IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?"

Transcripción

1 IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento aunque no actúe fuerza sobre el cuerpo. La fuerza será necesaria para cambiar el estado de movimiento del mismo, es decir, para cambiar su velocidad. Qué ocurre a los ocupantes de un vehículo cuando arranca o frena bruscamente? Por qué? Cuando arranca el coche, sus ocupantes se van hacia atrás ya que según el primer principio, todo cuerpo en reposo tiende a seguir en reposo, a no ser que haya una fuerza externa. Cuando frena bruscamente, los ocupantes se van hacia delante, ya que no están unidos al coche y según el primer principio, todo cuerpo que se mueve con movimiento rectilíneo y uniforme tenderá a seguir haciéndolo. 3 Hallar sobre los siguientes dibujos, la fuerza resultante de los siguientes casos de fuerzas actuando sobre un cuerpo. 1

2 4 Cuáles son las unidades en el sistema internacional de las magnitudes que están relacionadas en la segunda ley de la dinámica? Define la de fuerza. Son: de masa el kg, de aceleración el m/s y de fuerza el newton, N. Un newton es la fuerza que se ha de aplicar a un cuerpo de masa 1 kg para que adquiera la aceleración de 1 m/s. 5 Es correcta la frase? Este hombre tiene mucha fuerza. Explícalo. No es correcta. Porque las fuerzas no son una propiedad de los cuerpos, sino consecuencia de la interacción con otros cuerpos. Para que exista una fuerza se requiere la existencia de interacción con otros cuerpos. Este hombre tendrá mucha fuerza si sabemos como es su interacción con otro cuerpo. No será posible saber si tiene o no fuerza fijándonos sólo en él. 6 Enuncia el segundo principio de la dinámica y escribe su ecuación fundamental. Si en el segundo principio consideramos que la fuerza resultante es cero, entonces, según la ecuación fundamental: Σ F 0 a = = = 0 y si la aceleración es cero, el móvil estará en reposo o se moverá con movimiento rectilíneo y m m uniforme ( que es lo que afirma el primer principio). 7 Enuncia el tercer principio de la dinámica. Poner un ejemplo que lo explique. Si un cuerpo ejerce una fuerza (acción) sobre otro, éste ejerce sobre el primero una fuerza (reacción) de igual magnitud pero de sentido contrario. Un libro apoyado sobre una mesa ejerce una fuerza sobre ella, pero a su vez la mesa también ejerce una fuerza sobre el libro. 8 Cómo se halla la fuerza resultante de dos fuerzas que actúan sobre un mismo cuerpo? Dibuja la resultante de dos fuerzas, una de dirección y sentido noreste y módulo el doble que otra, de dirección y sentido, este.

3 La fuerza resultante sobre un cuerpo sobre el que actúan dos fuerzas se halla sumando vectorialmente ambas. Para ello, se pone el vector que representa a una de ellas a continuación del que representa a la otra y la fuerza resultante, está representada por el vector que une el origen del primero con el extremo del segundo. 9 A qué se denominan fuerzas concurrentes y fuerza resultante? Fuerzas concurrentes son varias fuerzas con el mismo punto de aplicación que actúan sobre un cuerpo. Fuerza resultante es una fuerza cuyo efecto sobre un cuerpo es igual a la acción conjunta de las fuerzas concurrentes. 10 Dibujar los siguientes pares de fuerzas concurrentes actuando sobre un cuerpo. a) Del mismo sentido y dirección y de módulo una el triple que la otra. b) De la misma dirección, sentido contrario y de módulo una el doble que la otra. c) De dirección perpendiculares, de sentido una hacia el norte y otra hacia el oeste y de módulos iguales. d) De direcciones perpendiculares, de sentido una hacia el sur y otra hacia el este y de módulos, la de sentido hacia el este, el doble que la otra. 11 Sobre un cuerpo actúa una fuerza de 3 N hacia el norte, una de 4 N hacia el oeste, una de 4 N hacia el sur y otra de 1 N hacia el este. Cuál es el módulo de la fuerza resultante? Hállala mediante un dibujo. 3

4 Se componen primero las Fuerzas de la misma dirección: 3 N norte y 4 N sur, da resultante 1 N sur. Y en la dirección perpendicular: 4 N oeste y 1 N este, da resultante 3 N oeste. Luego se componen las dos resultantes para obtener la resultante final aplicando el teorema de Pitágoras. R = 3 +1 R = 10 = 3,16 N 1 Los cazadores al disparar con sus escopetas notan que éstas se mueven hacia atrás golpeándoles en el hombro, a qué se debe esto si los cartuchos se mueven hacia adelante? La escopeta y el cartucho ejercen fuerzas de acción y reacción. La escopeta ejerce una acción sobre el cartucho que hace que este se impulse hacia adelante y el cartucho ejerce a su vez otra fuerza (reacción) sobre la escopeta que hace que esta se mueva en sentido contrario golpeando en el hombro. 13 Explica si la siguiente frase es correcta. Sobre un cuerpo que se desplaza con movimiento uniforme, se puede afirmar que no actúa ninguna fuerza resultante. Habrá que distinguir; si el movimiento es rectilíneo, si que será cierta. Pero si es circular, no. Porque aunque en módulo la velocidad es constante, la dirección de la misma cambia en cada instante y según el primer principio cuando cambia el estado de movimiento de un cuerpo es porque existe una fuerza resultante que actúa sobre él, en este caso la fuerza centrípeta. 14 Explica el tercer principio de la dinámica con el ejemplo de dos remeros avanzando con su barca en un río. Los remeros empujan con los remos el agua hacia atrás (acción) y ésta empuja la barca (reacción) con la misma fuerza pero de sentido contrario hacia adelante. 15 Una determinada fuerza actúa sobre un cuerpo de masa m. Cómo varía su aceleración si la masa disminuye a la mitad y la fuerza aumenta al doble? 4

