Qué es una fuerza? Cómo se relaciona con el movimiento?

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Qué es una fuerza? Cómo se relaciona con el movimiento?"

Transcripción

1 Qué es una fuerza? Cómo se relaciona con el movimiento? Prof. Bartolomé Yankovic Nola, Cuando pateamos una pelota o empujamos una mesa, podemos afirmar que se está ejerciendo o se ha ejercido una fuerza. PERO AFIRMAR QUE PARA QUE SE PRODUZCA UN MOVIMIENTO ES NECESARIA EJERCER UNA FUERZA es un error. Una fuerza puede poner un cuerpo en movimiento o detenerlo. Entonces, fuerza es aquello que cambia el estado de movimiento o reposo de un cuerpo. Dos mujeres empujan un automóvil para ponerlo en movimiento. Ellas están ejerciendo una fuerza de contacto - sobre el vehículo. En algunos casos las fuerzas son evidentes, como, por ejemplo, en la pelota que rueda por la cancha y que acaba de ser lanzada por un jugador. El jugador ha efectuado una fuerza directamente sobre la pelota y ésta se ha puesto en movimiento. Estas fuerzas se llaman fuerzas de contacto. En otros casos las fuerzas son más difíciles de observar. Por ejemplo, las fuerzas que actúan sobre los planetas del sistema solar y que los mantienen girando en torno al Sol son fuerzas más complejas. Se llaman fuerzas a distancia. Del mismo modo, la fuerza que mueve un automóvil es el resultado de una serie de transformaciones que tienen lugar en el motor del vehículo y que se relacionan con la mayor potencia del vehículo. En rigor, el acelerador del auto aumenta o disminuye la cantidad de combustible que llega al carburador, y así, controla la rapidez con que se transforma le energía química del combustible en energía mecánica. Una fuerza inexistente? Supongamos un carrito de juguete que se desplaza sobre una mesa. Una persona empuja el carro de tal forma que éste rueda uniformemente. Aquí es posible identificar cuatro fuerzas: - Una hacia delante, que es ejercida por una persona que acciona el carrito; - Una hacia atrás, la fuerza del roce, ejercida por la mesa; - Una hacia abajo, el peso, que es ejercida por la Tierra; - Una hacia arriba, que es ejercida por la mesa.

2 Analicemos un segundo caso: la persona da un impulso inicial al carrito. Cuando este objeto es impulsado, empieza a moverse en determinada dirección. 2 Qué fuerzas actúan sobre el carrito en este caso? Una hacia delante, que es ejercida por una persona que acciona el carrito; Una hacia atrás, la fuerza del roce, ejercida por la mesa; Una hacia abajo, el peso, que es ejercida por la Tierra; Una hacia arriba, que es ejercida por la mesa. Veamos una tercera situación. Una persona da un impulso inicial al carrito. Entonces, el carrito rueda sobre la mesa y se va deteniendo poco a poco. Qué fuerzas han actuado sobre el carrito después del impulso inicial? Una, hacia atrás, el roce, que es ejercida por la mesa y que tiene como resultado que el carrito se vaya deteniendo, poco a poco; Otra, hacia abajo, el peso, que es una fuerza ejercida por la Tierra; Otra, hacia arriba, ejercida por la mesa y que impide que el carrito se hunda. Contrariamente a la creencia de la mayoría, en este caso no hay ninguna fuerza actuando sobre el carrito hacia adelante. Para aclarar esto basta preguntarse quién podría estar ejerciendo una fuerza hacia delante: - La persona que dio el impulso inicial, ya no tiene contacto con el objeto mientras este se mueve sobre la mesa; - El propio carrito no puede ser porque un cuerpo no puede ejercer fuerza sobre sí mismo; - La mesa ejerce dos fuerzas sobre el carrito una hacia arriba, otra hacia atrás -, pero no ejerce fuerza alguna hacia delante; - La Tierra también ejerce una fuerza, pero hacia abajo. Entonces, hay que convencerse: el carrito se mueve sin que nadie esté ejerciendo sobre él una fuerza hacia delante. En otras palabras, cuando el carrito va rodando sobre la mesa no actúa sobre él ninguna fuerza hacia delante. Entonces, de esto deriva una importante conclusión: Para que un cuerpo esté en movimiento no es necesario que haya una fuerza actuando sobre él en la misma dirección del movimiento. En algunos casos puede existir una fuerza hacia adelante; por ejemplo, en un carro tirado por caballos pero también puede suceder que no haya ninguna fuerza hacia delante, como en

