una traslación de vector a y otra de vector 2b. Cuál es el resultado final?. Podemos representar la traslación de vector a por medio de dos números, llamados componentes del vector a: el primero indica cuántas unidades debe desplazarse el objeto en la dirección horizontal (si es positivo a la derecha, si es negativo a la izquierda); el segundo indica cuántas unidades debe desplazarse el objeto en la dirección vertical (si es positivo hacia arriba, si es negativo hacia abajo). b) En la figura hemos efectuado una traslación de vector (3, 2). Aplícale a esta figura una traslación de vector (2, -4), otra de vector (-4, 3) y otra de vector (-2,-3). Cuál es el resultado final?. Página 6

7 MÓDULO DE UN VECTOR Los elementos que definen un vector son: a) Origen: punto de partida de la traslación. b) Extremo: punto de llegada de la traslación. c) Dirección: recta en la que está contenido el vector. d) Sentido: el que va del origen al extremo. e) Módulo: es la longitud del vector, es decir, la distancia entre el origen y el extremo. a) Halla las componentes y el módulo de los siguientes vectores: b) Halla el módulo de los vectores: a=(3, 2), b=( 2, 4), c=(3, 4) y d=( 2, 3). Dibuja dichos vectores. OPERACIONES CON VECTORES a) Suma de vectores Para sumar dos vectores se procede de la siguiente manera: partiendo del extremo del primer vector se dibuja el segundo. El vector suma es aquel que tiene como origen el origen del primero y como extremo el extremo del segundo. Por ejemplo, en la siguiente figura, la suma de los vectores a y b es el vector c. Observa que las componentes de los vectores son a=(1, 2), b=(2, 2), c=(3, 0). Se cumple que las componentes del vector suma son igual a la suma de las componentes de los vectores dados: a + b = (1, 2) + (2, 2) = ( 1 + 2, 2 + ( 2) ) = (3. 0) = c Página 7

8 b) Producto de un número real por un vector Para multiplicar un número por un vector hay que dibujar dicho vector tantas veces como indique el número. El vector resultante tiene el mismo sentido que el inicial, si el número es positivo, y sentido contrario, si el numero es negativo. Las componentes de dicho vector se obtienen multiplicando por el número las componentes del vector inicial. Por ejemplo, en la siguiente figura se muestra el vector 2b: Observa que las componentes de estos vectores son: b=(2, 2) y 2b=(4, 4). Se cumple, por tanto: 2b= 2 (2, 2) =( 2 2, 2 ( 2) ) = (4, 4) Dados los vectores a y b de la siguiente figura, dibuja los vectores 3a, 2b y 3a 2b. Halla el módulo y las componentes de todos los vectores: COMBINACIÓN LINEAL La figura adjunta sugiere que entre los vectores dibujados existe la relación: d= 2a+3b. Qué relación existe entre los vectores a, b y d de la siguiente figura?. Página 8

9 2. SISTEMA DE REFERENCIA. COORDENADAS. PUNTO MEDIO DE UN SEGMENTO. COORDENADAS Una manera de localizar sin ambigüedad los puntos de un plano consiste en definir un sistema de referencia formado por un punto elegido arbitrariamente (denominado origen del sistema) y dos rectas (denominadas ejes y también arbitrarias) que pasan por el origen. Cada punto del plano queda identificado entonces por dos números (llamados coordenadas del punto). Así, en la siguiente figura, el sistema de referencia está formado por las rectas señaladas en grueso, el origen es el punto O y las coordenadas del punto A son: A=(1, 2). Se suele llamar X al eje horizontal e Y al otro eje. De esta forma, las coordenadas de cualquier punto P se escriben así: P=(x, y). La primera coordenada (x) se llama abcisa y la segunda coordenada (y) se llama ordenada del punto P. Si se cambia el sistema de referencia, es decir, si se subsituyen los ejes (y por tanto el origen) elegidos inicialmente por otros, la pareja de números que identifica cada punto del plano cambia también. Por ejemplo, las coordenadas del punto A anterior se convierten en A=( 2, 4) si utilizamos el sistema de referencia de origen O'. a) Halla, en el sistema de referencia O, las coordenadas de los puntos A, B, C, D y E. Página 9

10 b) Determina las coordenadas de los puntos O, A, C, D y E cuando se toma como origen el punto B y como ejes las dos rectas que pasan por B. c) Si mantenemos la trama de la figura, qué sistema de referencia ha de utilizarse para que el punto A tenga coordenadas A=(4, 5)?. PUNTOS Y VECTORES a) Sabiendo que el punto A tiene por coordenadas (2, 3) y que el vector AB tiene por componentes (3,5), halla las coordenadas del extremo B. b) Halla las componentes del vector cuyo origen es el punto A=( 3, 1) y cuyo extremo es el punto B=(2,3). PARALELOGRAMO Los puntos A=(2, 1), B=(6, 2) y C=(7, 5) son vértices de un paralelogramo. Halla las coordenadas del cuarto vértice, D. PUNTO MEDIO Consideramos los puntos A=(a, b) y B=(c, d). Si M=(x, y) es el punto medio del segmento AB, 1 entonces se cumple: AM AB. 2 Ahora bien, AM=(x a, y b) y AB=(c a, d b). Por tanto: c a c a a c x a x a x d b d b b d y b y b y a c b d Las coordenadas del punto medio son: M=,, es decir la media aritmética de las 2 2 coordenadas de los extremos. a) Halla el punto medio del segmento AB, siendo A=( 1, 3) y B=(5, 2). b) Halla las coordenadas de los puntos medios de los lados del triángulo ABC, si las coordenadas de los vértices son: A=( 2, 3), B=(3, 0) y C=(4, 2). Página 10