5 F a = m Si la masa disminuye a la mitad, ésta será m/. Si la fuerza aumenta al doble, ésta será F. La aceleración será: F a = = 4 a, es decir, la aceleración aumenta al cuádruplo. 1/ m 16 Una determinada fuerza actúa sobre un cuerpo cuya masa es m. Cómo variará su aceleración si la masa del cuerpo aumenta al doble? Y si se reduce a la cuarta parte? F a = m Si la masa aumenta al doble, ésta será m y la aceleración: F a a = =, es decir, la aceleración disminuye a la mitad m Si la masa disminuye a la cuarta parta, esta será m/4 y la aceleración será: F 4 F a = = = 4 a, es decir, la aceleración aumenta al cuádruplo. m/ 4 m 17 Un chico de 70 kg y una chica están patinando en una pista de patinaje. El chico ha empujado a la chica con una fuerza de 0 N. Qué masa tiene que tener la chica si se ha movido con una aceleración de 0,4 m/s? Cómo se moverá el chico? F F 0 N Chica: a = m = 50 kg m a = 0,4 m/s = Chico, la fuerza es al misma pero de sentido contrario: F a = m = 0N = 0,85 m/s Dadas la siguientes gráficas de movimiento rectilíneo de un móvil. Razonar en cuáles de ellas el móvil está en equilibrio. 5

6 El móvil estará en equilibrio cuando la fuerza neta sobre él sea cero. Gráfica A. Refleja la variación de la posición igual en cada intervalo de tiempo, es decir se trata de un movimiento uniforme y el móvil estará en equilibrio porque no hay fuerza resultante. Gráfica B. Indica la variación de la posición distinta en cada intervalo de tiempo, es decir se trata de un movimiento con variación de velocidad y el móvil no estará en equilibrio porque está sometido a una fuerza resultante que provoca ese cambio de velocidad. Gráfica C. Indica que la posición en cualquier instante es la misma, luego está en reposo y en equilibrio. Gráfica D. Indica que la variación de la velocidad en cada intervalo de tiempo es la misma, es decir hay variación de la velocidad y el móvil no estará en equilibrio porque está sometido a una fuerza resultante que provoca ese cambio de velocidad. Gráfica E. El primer tramo no está en equilibrio, porque hay variación de la velocidad, disminuye en el tiempo. El segundo tramos si que está en equilibrio, ya que la velocidad es constante y por tanto no hay fuerza resultante. Gráfica E. Indica que en cada instante la velocidad es cero, por tanto estará parado y en equilibrio. 19 Por qué no se anulan las fuerzas de acción y reacción, si son de sentido contrario? Las fuerzas de acción y reacción están aplicadas en cuerpos distintos. Por eso aunque sean iguales y opuestas, no se anulan entre sí; cada una produce un efecto distinto sobre el cuerpo que actúa. 0 Dos fuerzas de 10 y 15 N, respectivamente, están aplicadas a un mismo cuerpo. Hallar la fuerza resultante en las siguientes situaciones: a) Tienen la misma dirección y sentido. b) Tienen misma dirección y sentido contrario. c) Forman un ángulo recto. a) El módulo será la suma de los módulos de ambas fuerzas, 5 N. La dirección y sentido la que tenían las dos fuerzas. b) El módulo será la diferencia de los módulos de las fuerzas, 5 N. La dirección será la que tenían y el sentido hacia la de 15 N. c) El módulo será: R = R = 35 = 18,03 N, la dirección y sentido, serán por ejemplo: 1 Identificar y dibujar todas las fuerzas que actúan sobre una lámpara colgada del techo y sobre la cuerda que le sostiene del techo. 6

7 Sobre la lámpara actúa la fuerza de atracción gravitatoria de la Tierra, peso P. Y, la fuerza que hace la cuerda sobre la lámpara, tensión T. Sobre la cuerda actúa la fuerza de atracción gravitatoria de la Tierra, peso P. Y, la fuerza F1, que la ejerce la lámpara sobre la cuerda y la F, que la ejerce el techo sobre la cuerda. Si dos amigos están en una pista de patinaje, y uno le empuja al otro, se moverán los dos? Cuál se moverá más rápido? Los dos se moverán en sentido contrario, porque si el primero hace una fuerza sobre el segundo (acción), según el tercer principio, el segundo hace otras fuerza igual (reacción) y de sentido contrario. Se moverá más rápido el que menos masa tenga, porque la aceleración es inversamente proporcional a la masa. 3 Hallar la fuerza resultante de dos fuerzas paralelas del distinto sentido de 0 y 30 N aplicadas en los extremos de una barra de 10 cm de longitud. Localiza geométricamente el punto de aplicación de dicha fuerza resultante. 7

8 4 Un ascensor de peso 500 N está descendiendo. En un instante determinado la fuerza de rozamiento del ascensor es 300 N y la fuerza que ejerce el cable del ascensor es de 00 N. Estará en equilibrio en dicho instante? Un cuerpo estará en equilibrio, cuando está en reposo o la resultantes de las fuerzas sobre él es cero. En este caso, como el ascensor está descendiendo, la fuerza de rozamiento será contraria al descenso y se cumplirá: F (cables) + F (Rozamiento) = Peso. Por tanto, N = 500 N, así pues, estará en equilibrio, ya que la resultante de las fuerzas es cero y la velocidad de descenso en este instante será constante. 5 Cómo debe de ser la gráfica F - t del movimiento de un móvil en una recta en cualquier instante, para que cumpla la primera ley de la dinámica? En cualquier instante, la resultante de las fuerzas debe ser igual a cero. Y por tanto, la gráfica será una línea coincidente con el eje de tiempos. 8

9 6 En el dibujo están señalados la dirección y sentido de dos fuerzas iguales sobre un cuerpo, y el módulo, dirección y sentido de una tercera qué módulo tendrán que tener las dos primeras fuerzas para que el cuerpo no se mueva? La resultante de las dos primeras tiene la misma dirección y sentido contrario a la fuerza de 00 N, por tanto tienen que ser iguales si el cuerpo no se ha de mover. Por tanto: R = F + F R = F = F 00 N F = 00 F = = 141,4 N Cada una de las fuerzas tiene de módulo 141, N, dirección la horizontal y sentido hacia la izquierda. 7 Un coche va por una carretera de montaña en la que hay muchas curvas, con una velocidad constante de 50 km/h, podemos afirmar que al llevar velocidad constante no actúa ninguna fuerza resultante sobre él? No podemos realizar tal afirmación, porque al haber curvas, la velocidad cambia de dirección y por tanto hay variación de la misma. Y si esto sucede es porque hay una fuerza resultante sobre el coche. Si no existiera dicha fuerza, el coche en las curvas se saldría de las mismas para seguir con movimiento rectilíneo. 9

10 8 Identificar y dibujar todas las fuerzas que actúan sobre un objeto que está sobre una mesa y que es arrastrado por la misma con una fuerza F. La fuerza F que le arrastra. La fuerza de atracción gravitatoria de la Tierra sobre el objeto, peso, P. La fuerza que hace la mesa sobre el objeto, la normal, N. Y, la fuerza de rozamiento del objeto con la mesa, que es contraria al movimiento FR. 9 Un padre y su hija tienen masas de 80 kg y 40 kg están quietos en una pista de hielo. La hija empuja al padre con una fuerza de 0 N durante medio segundo. Cómo se moverá el padre? Con qué aceleración y velocidad se moverá su hija? La fuerza que recibe el padre es: F = 0 N 0 N a = = 0,5 m/ s 80 kg y al medio segundo llevará la velocidad: v = 0,5 m/ s 0,5 s = 0,15 m/s La fuerza que recibe la hija es de reacción, igual y de sentido contrario, F' = 0 N 0 N a = = 0,5m/ s 40 kg y al medio segundo llevará la velocidad: v = 0,5 m/ s Se moverá en sentido contrario al padre. 0,5 s = 0,5 m/s 30 Con qué velocidad se mueve un coche de kg de masa que se le aplica una fuerza constante de N durante 10 segundos cuando está en reposo? N =1500 kg a a = = m/ s 1500 v = 0 + m/s 10 s = 0 m/s = 7 km/h 10

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida

Más detalles

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Fuerzas

FÍSICA Y QUÍMICA 4º ESO Ejercicios: Fuerzas 1(10) Ejercicio nº 1 Durante cuánto tiempo ha actuado una fuerza de 20 N sobre un cuerpo de masa 25 Kg si le ha comunicado una velocidad de 90 Km/h? Ejercicio nº 2 Un coche de 1000 Kg aumenta su velocidad

Más detalles

Con una serie de leyes muy sencillas pudo sintetizar y explicar entre otras cosas los fundamentos de la dinámica clásica. Pero: Qué es la dinámica?

Con una serie de leyes muy sencillas pudo sintetizar y explicar entre otras cosas los fundamentos de la dinámica clásica. Pero: Qué es la dinámica? 4 año secundario Leyes de Newton Isaac newton (1642-1727), es considerado por los historiadores como un verdadero revolucionario en lo que se refriere a las ciencias y en particular a las ciencias naturales.

Más detalles

La masa es la magnitud física que mide la inercia de los cuerpos: N

La masa es la magnitud física que mide la inercia de los cuerpos: N Pág. 1 16 Las siguientes frases, son verdaderas o falsas? a) Si el primer niño de una fila de niños que corren a la misma velocidad lanza una pelota verticalmente hacia arriba, al caer la recogerá alguno

Más detalles

LEYES DE LA DINÁMICA

LEYES DE LA DINÁMICA LEYES DE LA DINÁMICA Introducción. Se requiere una fuerza para que exista movimiento? Qué o quién mueve a los planetas en sus órbitas? Estas preguntas, que durante años se hizo el hombre, fueron contestadas

Más detalles

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h.

PROBLEMAS DE DINÁMICA. 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. PROBLEMAS DE DINÁMICA 1. Calcula la fuerza que habrá que realizar para frenar, hasta detener en 10 segundos un trineo que se mueve a 50 km/h. 2. Un vehículo de 800 kg se mueve en un tramo recto y horizontal

Más detalles

TEMA 1 FUERZAS Y ESTRUCTURAS

TEMA 1 FUERZAS Y ESTRUCTURAS 1 TEMA 1 FUERZAS Y ESTRUCTURAS FUERZA es aquella causa capaz de producir cambios en el movimiento de un cuerpo o de cambiar su forma. (Por lo tanto, los cuerpos no tienen fuerza, tienen energía. La fuerza

Más detalles

PROBLEMAS RESUELTOS TEMA: 3

PROBLEMAS RESUELTOS TEMA: 3 PROBLEMAS RESUELTOS TEMA: 3 1. Una partícula de 3 kg se desplaza con una velocidad de cuando se encuentra en. Esta partícula se encuentra sometida a una fuerza que varia con la posición del modo indicado

Más detalles

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA.

Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Solución Actividades Tema 4 MOVIMIENTOS RECTILÍNEOS Y CIRCULARES. INTRODUCCIÓN A LA CINEMÁTICA. Actividades Unidad 4. Nos encontramos en el interior de un tren esperando a que comience el viaje. Por la

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 3 LAS FUERZAS Y EL MOVIMIENTO EJERCICIOS PROPUESTOS 3.1 Un malabarista juega con varias pelotas lanzándolas hacia arriba y volviéndolas a coger. Indica cuándo actúan fuerzas a distancia y cuándo por contacto

Más detalles

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética

Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Curso de Preparación Universitaria: Física Guía de Problemas N o 6: Trabajo y Energía Cinética Problema 1: Sobre un cuerpo que se desplaza 20 m está aplicada una fuerza constante, cuya intensidad es de

Más detalles

LEYES DE LA DINÁMICA Y APLICACIONES

LEYES DE LA DINÁMICA Y APLICACIONES CONTENIDOS. LEYES DE LA DINÁMICA Y APLICACIONES Unidad 14 1.- Cantidad de movimiento. 2.- Primera ley de Newton (ley de la inercia). 3.- Segunda ley de la Dinámica. 4.- Impulso mecánico. 5.- Conservación

Más detalles

Ideas básicas sobre movimiento

Ideas básicas sobre movimiento Ideas básicas sobre movimiento Todos conocemos por experiencia qué es el movimiento. En nuestra vida cotidiana, observamos y realizamos infinidad de movimientos. El desplazamiento de los coches, el caminar

Más detalles

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA

CAMPO ELÉCTRICO FCA 10 ANDALUCÍA CMO LÉCTRICO FC 0 NDLUCÍ. a) xplique la relación entre campo y potencial electrostáticos. b) Una partícula cargada se mueve espontáneamente hacia puntos en los que el potencial electrostático es mayor.