11 CUADRILÁTERO Sean A=(1, 1), B=(7, 3), C=(5, 4) y D=(3, 6) los vértices de un cuadrilátero. Halla las coordenadas de los puntos medios de sus lados (M, N, P, Q). Qué figura es el polígono MNPQ?. 3. ECUACIONES DE RECTAS. PARALELISMO. DISTANCIAS. RECTAS a) Cuántas rectas pasan por un punto P?. b) Cuántas rectas tienen la dirección de un vector v?. c) Cuántas rectas pasan por un punto P y tienen la dirección de un vector v?. d) Cuántas rectas pasan por dos puntos concretos, P y Q?. e) Cuántas rectas pasan por un punto P y forman un ángulo con el eje OX?. DIBUJA RECTAS Dibuja en un sistema de referencia cartesiano: a) La recta que forman los puntos cuya primera coordenada es 2. b) La recta que forman los puntos cuya segunda coordenada es 3. c) La recta formada por todos los puntos que tienen la primera coordenada igual a la segunda. d) La recta formada por todos los puntos que verifican que su primera coordenada es igual a la opuesta de la segunda. DETERMINACIÓN DE UNA RECTA La pendiente de una recta es una medida de su inclinación. Decir que una carretera tiene una pendiente M del 10% equivale a decir que subimos una distancia igual al 10% de la que avanzamos, es decir, por cada 100 metros que avanzamos en horizontal, subimos 10 metros. Página 11

12 Con esta información podemos obtener el ángulo de inclinación de la carretera, ya que se cumple: Una recta queda determinada si conocemos: 10 M= tan α 0'10 = INV TAN 0'10 = 5'7º 100 a) Dos puntos A(a, b) y B(c, d) por los que pasa. b) Un punto A(a, b) por el que pasa y un vector de dirección v=(m, n). c) Un punto A(a, b) por el que pasa y su pendiente M. d) Un punto A(a, b) por el que pasa y el ángulo que forma con el eje OX. a) Si el vector de dirección de una recta r es v = (2, 3), calcula la pendiente M de r y el ángulo que forma con el eje OX. b) Si una recta r pasa por los puntos A(2, 5) y B( 3, 1), calcula la pendiente M de r y el ángulo que forma con el eje OX. c) Si la pendiente de una recta r es M=0'25, calcula un vector de dirección de la recta y el ángulo que forma con el eje OX. ECUACIÓN EXPLÍCITA Y ECUACIÓN IMPLÍCITA Podemos representar gráficamente la recta de ecuación y=2x+4 construyendo previamente una tabla de valores. Una vez dibujada la gráfica, podemos considerarla como el perfil de una carretera en la que por cada metro que avanzamos en dirección horizontal, subimos 2 metros en dirección vertical. Por lo tanto, la pendiente de esta recta es M = 2 y el ángulo que forma con el eje horizontal OX es: TAN =2 = INV TAN 2 =63'4º Por otra parte, la distancia del origen de coordenadas O al punto de corte de la recta con el eje OY es igual a 4 y se llama ordenada en el origen de la recta. Página 12

13 La ecuación explícita de la recta es de la forma y = M x + N, siendo M la pendiente de la recta y N la ordenada en el origen. Un vector de dirección de la recta es v = (1, 2). Pero no es el único, ya que los vectores (2, 4), (3,6), (5, 10), ( 2, 4) también tienen la misma dirección que la recta. Una recta tiene infinitos vectores de dirección. A partir de la ecuación explícita y = 2x + 4, podemos obtener la ecuación 2x y + 4 = 0, llamada ecuación implícita o general de la recta. La ecuación general o implícita de una recta es de la forma Ax + By + C = 0. A partir de la ecuación general podemos obtener la ecuación explícita sin más que despejar: A C Ax By C 0 By Ax C y x, B B A C de manera que la pendiente es: M y la ordenada en el origen es: N B B a) Halla la ecuación explícita de la recta que pasa por los puntos A(1, 2) y B(3, 3). Obtén la pendiente y el ángulo que forma con el eje OX. b) Halla un vector de dirección de la recta, la ordenada en el origen y la ecuación general. c) Halla las ecuaciones explícita e implícita de las siguientes rectas. Determina en cada una de ellas la pendiente, la ordenada en el origen, un vector de dirección y el ángulo que forma con el eje OX. ECUACIONES Halla las ecuaciones de las siguientes rectas: a) Pasa por el punto P(2, 3) y tiene como vector director v=(5, 4). b) Pasa por el punto A( 1, 2) y tiene pendiente 1. c) Pasa por los puntos D(3, 4) y E( 1, 5). TRAYECTORIA En un plano tenemos situados tres puntos, A( 2, 1), B(0, 3) y C(2, 1). Un vehículo se dirige desde el punto A hasta el punto medio de B y C. Pasará por el punto P(0, 1)?. Página 13