Más detalles

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA

PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA PRUEBA ACCESO A CICLOS FORMATIVOS DE GRADO SUPERIOR OPCIÓN B y C, FÍSICA DATOS DEL ASPIRANTE Apellidos: CALIFICACIÓN PRUEBA Nombre: D.N.I. o Pasaporte: Fecha de nacimiento: / / Instrucciones: Lee atentamente

Más detalles

Tema 4: Dinámica del movimiento circular

Tema 4: Dinámica del movimiento circular Tema 4: Dinámica del movimiento circular Ya has estudiado las características del movimiento circular uniforme, calculando la velocidad de giro, relacionándola con la lineal y teniendo en cuenta además

Más detalles

LAS FUERZAS Y EL MOVIMIENTO

LAS FUERZAS Y EL MOVIMIENTO Página 1 LAS UEZAS Y EL MOVIMIENTO DINÁMICA: Es la parte de la ísica que estudia las fuerzas como productoras de movimientos. UEZA: Es toda causa capaz de modificar el estado de reposo o movimiento de

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos Boletín 5 Campo eléctrico Ejercicio 1 La masa de un protón es 1,67 10 7 kg y su carga eléctrica 1,6 10 19 C. Compara la fuerza de repulsión eléctrica entre dos protones situados en

Más detalles

Problemas de Campo eléctrico 2º de bachillerato. Física

Problemas de Campo eléctrico 2º de bachillerato. Física Problemas de Campo eléctrico 2º de bachillerato. Física 1. Un electrón, con velocidad inicial 3 10 5 m/s dirigida en el sentido positivo del eje X, penetra en una región donde existe un campo eléctrico

Más detalles

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas.

(m 2.g - m 2.a - m 1.g - m 1.a ).R = (M.R 2 /2 ). a / R. a = ( m 2 - m 1 ).g / (m 2 + m 1 + M/2) las tensiones son distintas. Dos masas de 1 y 2 kg están unidas por una cuerda inextensible y sin masa que pasa por una polea sin rozamientos. La polea es izada con velocidad constante con una fuerza de 40 Nw. Calcular la tensión

Más detalles

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

CINEMÁTICA I FYQ 1º BAC CC.

CINEMÁTICA I FYQ 1º BAC CC. www.matyfyq.com Página 1 de 5 Pregunta 1: La posición de una partícula en el plano viene dada por la ecuación vectorial: r(t) = (t 2 4) i + (t + 2) j En unidades del SI calcula: a) La posición de la partícula

Más detalles

Ejercicios de cinemática

Ejercicios de cinemática Ejercicios de cinemática 1.- Un ciclista recorre 32,4 km. en una hora. Calcula su rapidez media en m/s. (9 m/s) 2.- La distancia entre dos pueblos es de 12 km. Un ciclista viaja de uno a otro a una rapidez

Más detalles

EJEMPLOS DE CUESTIONES DE EVALUACIÓN

EJEMPLOS DE CUESTIONES DE EVALUACIÓN EJEMPLOS DE CUESTIONES DE EVALUACIÓN 1. EL MOVIMIENTO Dirección en Internet: http://www.iesaguilarycano.com/dpto/fyq/cine4/index.htm a 1. Determine el desplazamiento total en cada uno de los casos siguientes

Más detalles

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía.

Mecánica Racional 20 TEMA 3: Método de Trabajo y Energía. INTRODUCCIÓN. Mecánica Racional 20 Este método es útil y ventajoso porque analiza las fuerzas, velocidad, masa y posición de una partícula sin necesidad de considerar las aceleraciones y además simplifica

Más detalles

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a

Física P.A.U. ELECTROMAGNETISMO 1 ELECTROMAGNETISMO. F = m a Física P.A.U. ELECTOMAGNETISMO 1 ELECTOMAGNETISMO INTODUCCIÓN MÉTODO 1. En general: Se dibujan las fuerzas que actúan sobre el sistema. Se calcula la resultante por el principio de superposición. Se aplica

Más detalles

Ejercicios resueltos

Ejercicios resueltos Ejercicios resueltos oletín 6 Campo magnético Ejercicio Un electrón se acelera por la acción de una diferencia de potencial de 00 V y, posteriormente, penetra en una región en la que existe un campo magnético

Más detalles

1 EL MOVIMIENTO Y SU DESCRIPCIÓN

1 EL MOVIMIENTO Y SU DESCRIPCIÓN EL MOVIMIENTO Y SU DESCRIPCIÓN EJERCICIOS PROPUESTOS. De una persona que duerme se puede decir que está quieta o que se mueve a 06 560 km/h (aproximadamente la velocidad de la Tierra alrededor del Sol).

Más detalles

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA

E G m g h r CONCEPTO DE ENERGÍA - CINÉTICA - POTENCIAL - MECÁNICA Por energía entendemos la capacidad que posee un cuerpo para poder producir cambios en sí mismo o en otros cuerpos. Es una propiedad que asociamos a los cuerpos para poder explicar estos cambios. Ec 1

Más detalles

EXAMEN TIPO TEST NÚMERO 2 MODELO 1 (Física I curso 2008-09)

EXAMEN TIPO TEST NÚMERO 2 MODELO 1 (Física I curso 2008-09) EXAMEN TIPO TEST NÚMERO MODELO 1 (Física I curso 008-09) 1.- Un río de orillas rectas y paralelas tiene una anchura de 0.76 km. La corriente del río baja a 4 km/h y es paralela a los márgenes. El barquero

Más detalles

Qué es una fuerza? Cómo se relaciona con el movimiento?

Qué es una fuerza? Cómo se relaciona con el movimiento? Qué es una fuerza? Cómo se relaciona con el movimiento? Prof. Bartolomé Yankovic Nola, 2012 1 Cuando pateamos una pelota o empujamos una mesa, podemos afirmar que se está ejerciendo o se ha ejercido una

Más detalles

PROBLEMAS DE EQUILIBRIO

PROBLEMAS DE EQUILIBRIO PROBLEMAS DE EQUILIBRIO NIVEL BACHILLERATO Con una honda Curva con peralte Tomar una curva sin volcar Patinador en curva Equilibrio de una puerta Equilibrio de una escalera Columpio Cuerda sobre cilindro

Más detalles

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA

Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro

Más detalles

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo)

La magnitud vectorial mas simple es el desplazamiento (cambio de posición de un punto a otro de una partícula o de un cuerpo) Existen ciertas magnitudes que quedan perfectamente determinadas cuando se conoce el nombre de una unidad y el numero de veces que se ha tomado.estas unidades se llaman escalares (tiempo, volumen, longitud,

Más detalles

NOMBRE:. AREA: FISICA. GRADO:10 FECHA:

NOMBRE:. AREA: FISICA. GRADO:10 FECHA: NOMBRE:. AREA: FISICA. GRADO:10 FECHA: A.SELECCIONA LA RESPUESTA CORRECTA: 1. las unidades básicas del Sistema Internacional son: a. metro, kilogramo, minutos. b. centímetro, gramo, segundo. c. metro,

Más detalles

Problemas de Física 1 o Bachillerato

Problemas de Física 1 o Bachillerato Problemas de Física o Bachillerato Principio de conservación de la energía mecánica. Desde una altura h dejamos caer un cuerpo. Hallar en qué punto de su recorrido se cumple E c = 4 E p 2. Desde la parte

Más detalles

principios de la dinámica

principios de la dinámica 12 Los A-PDF Manual Split Demo. Purchase from www.a-pdf.com to remove the watermark principios de la dinámica 1 Una fuerza tiene de módulo 4 N y forma un ángulo con el eje positivo de las x de 30. Calcula

Más detalles

Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig.

Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. Nombre:..Curso:.. GUIA DE TRABAJO Y POTENCIA MECANICA Trabajo realizado por una fuerza. Un niño traslada una caja desde el punto A al punto B recorriendo 4 m (fig. N 1), fig N 1 Desde el punto de vista

Más detalles

OSCILACIONES ARMÓNICAS

OSCILACIONES ARMÓNICAS Tema 5 OSCILACIONES ARMÓNICAS 5.1. Introducción. 5.. Movimiento armónico simple (MAS). 5.3. Cinemática y dinámica del MAS. 5.4. Fuerza y energía en el MAS. 5.5. Péndulo simple. MAS y movimiento circular

Más detalles

Otras tareas y actividades: Preguntas y problemas

Otras tareas y actividades: Preguntas y problemas FISICA MECANICA DOCUMENTO DE CONTENIDO TALLER DE EJERCICIOS LAPIZ Y PAPEL Otras tareas y actividades: Preguntas y problemas A continuación usted encontrara preguntas y problemas que debe resolver para

Más detalles

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j.

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. 1 1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. a) Halla la posición de la partícula para t = 3 s. b) Halla la distancia al origen para t = 3 s. 2. La velocidad

Más detalles

VECTORES. Por ejemplo: la velocidad de un automóvil, o la fuerza ejercida por una persona sobre un objeto.

VECTORES. Por ejemplo: la velocidad de un automóvil, o la fuerza ejercida por una persona sobre un objeto. Un vector v es un segmento orientado. VECTORES Se representa gráficamente por medio de una flecha, por ejemplo: Todos los vectores poseen las siguientes características: Punto de aplicación: es el lugar

Más detalles

PRUEBA FORMATIVA DE FISICA

PRUEBA FORMATIVA DE FISICA PRUEBA FORMATIVA DE FISICA TEMA 1: Un vector tiene 10 de módulo y sus componentes están en la relación 1:2. La componente rectangular de menor valor es: a) 5 b) c) d) e)... TEMA 2: Una partícula parte

Más detalles

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos.

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos. ESTATICA: Rama de la física que estudia el equilibrio de los cuerpos. TIPOS DE MAGNITUDES: MAGNITUD ESCALAR: Es una cantidad física que se especifica por un número y una unidad. Ejemplos: La temperatura

Más detalles

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff

Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.

Más detalles

6 Energía mecánica y trabajo

6 Energía mecánica y trabajo 6 Energía mecánica y trabajo EJERCICIOS PROPUESTOS 6.1 Indica tres ejemplos de sistemas o cuerpos de la vida cotidiana que tengan energía asociada al movimiento. Una persona que camina, un automóvil que

Más detalles

2. Dado el campo de fuerzas F x, Solución: W = 6 J

2. Dado el campo de fuerzas F x, Solución: W = 6 J UNIVERSIDD DE OVIEDO Escuela Politécnica de Ingeniería de Gijón Curso 013-4 1. Dos objetos, uno con masa doble que el otro, cuelgan de los extremos de la cuerda de una polea fija de masa despreciable y

Más detalles

5.3 Teorema de conservación de la cantidad de movimiento

5.3 Teorema de conservación de la cantidad de movimiento 105 UNIDAD V 5 Sistemas de Partículas 5.1 Dinámica de un sistema de partículas 5.2 Movimiento del centro de masa 5.3 Teorema de conservación de la cantidad de movimiento 5.4 Teorema de conservación de

Más detalles

2. CLASIFICACIÓN DE LOS CHOQUES SEGÚN LA EXISTENCIA O NO DE VÍNCULOS EXTERNOS

2. CLASIFICACIÓN DE LOS CHOQUES SEGÚN LA EXISTENCIA O NO DE VÍNCULOS EXTERNOS COLISIONES O CHOQUES 1. INTRODUCCIÓN Las colisiones o choques son procesos en los cuales partículas o cuerpos entran durante un determinado tiempo Δt en interacción de magnitud tal, que pueden despreciarse,

Más detalles

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CAPITULO 7 FISICA I CUARTA, QUINTA Y SEXTA EDICION SERWAY Raymond A. Serway Sección 7.1 Trabajo hecho por una fuerza constante Sección 7. El producto escalar de dos

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA 1.- El bloque mostrado se encuentra afectado por fuerzas que le permiten desplazarse desde A hasta B.