14 TRIÁNGULO Dado el triángulo de vértices A( 5, 4), B(4, 1) u C( 1, 2), halla: a) Las ecuaciones de sus tres lados. b) El punto medio del lado AC. c) La ecuación de la mediana del vértice B. EL BILLAR En una mesa de billar de 2'5 metros de largo y 1'5 metros de ancho, tenemos dos bolas A y B situadas a 70 y 20 cm de las bandas la A y a 50 y 30 cm la B. Calcula la ecuación de la trayectoria de A para hacer carambola directa en B. RECTAS PARALELAS Dibuja, en un sistema de referencia cartesiano, las rectas de ecuaciones: a) y=3x 2 b) y=3x c) y=3x+4 d) 6x 2y+4=0 Qué tienen en común y qué las diferencia?. Halla la pendiente y un vector de dirección de cada una de las rectas. Dos rectas son paralelas si tienen la misma pendiente. Dos rectas paralelas tienen vectores de dirección proporcionales. PARALELAS a) Halla la ecuación de la recta que pasa por el punto A(2, 3) y es paralela a la recta que pasa por los puntos B(1, 4) y C(3, 2). b) Halla la ecuación de la recta que pasa por el punto M(3, 5) y es paralela a la recta que pasa por los puntos N(2, 0) y P(1, 1). LA VISTA ENGAÑA Las rectas r y s del dibujo parecen paralelas. Pero lo son realmente?. Página 14

15 PARALELOGRAMO Los puntos A(2, 1), B(5, 3) y C(7. 7) son vértices consecutivos de un paralelogramo. a) Halla las coordenadas del cuarto vértice D. b) Halla las ecuaciones de los cuatro lados. c) Halla las ecuaciones de las dos diagonales. DISTANCIAS La distancia entre dos puntos A(a, b) y B(c, d) es igual al módulo del vector AB. Para obtenerla usamos el teorema de Pitágoras: d(a, B)=d d 2 c a 2 d b 2 d d(a, B) c a 2 d b 2 Calcula la distancia entre los puntos: A(3, 2) y B( 1, 4). PARALELOGRAMO Los puntos A( 1, 2), B(2, 5), C(6, 2) y D son vértices de un paralelogramo ABCD. a) Halla las coordenadas del vértice D opuesto al vértice B. b) Halla las ecuaciones de los cuatro lados y de las dos diagonales. c) Halla las longitudes de los cuatro lados y de las dos diagonales. MEDIANAS Calcula las longitudes de las medianas del triángulo de vértices A( 1, 2), B(2, 2) y C( 1, 1). Página 15

Movimientos en el plano

Movimientos en el plano 7 Movimientos en el plano Objetivos En esta quincena aprenderás a: Manejar el concepto de vector como elemento direccional del plano. Reconocer los movimientos principales en el plano: traslaciones, giros

Más detalles

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8 Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características

Más detalles

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro

Más detalles

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas

MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Universidad de Cádiz Departamento de Matemáticas MATEMÁTICAS para estudiantes de primer curso de facultades y escuelas técnicas Tema 4 La recta en el plano Elaborado por la Profesora Doctora María Teresa

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

Movimientos en el plano

Movimientos en el plano Movimientos en el plano TEORIA Vectores Concepto de vector. Coordenadas Un vector AB está determinado por dos puntos del plano, A(x1, y1) que es su origen y B(x 2,y 2 ) que es su extremo. Las coordenadas

Más detalles

3.1 DEFINICIÓN. Figura Nº 1. Vector

3.1 DEFINICIÓN. Figura Nº 1. Vector 3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado

Más detalles

RECTAS Y PLANOS EN EL ESPACIO

RECTAS Y PLANOS EN EL ESPACIO UNIDAD 6 RECTA Y PLANO EN EL EPACIO Página 1 1. Puntos alineados en el plano Comprueba que los puntos A (, ), B (8, ) y C (1, ) no están alineados. A (, ) B (8, ) C (1, ) AB = (, 1); BC = (, ) No tienen

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales.

Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Este documento ha sido generado para facilitar la impresión de los contenidos. Los enlaces a otras páginas no serán funcionales. Introducción Por qué La Geometría? La Geometría tiene como objetivo fundamental

Más detalles

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO)

Tema 1. VECTORES (EN EL PLANO Y EN EL ESPACIO) Vectores Tema. VECTORES (EN EL PLANO Y EN EL ESPACIO Definición de espacio vectorial Un conjunto E es un espacio vectorial si en él se definen dos operaciones, una interna (suma y otra externa (producto

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.

Más detalles

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano.

UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES. OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. UNIDAD 4: PLANO CARTESIANO, RELACIONES Y FUNCIONES OBJETIVO DE APRENDIZAJE: Representar gráficamente relaciones y funciones en el plano cartesiano. EL PLANO CARTESIANO. El plano cartesiano está formado

Más detalles

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo)

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo) Existen ciertas magnitudes que quedan perfectamente determinadas cuando se conoce el nombre de una unidad y el numero de veces que se ha tomado.estas unidades se llaman escalares (tiempo, volumen, longitud,

Más detalles

FUNCIONES CUADRÁTICAS Y RACIONALES

FUNCIONES CUADRÁTICAS Y RACIONALES www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro

Más detalles

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta

PROBLEMAS MÉTRICOS. Página 183 REFLEXIONA Y RESUELVE. Diagonal de un ortoedro. Distancia entre dos puntos. Distancia de un punto a una recta PROBLEMAS MÉTRICOS Página 3 REFLEXIONA Y RESUELVE Diagonal de un ortoedro Halla la diagonal de los ortoedros cuyas dimensiones son las siguientes: I) a =, b =, c = II) a = 4, b =, c = 3 III) a =, b = 4,

Más detalles

a. Dibujar los paralelogramos completos, señalar los vértices con letras.

a. Dibujar los paralelogramos completos, señalar los vértices con letras. PRACTICO DE VECTORES 1. Dada la siguiente figura, se pide determinar vectores utilizando los vértices. Por ejemplo, el vector, el vector, etcétera. Se pide indicar a. Tres vectores que tengan la misma

Más detalles

8 Vectores y rectas. Vector: AB = (b 1 a 1, b 2 a 2 ) Módulo: AB = Paramétricas: Continua: = OBJETIVOS CONTENIDOS PROCEDIMIENTOS

8 Vectores y rectas. Vector: AB = (b 1 a 1, b 2 a 2 ) Módulo: AB = Paramétricas: Continua: = OBJETIVOS CONTENIDOS PROCEDIMIENTOS 9566 _ 009-06.qxd 7/6/0 :55 Página 9 Vectores y rectas INTRODUCCIÓN Los vectores son utilizados en distintas ramas de la Física que usan magnitudes vectoriales, por lo que es importante que los alumnos

Más detalles

Vectores: Producto escalar y vectorial

Vectores: Producto escalar y vectorial Nivelación de Matemática MTHA UNLP 1 Vectores: Producto escalar y vectorial Versores fundamentales Dado un sistema de coordenadas ortogonales, se considera sobre cada uno de los ejes y coincidiendo con

Más detalles

Capítulo 1. Vectores en el plano. 1.1. Introducción

Capítulo 1. Vectores en el plano. 1.1. Introducción Índice general 1. Vectores en el plano 2 1.1. Introducción.................................... 2 1.2. Qué es un vector?................................ 3 1.2.1. Dirección y sentido............................

Más detalles

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f)

Se llama dominio de una función f(x) a todos los valores de x para los que f(x) existe. El dominio se denota como Dom(f) MATEMÁTICAS EJERCICIOS RESUELTOS DE FUNCIONES FUNCIONES A. Introducción teórica A.1. Definición de función A.. Dominio y recorrido de una función, f() A.. Crecimiento y decrecimiento de una función en

Más detalles

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD

SOLUCIONES A LOS EJERCICIOS DE LA UNIDAD Pág. 1 PÁGINA 180 EJERCICIOS Semejanza de figuras 1 Sobre un papel cuadriculado, haz un dibujo semejante a este ampliado al triple de su tamaño: 2 En un mapa a escala 1 :50 000 la distancia entre dos pueblos,

Más detalles

4.- Deduce la ecuación de la recta cuyos puntos de intersección con los ejes son A=(6,0) y B=(0,-2). Sol: x-3y-6=0.

4.- Deduce la ecuación de la recta cuyos puntos de intersección con los ejes son A=(6,0) y B=(0,-2). Sol: x-3y-6=0. Tipos de rectas. Vector director. Pendiente. Paralelas y perpendiculares. 1.- Encuentra la ecuación vectorial, paramétrica y continua de la recta que pasa por los puntos A=(3,2) y B=(1,-1). Sol: (x,y)=(3,2)+t(2,3);

Más detalles

Nivelación de Matemática MTHA UNLP 1. Vectores

Nivelación de Matemática MTHA UNLP 1. Vectores Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:

Más detalles

EJERCICIOS DE PUNTOS EN EL ESPACIO

EJERCICIOS DE PUNTOS EN EL ESPACIO EJERCICIOS DE PUNTOS EN EL ESPACIO 1.- Las coordenadas de los vértices consecutivos de un paralelogramo son A (1, 0, 0) y B(0, 1, 0). Las coordenadas del centro M son M(0, 0, 1). Hallar las coordenadas

Más detalles

Aplicaciones de vectores

Aplicaciones de vectores Aplicaciones de vectores Coordenadas del punto medio de un segmento Las coordenadas del punto medio de un segmento son la semisuma de las coordenadas de los extremos. Ejemplo: Hallar las coordenadas del

Más detalles

Vectores. Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales.

Vectores. Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales. Cantidades vectoriales escalares Vectores Las cantidades físicas que estudiaremos en los cursos de física son escalares o vectoriales. Una cantidad escalar es la que está especificada completamente por

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica

Funciones lineales. Objetivos. Antes de empezar. 1.Función de proporcionalidad directa pág. 170 Definición Representación gráfica 10 Funciones lineales Objetivos En esta quincena aprenderás a: Identificar problemas en los que intervienen magnitudes directamente proporcionales. Calcular la función que relaciona a esas magnitudes a

Más detalles

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).

SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3). SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el

Más detalles

Actividades recreativas para recordar a los vectores. 1) Representa en un eje de coordenadas las siguientes sugerencias:

Actividades recreativas para recordar a los vectores. 1) Representa en un eje de coordenadas las siguientes sugerencias: Actividades recreativas para recordar a los vectores 1) Representa en un eje de coordenadas las siguientes sugerencias: a) Dibuja un segmento y oriéntalo en sentido positivo. b) Dibuja un segmento y oriéntalo

Más detalles

8 GEOMETRÍA ANALÍTICA

8 GEOMETRÍA ANALÍTICA 8 GEOMETRÍA ANALÍTICA EJERCICIOS PROPUESTOS 8. Las coordenadas de los vértices de un rectángulo son A(, ); B(, 5); C(6, 5), y D(6, ). Halla las coordenadas y representa los vectores AB, BC, CD y DA. Qué

Más detalles

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA

UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA AÑO 2014 RECTAS - EJERCICIOS TEÓRICOS 1- Demostrar que la ecuación

Más detalles

EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos

EL TRIÁNGULO. Recordemos algunas propiedades elementales de los triángulos EL TRIÁNGULO 1. EL TRIÁNGULO. PRIMERAS PROPIEDADES El triángulo es un polígono que tiene tres lados y tres ángulos. Es, por tanto, el polígono más simple y el conocimiento de sus características y propiedades

Más detalles

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO)

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) TEMA 1: REPRESENTACIÓN GRÁFICA 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) Son dos instrumentos de plástico transparente que se suelen usar de forma conjunta. La escuadra tiene forma de triángulo

Más detalles

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o. ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.

Más detalles

Segundo de Bachillerato Geometría en el espacio

Segundo de Bachillerato Geometría en el espacio Segundo de Bachillerato Geometría en el espacio Jesús García de Jalón de la Fuente IES Ramiro de Maeztu Madrid 204-205. Coordenadas de un vector En el conjunto de los vectores libres del espacio el concepto

Más detalles

Te damos los elementos básicos de los vectores para que puedas entender las operaciones básicas.

Te damos los elementos básicos de los vectores para que puedas entender las operaciones básicas. 4 año secundario Vectores, refrescando conceptos adquiridos Te damos los elementos básicos de los vectores para que puedas entender las operaciones básicas. El término vector puede referirse al: concepto

Más detalles

APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO

APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO APUNTES DE MATEMÁTICAS TEMA 4: VECTORES 1º BACHILLERATO ÍNDICE VECTORES EN EL PLANO... 3 Vector Fijo... 3 VECTOR LIBRE... 3 Operaciones con Vectores... 3 Suma de vectores... 3 Producto de un número por

Más detalles

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos.

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos. ESTATICA: Rama de la física que estudia el equilibrio de los cuerpos. TIPOS DE MAGNITUDES: MAGNITUD ESCALAR: Es una cantidad física que se especifica por un número y una unidad. Ejemplos: La temperatura

Más detalles

Lección 7 - Coordenadas rectangulares y gráficas

Lección 7 - Coordenadas rectangulares y gráficas Lección 7 - Coordenadas rectangulares gráficas Coordenadas rectangulares gráficas Objetivos: Al terminar esta lección podrás usar un sistema de coordenadas rectangulares para identificar puntos en un plano

Más detalles

Tema 1: Cuerpos geométricos. Aplicaciones

Tema 1: Cuerpos geométricos. Aplicaciones Tema 1: Cuerpos geométricos. Aplicaciones 1.- los polígonos. Un polígono es un trozo de plano limitado por una línea poligonal (sin curvas) cerrada. Es un polígono No son polígonos Hay dos clases de polígonos:

Más detalles

Teoría Tema 5 Espacios vectoriales

Teoría Tema 5 Espacios vectoriales página 1/14 Teoría Tema 5 Espacios vectoriales Índice de contenido Puntos en 2 y 3 dimensiones...2 Vectores en el plano...5 Suma de vectores...7 Combinación lineal de vectores...8 Sistema generador...10

Más detalles

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,

Más detalles

1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn.

1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn. 1. VECTORES INDICE 1.1. Definición de un vector en R 2, R 3 (Interpretación geométrica), y su generalización en R n...2 1.2. Operaciones con vectores y sus propiedades...6 1.3. Producto escalar y vectorial

Más detalles

VECTORES. Por ejemplo: la velocidad de un automóvil, o la fuerza ejercida por una persona sobre un objeto.

VECTORES. Por ejemplo: la velocidad de un automóvil, o la fuerza ejercida por una persona sobre un objeto. Un vector v es un segmento orientado. VECTORES Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Punto de aplicación: es el lugar

Más detalles

1. Funciones y sus gráficas

1. Funciones y sus gráficas FUNCIONES 1. Funciones sus gráficas Función es una relación entre dos variables a las que, en general se les llama e. es la variable independiente. es la variable dependiente. La función asocia a cada

Más detalles

TRANSFORMACIONES ISOMÉTRICAS

TRANSFORMACIONES ISOMÉTRICAS TRANSFORMACIONES ISOMÉTRICAS En una transformación isométrica: 1) No se altera la forma ni el tamaño de la figura. 2) Sólo cambia la posición (orientación o sentido de ésta). TRANSFORMACIONES ISOMÉTRICAS

Más detalles

VECTORES LIBRES DEL PLANO

VECTORES LIBRES DEL PLANO VECTORES LIBRES DEL PLANO ESPACIO VECTORIAL NUMERICO R² 1.-En un espacio vectorial: a) Cuantas operaciones están definidas. b) Cuantos conjuntos intervienen. c) Cita e indica las operaciones. d) Haz las