Más detalles

Ejercicios resueltos de cinemática

Ejercicios resueltos de cinemática Ejercicios resueltos de cinemática 1) Un cuerpo situado 50 metros por debajo del origen, se mueve verticalmente con velocidad inicial de 20 m/s, siendo la aceleración de la gravedad g = 9,8 m/s 2. a) Escribe

Más detalles

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen.

1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. Física 2º de Bachillerato. Problemas de Campo Eléctrico. 1.- Explica por qué los cuerpos cargados con cargas de distinto signo se atraen, mientras que si las cargas son del mismo signo, se repelen. 2.-

Más detalles

F X = F cos 30 F X = 20 cos 30. F X = 17,32 Kg. F Y = F sen 30 F Y = 20 * (0,5) F Y = 10 Kg.

F X = F cos 30 F X = 20 cos 30. F X = 17,32 Kg. F Y = F sen 30 F Y = 20 * (0,5) F Y = 10 Kg. CAPIULO 1 COMPOSICIO Y DESCOMPOSICIO DE VECORES Problema 1.2 SEARS ZEMASKY Una caja es empujada sobre el suelo por una fuerza de 20 kg. que forma un ángulo de con la horizontal. Encontrar las componentes

Más detalles

FUERZA CENTRÍPETA Y FUERZA CENTRÍFUGA

FUERZA CENTRÍPETA Y FUERZA CENTRÍFUGA FUERZA CENTRÍPETA Y FUERZA CENTRÍFUGA RODRIGO BRAVO Como sabemos, los conceptos de fuerza centrípeta y fuerza centrífuga son fundamentales en Mecánica al estudiar la dinámica del movimiento curvilíneo.

Más detalles

2.3. ASPECTOS ENERGÉTICOS

2.3. ASPECTOS ENERGÉTICOS .3. ASPECTOS ENERGÉTICOS.3.1. Sobre un cuerpo actúa una fuerza representada en la gráfica de la figura. Podemos decir que el trabajo realizado por la fuerza es: a) (8/+16+16/) J b)(4+3+3) J c) (4+16+4)

Más detalles

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema).

Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 2012 Problemas (Dos puntos por problema). Examen de Física-1, 1 Ingeniería Química Examen final. Septiembre de 01 Problemas (Dos puntos por problema). Problema 1 (Primer parcial): Suponga que trabaja para una gran compañía de transporte y que

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS LOS MOVIMIENTOS ACELERADOS EJERCICIOS PROPUESTOS. Cuando un motorista arranca, se sabe que posee un movimiento acelerado sin necesidad de ver la gráfica s-t ni conocer su trayectoria. Por qué? Porque al

Más detalles

Nivelación de Matemática MTHA UNLP 1. Vectores

Nivelación de Matemática MTHA UNLP 1. Vectores Nivelación de Matemática MTHA UNLP 1 1. Definiciones básicas Vectores 1.1. Magnitudes escalares y vectoriales. Hay magnitudes que quedan determinadas dando un solo número real: su medida. Por ejemplo:

Más detalles

TEMA 7: TRABAJO Y ENERGÍA.

TEMA 7: TRABAJO Y ENERGÍA. Física y Química 4 ESO TRABAJO Y ENERGÍA Pág. 1 TEMA 7: TRABAJO Y ENERGÍA. DEFINICIÓN DE ENERGÍA La energía no es algo tangible. Es un concepto físico, una abstracción creada por la mente humana que ha

Más detalles

INTERACCIÓN GRAVITATORIA

INTERACCIÓN GRAVITATORIA INTERACCIÓN GRAVITATORIA 1. Teorías y módulos. 2. Ley de gravitación universal de Newton. 3. El campo gravitatorio. 4. Energía potencial gravitatoria. 5. El potencial gravitatorio. 6. Movimientos de masas

Más detalles

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?.

[c] Qué energía mecánica posee el sistema muelle-masa? Y si la masa fuese 2 y la constante 2K?. Actividad 1 La figura representa un péndulo horizontal de resorte. La masa del bloque vale M y la constante elástica del resorte K. No hay rozamientos. Inicialmente el muelle está sin deformar. [a] Si

Más detalles

La primera condición de equilibrio requiere que Σ F = 0, o bien, en forma de componentes, que:

La primera condición de equilibrio requiere que Σ F = 0, o bien, en forma de componentes, que: Las fuerzas concurrentes son todas las fuerzas que actúan cuyas líneas de acción pasan a través de un punto común. Las fuerzas que actúan sobre un objeto puntual son concurrentes porque toas ellas pasan

Más detalles

8 GEOMETRÍA ANALÍTICA

8 GEOMETRÍA ANALÍTICA 8 GEOMETRÍA ANALÍTICA EJERCICIOS PROPUESTOS 8. Las coordenadas de los vértices de un rectángulo son A(, ); B(, 5); C(6, 5), y D(6, ). Halla las coordenadas y representa los vectores AB, BC, CD y DA. Qué

Más detalles

Segunda Ley de Newton

Segunda Ley de Newton Segunda Ley de Newton Laboratorio de Mecánica y fluidos Objetivos El alumno entenderá la relación entre las fuerzas de la naturaleza y el movimiento. El estudiante encontrará la relación entre las fuerzas

Más detalles

Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA. Objetivos. Teoría

Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA. Objetivos. Teoría Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA Objetivos 1. Definir las energías cinética, potencial y mecánica. Explicar el principio de conservación de la energía mecánica

Más detalles

1.1 CANTIDADES VECTORIALES Y ESCALARES. Definición de Magnitud

1.1 CANTIDADES VECTORIALES Y ESCALARES. Definición de Magnitud 1.1 CANTIDADES VECTORIALES Y ESCALARES Definición de Magnitud Atributo de un fenómeno, cuerpo o sustancia que puede ser distinguido cualitativamente y determinado cuantitativamente. También se entiende

Más detalles

Funciones más usuales 1

Funciones más usuales 1 Funciones más usuales 1 1. La función constante Funciones más usuales La función constante Consideremos la función más sencilla, por ejemplo. La imagen de cualquier número es siempre 2. Si hacemos una

Más detalles

Tema 3. Trabajo y Energía

Tema 3. Trabajo y Energía Tema 3. Trabajo y Energía CONTENIDOS Energía, trabajo y potencia. Unidades SI (conceptos y cálculos) Teorema del trabajo y la energía. Energía cinética (conceptos y cálculos) Fuerzas conservativas. Energía

Más detalles

TRABAJO Y ENERGÍA. Campos de fuerzas

TRABAJO Y ENERGÍA. Campos de fuerzas TRABAJO Y ENERGÍA 1. Campos de fuerzas. Fuerzas dependientes de la posición. 2. Trabajo. Potencia. 3. La energía cinética: Teorema de la energía cinética. 4. Campos conservativos de fuerzas. Energía potencial.

Más detalles

Relación entre peso, masa y gravedad

Relación entre peso, masa y gravedad Relación entre peso, masa y gravedad Todo cae; las hojas de los árboles, un ladrillo, un lápiz y nos parece obvio. Pero fue Isaac Newton, allá por el siglo XVII que, probablemente observando cómo caía

Más detalles

Problemas de Cinemática 1 o Bachillerato

Problemas de Cinemática 1 o Bachillerato Problemas de Cinemática 1 o Bachillerato 1. Sean los vectores a = i y b = i 5 j. Demostrar que a + b = a + b a b cos ϕ donde ϕ es el ángulo que forma el vector b con el eje X.. Una barca, que lleva una

Más detalles

1. CARACTERÍSTICAS DEL MOVIMIENTO.

1. CARACTERÍSTICAS DEL MOVIMIENTO. Tema 6. Cinemática. 1 Tema 6. CINEMÁTICA. 1. CARACTERÍSTICAS DEL MOVIMIENTO. 1.- Indica por qué un motorista que conduce una moto siente viento en su cara aunque el aire esté en calma. (2.R1) 2.- Se ha

Más detalles

2 )d = 5 kg x (9,8 m/s 2 + ( ) 2

2 )d = 5 kg x (9,8 m/s 2 + ( ) 2 Solucionario TRABAJO, ENERGIA Y POTENCIA MECANICA 1.- Calcular el trabajo realizado al elevar un cuerpo de 5 kg hasta una altura de 2 m en 3 s. Expresar el resultado en Joule y en erg. Voy a proponer dos

Más detalles

Módulo 1: Mecánica Cantidad de movimiento (momentum) Un objeto A golpea a un objeto B. Qué pasa?

Módulo 1: Mecánica Cantidad de movimiento (momentum) Un objeto A golpea a un objeto B. Qué pasa? Módulo 1: Mecánica Cantidad de movimiento (momentum) Un objeto A golpea a un objeto B. Qué pasa? Cantidad de movimiento La cantidad de movimiento de un objeto es, Cantidad de movimiento = Masa Velocidad

Más detalles

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura.

(b) v constante, por lo que la bola posee una aceleración normal hacia el centro de curvatura. Cuestiones 1. Una bola pequeña rueda en el interior de un recipiente cónico de eje vertical y semiángulo α en el vértice A qué altura h sobre el vértice se encontrará la bolita en órbita estable con una

Más detalles

FUERZA CENTRIPETA Y CENTRIFUGA. De acuerdo con la segunda ley de Newton =

FUERZA CENTRIPETA Y CENTRIFUGA. De acuerdo con la segunda ley de Newton = FUEZA CENTIPETA Y CENTIFUGA. De acuerdo con la segunda ley de Newton = F m a para que un cuerpo pesa una aceleración debe actuar permanentemente sobre el una fuerza resultante y la aceleración tiene el

Más detalles

TEMA: CAMPO ELÉCTRICO

TEMA: CAMPO ELÉCTRICO TEMA: CAMPO ELÉCTRICO C-J-06 Una carga puntual de valor Q ocupa la posición (0,0) del plano XY en el vacío. En un punto A del eje X el potencial es V = -120 V, y el campo eléctrico es E = -80 i N/C, siendo

Más detalles

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i

Trabajo y Energía. W = FO. xo. t t =mvo. vo= ( 1 2 m vo2 )= K, y, F z = U E = K +U. E =K + i. U i Trabajo y Energía Trabajo vo xo=m vo xo W = FO. xo FO: Fuerza aplicada, XOes el desplazamiento. Usando la Segunda Ley de Newton: W = m t t =mvo. vo= ( 1 2 m vo2 )= K, Teorema del Trabajo y la Energía K

Más detalles

Tema 5: Dinámica del punto II

Tema 5: Dinámica del punto II Tema 5: Dinámica del punto II FISICA I, 1º Grado en Ingeniería Civil Escuela Técnica Superior de Ingeniería Universidad de Sevilla 1 Índice Leyes de Newton Dinámica del punto material Trabajo mecánico

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Introducción al Movimiento Armónico Simple En esta página se pretende que el alumno observe la representación del Movimiento Armónico Simple (en lo que sigue M.A.S.), identificando

Más detalles

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8

Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8 Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características

Más detalles

Trabajo Práctico º 2 Movimiento en dos o tres dimensiones

Trabajo Práctico º 2 Movimiento en dos o tres dimensiones Departamento de Física Año 011 Trabajo Práctico º Movimiento en dos o tres dimensiones Problema 1. Se está usando un carrito robot para explorar la superficie de Marte. El módulo de descenso es el origen

Más detalles

V. FRICCIÓN. que actúan sobre él son su peso y la reacción de la superficie; en este caso la reacción es perpendicular o normal a dicha

V. FRICCIÓN. que actúan sobre él son su peso y la reacción de la superficie; en este caso la reacción es perpendicular o normal a dicha V. FRICCIÓN La fricción o rozamiento es una fuerza de importancia singular. La estudiaremos en este lugar como una aplicación concreta de los proble-mas de equilibrio, aun cuando la fricción aparece también

Más detalles

A continuación voy a colocar las fuerzas que intervienen en nuestro problema.