Más detalles

9 Geometría. analítica. 1. Vectores

9 Geometría. analítica. 1. Vectores 9 Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C

Más detalles

Vectores en el espacio

Vectores en el espacio Vectores en el espacio Un sistema de coordenadas tridimensional se construye trazando un eje Z, perpendicular en el origen de coordenadas a los ejes X e Y. Cada punto viene determinado por tres coordenadas

Más detalles

8 Geometría. analítica. 1. Vectores

8 Geometría. analítica. 1. Vectores Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C U

Más detalles

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 21

GUIAS DE ACTIVIDADES Y TRABAJO PRACTICO Nº 21 SIGNTU: MTEMTI EN IOLOGI DOENTE: LI.GUSTO DOLFO JUEZ GUI DE TJO PTIO Nº ES: POFESODO Y LIENITU EN IOLOGI _PGIN Nº 4_ GUIS DE TIIDDES Y TJO PTIO Nº OJETIOS: Lograr que el lumno: Interprete la información

Más detalles

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores

Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación

Más detalles

CURSO BÁSICO DE FÍSICA MECÁNICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA

CURSO BÁSICO DE FÍSICA MECÁNICA PROYECTO UNICOMFACAUCA TU PROYECTO DE VIDA UNICOMFACAUCA TU DE VIDA Tabla de contenido... 2 PARTES DE UN VECTOR... 3 Notación... 5 Tipos de vectores... 5 Componentes de un vector... 6 Operaciones con vectores... 7 Suma de vectores... 7 Resta de

Más detalles

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables

PROGRAMACIÓN LINEAL. 8.1. Introducción. 8.2. Inecuaciones lineales con 2 variables Capítulo 8 PROGRAMACIÓN LINEAL 8.1. Introducción La programación lineal es una técnica matemática relativamente reciente (siglo XX), que consiste en una serie de métodos y procedimientos que permiten resolver

Más detalles

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES

GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I ASPECTOS PRELIMINARES SUMA DE VECTORES SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS SUMA DE VECTORES OBJETIVOS Usar la mesa de fuerzas

Más detalles

De acuerdo con sus características podemos considerar tres tipos de vectores:

De acuerdo con sus características podemos considerar tres tipos de vectores: CÁLCULO VECTORIAL 1. ESCALARES Y VECTORES 1.1.-MAGNITUDES ESCALARES Y VECTORIALES Existen magnitudes físicas cuyas cantidades pueden ser expresadas mediante un número y una unidad. Otras, en cambio, requieren

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple

Más detalles

INTRODUCCIÓN A VECTORES Y MAGNITUDES

INTRODUCCIÓN A VECTORES Y MAGNITUDES C U R S O: FÍSIC Mención MTERIL: FM-01 INTRODUCCIÓN VECTORES Y MGNITUDES La Física tiene por objetivo describir los fenómenos que ocurren en la naturaleza, a través de relaciones entre magnitudes físicas.

Más detalles

SUMA Y RESTA DE VECTORES

SUMA Y RESTA DE VECTORES SUMA Y RESTA DE VECTORES Definición de vectores Un vector es la expresión que proporciona la medida de cualquier magnitud vectorial. Un vector es todo segmento de recta dirigido en el espacio. Cada vector

Más detalles

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta.

a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. POLIEDROS Ejercicio nº 1.- a De los siguientes cuerpos geométricos, di cuáles son poliedros y cuáles no. Razona tu respuesta. b Cuál es la relación llamada fórmula de Euler que hay entre el número de caras,

Más detalles

COORDENADAS CURVILINEAS

COORDENADAS CURVILINEAS CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un

Más detalles

open green road Guía Matemática TRANSFORMACIONES ISOMÉTRICAS tutora: Jacky Moreno .cl

open green road Guía Matemática TRANSFORMACIONES ISOMÉTRICAS tutora: Jacky Moreno .cl Guía Matemática TRANSFORMACIONES ISOMÉTRICAS tutora: Jacky Moreno.cl 1. Transformaciones isométricas Las transformaciones geométricas están presentes en diversos campos de la actividad humana así como

Más detalles

Actividades con Geoplano

Actividades con Geoplano Descripción General Actividades con Geoplano El Geoplano es un arreglo rectángular de puntos (clavos) de tal manera que entre puntos adyacentes horizontal o verticalmente hay una distancia constante. En

Más detalles

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases.

BASES Y DIMENSIÓN. Propiedades de las bases. Ejemplos de bases. BASES Y DIMENSIÓN Definición: Base. Se llama base de un espacio (o subespacio) vectorial a un sistema generador de dicho espacio o subespacio, que sea a la vez linealmente independiente. β Propiedades

Más detalles

Geometría Tridimensional

Geometría Tridimensional Capítulo 4 Geometría Tridimensional En dos dimensiones trabajamos en el plano mientras que en tres dimensiones trabajaremos en el espacio, también provisto de un sistema de coordenadas. En el espacio,

Más detalles

VECTORES EN EL PLANO

VECTORES EN EL PLANO VECTORES EN EL PLANO VECTOR: vectores libres Segmento orientado, con un origen y extremo. Módulo: es la longitud del segmento orientado, es un número positivo y su símbolo es a Dirección: es la recta que