A continuación voy a colocar las fuerzas que intervienen en nuestro problema. ísica EL PLANO INCLINADO Supongamos que tenemos un plano inclinado. Sobre él colocamos un cubo, de manera que se deslice sobre la superficie hasta llegar al plano horizontal. Vamos a suponer que tenemos

Más detalles

CARTILLA DE ESTÁTICA FUERZA CONCURRENTES Y NO CONURRENTES APOYOS REACCIONES DE APOYO

CARTILLA DE ESTÁTICA FUERZA CONCURRENTES Y NO CONURRENTES APOYOS REACCIONES DE APOYO CARTILLA DE ESTÁTICA FUERZA CONCURRENTES Y NO CONURRENTES APOYOS REACCIONES DE APOYO 1- Calcular, gráfica y analíticamente, la tensión en los cables que sostienen una lámpara de 30 Kg. de peso. El centro

Más detalles

INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO

INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO GUAS DE ESTUDIO PARA LOS GRADOS: 11º AREA: FISICA PROFESOR: DALTON MORALES TEMA DE LA FISICA A TRATAR: ENERGÍA I La energía desempeña un papel muy importante

Más detalles

1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE

1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE Trabajo y energía 1. Trabajo y energía Hasta ahora hemos estudiado el movimiento traslacional de un objeto en términos de las tres leyes de Newton. En este análisis la fuerza ha jugado un papel central.

Más detalles

EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo

EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo 1. El vector posición de un punto, en función del tiempo, viene dado

Más detalles

ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010

ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010 ORIENTACIONES PARA LA MATERIA DE FÍSICA Convocatoria 2010 Prueba de Acceso para Mayores de 25 años Para que un adulto mayor de 25 años pueda incorporarse plenamente en los estudios superiores de la Física

Más detalles

IES Menéndez Tolosa La Línea de la Concepción. Consejería de Educación JUNTA DE ANDALUCÍA

IES Menéndez Tolosa La Línea de la Concepción. Consejería de Educación JUNTA DE ANDALUCÍA Consejería de Educación JUNTA DE ANDALUCÍA IES Menéndez Tolosa La Línea de la Concepción Fuerzas en la misma dirección y sentido F r F r r r F + F r r r R = F + F R = F +F Fuerzas en la misma dirección

Más detalles

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA 1. La figura muestra una bola de 100 g. sujeta a un resorte sin estiramiento, de longitud L 0 = 19 cm y constante K desconocida. Si la bola se suelta en

Más detalles

Tema 1. Movimiento de una Partícula

Tema 1. Movimiento de una Partícula Tema 1. Movimiento de una Partícula CONTENIDOS Rapidez media, velocidad media, velocidad instantánea y velocidad constante. Velocidades relativas sobre una línea recta (paralelas y colineales) Movimiento

Más detalles

ENERGÍA (II) FUERZAS CONSERVATIVAS

ENERGÍA (II) FUERZAS CONSERVATIVAS NRGÍA (II) URZAS CONSRVATIVAS IS La Magdalena. Avilés. Asturias Cuando elevamos un cuerpo una altura h, la fuerza realiza trabajo positivo (comunica energía cinética al cuerpo). No podríamos aplicar la

Más detalles

Instrucciones Sólo hay una respuesta correcta por pregunta. Salvo que se indique explícitamente lo contrario, todas las resistencias, bombillas o

Instrucciones Sólo hay una respuesta correcta por pregunta. Salvo que se indique explícitamente lo contrario, todas las resistencias, bombillas o 1. Una partícula de 2 kg, que se mueve en el eje OX, realiza un movimiento armónico simple. Su posición en función del tiempo es x(t) = 5 cos (3t) m y su energía potencial es E pot (t) = 9 x 2 (t) J. (SEL

Más detalles

Resumen fórmulas de energía y trabajo

Resumen fórmulas de energía y trabajo Resumen fórmulas de energía y trabajo Si la fuerza es variable W = F dr Trabajo r Si la fuerza es constante r r r W = F Δ = F Δ cosθ r Si actúan varias fuerzas r r r r r W total = Δ + F Δ + + Δ = W + W

Más detalles

UNIDAD EDUCATIVA SALESIANA CARDENAL SPELLMAN

UNIDAD EDUCATIVA SALESIANA CARDENAL SPELLMAN UNIDAD EDUCATIVA SALESIANA CARDENAL SPELLMAN CUESTIONARIO DE OPTATIVA II: FISICA-CÁLCULO DIFERENCIAL TERCERO DE BACHILLERATO (Examen Escrito de Grado) Dr. Eduardo Cadena Cazares 1.- ANALIZAR LA INFORMACIÓN

Más detalles

Las leyes del movimiento

Las leyes del movimiento Las leyes del movimiento Prof. Bartolomé Yankovic Nola (2012) 1 En el siglo XVII uno de los hombres de ciencia más grandes de todos los tiempos, el italiano Galileo Galilei, realizó los primeros experimentos

Más detalles

ESTATICA Y RESISTENCIA DE MATERIALES (Ing. Industrial) T P Nº 1: SISTEMAS DE FUERZAS

ESTATICA Y RESISTENCIA DE MATERIALES (Ing. Industrial) T P Nº 1: SISTEMAS DE FUERZAS ESTATICA Y RESISTENCIA DE MATERIALES (Ing. Industrial) T P Nº 1: SISTEMAS DE FUERZAS Fuerzas Concurrentes 1- Las fuerzas F1, F2 y F3, que actúan en el punto A del soporte de la figura, están especificadas

Más detalles

Apuntes de FÍSICA Y QUÍMICA 1º BACHILLERATO

Apuntes de FÍSICA Y QUÍMICA 1º BACHILLERATO 1 Apuntes de FÍSICA Y QUÍMICA 1º BACHILLERATO IES FRANCÉS DE ARANDA. TERUEL. DEPARTAMENTO DE FÍSICA Y QUÍMICA 2 FÍSICA Y QUÍMICA. 1º BACHILLERATO. CONTENIDOS. I.- CINEMÁTICA. 1. Movimiento: sistema de

Más detalles