Más detalles

5 Geometría analítica plana

5 Geometría analítica plana Solucionario Geometría analítica plana ACTIVIDADES INICIALES.I. Halla las coordenadas del punto medio del segmento de extremos A(, ) y B(8, ). El punto medio es M(, 8)..II. Dibuja un triángulo isósceles

Más detalles

CENAFE MATEMÁTICAS POLÍGONOS

CENAFE MATEMÁTICAS POLÍGONOS POLÍGONOS Es la porción del plano comprendida dentro de una línea poligonal cerrada. Es la superficie del plano limitada por una línea poligonal. La medida de un polígono es su área. Criterios de clasificación:

Más detalles

EJERCICIOS SOBRE : NÚMEROS ENTEROS

EJERCICIOS SOBRE : NÚMEROS ENTEROS 1.- Magnitudes Absolutas y Relativas: Se denomina magnitud a todo lo que se puede medir cuantitativamente. Ejemplo: peso de un cuerpo, longitud de una cuerda, capacidad de un recipiente, el tiempo que

Más detalles

9 VECTORES Y RECTAS EN EL PLANO

9 VECTORES Y RECTAS EN EL PLANO 9 VECTRES RECTAS EN EL PLAN EJERCICIS PRPUESTS 9. Dibuja cuatro vectores equipolentes al vector AB de la figura que tengan sus orígenes en los puntos, C, D y E. D E AB C D C E 9. En la figura siguiente,

Más detalles

XLIV Olimpiada Matemática Española Fase nacional 2008 (Valencia) PRIMERA SESIÓN (28 de marzo)

XLIV Olimpiada Matemática Española Fase nacional 2008 (Valencia) PRIMERA SESIÓN (28 de marzo) Fase nacional 008 (Valencia) PRIMERA SESIÓN (8 de marzo).- Halla dos enteros positivos a y b conociendo su suma y su mínimo común múltiplo. Aplícalo en el caso de ue la suma sea 97 y el mínimo común múltiplo

Más detalles

FUNCIÓN CUADRÁTICA. Tres formas para identificar una parábola según los datos:

FUNCIÓN CUADRÁTICA. Tres formas para identificar una parábola según los datos: FUNCIÓN CUADRÁTICA Una función cuadrática es una función polinómica de segundo grado de la forma y=ax +bx+c, cuya gráfica es una parábola de eje vertical, donde a representa la abertura de la parábola.

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

DESIGUALDADES E INECUACIONES

DESIGUALDADES E INECUACIONES DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia

Más detalles

Funciones definidas a trozos

Funciones definidas a trozos Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad

Más detalles

Movimientos y semejanzas

Movimientos y semejanzas 865 _ 057-068.qxd 7/4/07 :4 Página 57 Movimientos y semejanzas INTRODUIÓN Esta unidad tiene un componente gráfico muy importante, por lo que conviene comenzar la unidad aportando ejemplos reales, sobre

Más detalles

UNIVERSIDAD COMPLUTENSE DE MADRID

UNIVERSIDAD COMPLUTENSE DE MADRID TIEMPO: INSTRUCCIONES GENERALES Y VALORACIÓN 120 minutos. INSTRUCCIONES: La prueba consiste en la realización de cinco ejercicios, a elegir entre dos opciones, denominadas A y B. El alumno realizará una

Más detalles

GEOMETRÍA ANALÍTICA GIRO DE LOS EJES

GEOMETRÍA ANALÍTICA GIRO DE LOS EJES GIRO DE LOS EJES CONTENIDO. Ecuaciones de giro. Ejercicios Ya tratamos el procedimiento, mediante el cual, con una translación paralela de ejes, simplificamos las ecuaciones en particular de las curvas

Más detalles

NÚMEROS NATURALES Y NÚMEROS ENTEROS

NÚMEROS NATURALES Y NÚMEROS ENTEROS NÚMEROS NATURALES Y NÚMEROS ENTEROS Los números naturales surgen como respuesta a la necesidad de nuestros antepasados de contar los elementos de un conjunto (por ejemplo los animales de un rebaño) y de

Más detalles

1. Magnitudes vectoriales

1. Magnitudes vectoriales FUNDACIÓN INSTITUTO A DISTANCIA EDUARDO CABALLERO CALDERON Espacio Académico: Física Docente: Mónica Bibiana Velasco Borda mbvelascob@uqvirtual.edu.co CICLO: V INICADORES DE LOGRO VECTORES 1. Adquiere

Más detalles

TEMA 8: TRAZADOS GEOMÉTRICOS

TEMA 8: TRAZADOS GEOMÉTRICOS EDUCACIÓN PLÁSTICA Y VISUAL 3º DE LA E.S.O. TEMA 8: TRAZADOS GEOMÉTRICOS En dibujo técnico, es fundamental conocer los trazados geométricos básicos para construir posteriormente formas o figuras de mayor

Más detalles

VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5.

VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5. VECTORES: VOCABULARIO 1. Abscisa de un punto. 2. Ordenada de un punto. 3. Concepto de vector. 4. Coordenadas o componentes de un vector. 5. Elementos de un vector. 6. Concepto de origen de un vector. 7.

Más detalles

Sistema Diédrico (I). Verdadera magnitud. Abatimientos

Sistema Diédrico (I). Verdadera magnitud. Abatimientos Sistema Diédrico (I). Verdadera magnitud. Abatimientos Cuando dibujamos las proyecciones diédricas (planta, alzado y perfil) de una figura, superficie, sólido, etc.., observamos cómo sus elementos (aristas

Más detalles

INSTITUCIÓN EDUCATIVA SAN PEDRO CLAVER DEPARTAMENTO DE INGLÉS FECHA: 31 DE AGOSTO AL 11 DE SEPTIEMBRE 2015

INSTITUCIÓN EDUCATIVA SAN PEDRO CLAVER DEPARTAMENTO DE INGLÉS FECHA: 31 DE AGOSTO AL 11 DE SEPTIEMBRE 2015 DOCENTE: Juan de Dios Varelas GRADO: 5º A-B-C-D- E - F TEMA: EL CUBO Y ORTOEDRO FECHA: 31 DE AGOSTO AL 11 DE SEPTIEMBRE 2015 ESTANDAR: construyo y descompongo figuras y sólidos a partir de condiciones

Más detalles

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N)

TEORÍA TEMA 9. 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 1. Definición de Viga de alma llena TEORÍA TEMA 9 2. Definición de ESFUERZOS CARACTERÍSTICOS ( Mf.; Q; N) 3. Determinación de los esfuerzos característicos i. Concepto de Polígonos de Presiones ii. Caso

Más detalles

13 LONGITUDES Y ÁREAS

13 LONGITUDES Y ÁREAS 1 LONGITUDES Y ÁREAS EJERCICIOS PROPUESTOS 1.1 Calcula el perímetro de las siguientes figuras. a),5 cm b) cm cm cm cm a) p,5 8 5 1 cm b) p 9 cm 1. Halla el perímetro de estas figuras. a) Un cuadrado de

Más detalles

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada

Juan Antonio González Mota Profesor de Matemáticas del Colegio Juan XIII Zaidín de Granada FUNCIONES CONOCIDAS. FUNCIONES LINEALES. Se llaman funciones lineales a aquellas que se representan mediante rectas. Su epresión en forma eplícita es y f ( ) a b. En sentido más estricto, se llaman funciones

Más detalles

III unidad: vectores y cinemática. Primero medio Graciela Lobos González Profesora de Física

III unidad: vectores y cinemática. Primero medio Graciela Lobos González Profesora de Física III unidad: vectores y cinemática Primero medio Graciela Lobos González Profesora de Física Suma de vectores Sumar es agregar. Este es el sentido de la suma de los vectores. El vector resultante es aquel

Más detalles

VECTORES. Abel Moreno Lorente. February 3, 2015

VECTORES. Abel Moreno Lorente. February 3, 2015 VECTORES Abel Moreno Lorente February 3, 015 1 Aspectos grácos. 1.1 Deniciones. Un vector entre dos puntos A y B es el segmento de recta orientado que tiene su origen en A y su extremo en B. A este vector

Más detalles

PRISMA OBLICUO > REPRESENTACIÓN Y DESARROLLO POR EL MÉTODO DE LA SECCIÓN NORMAL

PRISMA OBLICUO > REPRESENTACIÓN Y DESARROLLO POR EL MÉTODO DE LA SECCIÓN NORMAL 1. CARACTERÍSTICAS GENERALES DEL PRISMA OBLICUO Desde el punto de vista de la representación en SISTEMA DIÉDRICO, el prisma oblicuo presenta dos características importantes que lo diferencian del prisma

Más detalles

Ecuaciones de segundo grado

Ecuaciones de segundo grado 3 Ecuaciones de segundo grado Objetivos En esta quincena aprenderás a: Identificar las soluciones de una ecuación. Reconocer y obtener ecuaciones equivalentes. Resolver ecuaciones de primer grado Resolver

Más detalles

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx.

La derivada de y respecto a x es lo que varía y por cada unidad que varía x. Ese valor se designa por dy dx. Conceptos de derivada y de diferencial Roberto C. Redondo Melchor, Norberto Redondo Melchor, Félix Redondo Quintela 1 Universidad de Salamanca 18 de agosto de 2012 v1.3: 17 de septiembre de 2012 Aunque

Más detalles

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1

Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 Tema 4 Funciones elementales Matemáticas CCSSI 1º Bachillerato 1 TEMA 4 - FUNCIONES ELEMENTALES 4.1 CONCEPTO DE FUNCIÓN DEFINICIÓN : Una función real de variable real es una aplicación de un subconjunto

Más detalles

Módulo 9 Sistema matemático y operaciones binarias

Módulo 9 Sistema matemático y operaciones binarias Módulo 9 Sistema matemático y operaciones binarias OBJETIVO: Identificar los conjuntos de números naturales, enteros, racionales e irracionales; resolver una operación binaria, representar un número racional

Más detalles

TEMA 7 GEOMETRÍA ANALÍTICA

TEMA 7 GEOMETRÍA ANALÍTICA Nueva del Carmen, 35. 470 Valladolid. Tel: 983 9 63 9 Fax: 983 89 96 TEMA 7 GEOMETRÍA ANALÍTICA. Objetivos / Criterios de evaluación O.7. Concepto y propiedades de los vectores O.7. Operaciones con vectores:

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles

CÁLCULO PARA LA INGENIERÍA 1

CÁLCULO PARA LA INGENIERÍA 1 CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!

Más detalles