3 el ejemplo ya descrito del carrito que recibe un impulso inicial y sigue moviéndose sin que nadie lo empuje. Entonces, se comete un error cuando se afirma que un cuerpo solo se mueve si sobre él actúa una fuerza. 3 Para que un cuerpo esté en movimiento no es necesario que haya una fuerza actuando sobre él en la misma dirección del movimiento. En algunos casos puede existir una fuerza hacia adelante; por ejemplo, en un carro tirado por caballos pero también puede suceder que no haya ninguna fuerza hacia delante, como en el ejemplo ya descrito del carrito que recibe un impulso inicial y sigue moviéndose sin que nadie lo empuje. Entonces, se comete un error cuando se afirma que un cuerpo solo se mueve si sobre él actúa una fuerza. Las fuerzas que actúan sobre un cuerpo influyen en su movimiento. Por ejemplo, pueden modificar la rapidez con que se mueve el cuerpo o pueden hacerlo cambiar de dirección. Se necesita una fuerza para poner en movimiento a un cuerpo que está en reposo, o para detener el cuerpo que está en movimiento. Es necesaria una fuerza para aumentar la rapidez de un objeto. Y es necesaria una fuerza para disminuir su velocidad. La nueva concepción Según la concepción tradicional, en ausencia de fuerzas, todo cuerpo en movimiento se detiene más tarde o más temprano. Según la concepción moderna (*), en ausencia de fuerzas, todo cuerpo en movimiento continúa moviéndose indefinidamente (*) Muñoz, Héctor (1992). Física, Primero Medio. Ediciones pedagógicas chilenas, Santiago. Pág. 55. La concepción tradicional afirmaba que las fuerzas son la causa del movimiento; la nueva concepción ve a las fuerzas como la causa de las variaciones de velocidad. Los elementos de una fuerza Consideremos los movimientos de un jugador de billar. Unas veces toma el taco y golpea la bola en un lado. El jugador sabe muy bien que, según el lugar en que golpee la bola, es decir, según el punto en el cual ejerza su fuerza, los resultados de la jugada serán diferentes.

4 Al estudiar una fuerza es muy importante saber en qué lugar se ha aplicado. Este lugar se llama punto de aplicación de la fuerza. Sigamos observando los movimientos del jugador de billar: al mover el taco, puede impulsar la bola hacia un lugar u otro, para lo cual se coloca en un punto de la mesa. Lo que le interesa es que la bola tenga una determinada dirección. Así, pues, también es fundamental saber en qué dirección se ejerce una fuerza. 4 La dirección de una fuerza es la línea recta en la cual se aplica dicha fuerza. El punto de aplicación es, por lo tanto, un punto de la línea recta que marca la dirección. Por otra parte, dentro de la dirección elegida la bola se puede mandar a la derecha o a la izquierda. En toda dirección puede haber dos sentidos opuestos. Para saber cómo es exactamente la fuerza que el jugador ha ejercido necesitamos saber en qué sentido se ha ejercido la fuerza. En este caso necesitaríamos saber si el jugador ha lanzado la bola hacia la izquierda o hacia la derecha. Por último, el jugador puede ejercer más o menos fuerza sobre el taco al dar el golpe. La fuerza quedará totalmente determinada, si, además de los anteriores elementos, conocemos su intensidad. La intensidad nos indica si una fuerza es mayor o menor. Entonces, para conocer perfectamente una fuerza y, por consiguiente, los efectos que puede ejercer sobre un cuerpo, es preciso determinar su punto de aplicación, dirección, sentido e intensidad. Una persona empuja Además de su intensidad, la fuerza tiene un punto de aplicación, dirección, y sentido.

5 Resumiendo: se llama punto de aplicación al lugar del cuerpo donde se aplica la fuerza. La dirección queda señalada por la recta según la cual se manifiesta la fuerza. El sentido es el lugar hacia donde se dirige el esfuerzo, si éste es suficiente, el cuerpo se mueve. En toda dirección hay dos sentidos opuestos. La intensidad es el valor de la fuerza que actúa. En el dibujo representamos a fuerzas de igual dirección A y B - pero con sentido e intensidad distintos. B tiene mayor intensidad que A. A B 5 La representación gráfica de las fuerzas Una vez conocidos los elementos de una fuerza (dirección, punto de aplicación y sentido), parece evidente que su representación debe ser una flecha. El origen de la flecha indica el punto de aplicación de la fuerza. La línea recta a la que pertenece la flecha coincide con la dirección de la fuerza. El extremo de la flecha nos indica el sentido, puesto que en una misma dirección puede haber dos sentidos opuestos. Así, por ejemplo, las fuerzas a y b de la ilustración tienen la misma dirección, pero sus sentidos son opuestos. Por último, la longitud de la flecha mide exactamente la intensidad de la fuerza. Cuando más larga sea la flecha, mayor será la intensidad de la fuerza. Entonces, en el ejemplo, la intensidad de la fuerza a es mayor que la intensidad de b. En estas fuerzas, A y B son los puntos de aplicación. Otros ejemplos se presentan en los dibujos: La fuerza A tiene la misma dirección y sentido que la fuerza B, pero la intensidad de B es mayor; La fuerza C y D tienen la misma dirección, pero distinto sentido. Además, la fuerza D tiene mayor intensidad que C.

6 6 E y F tienen la misma intensidad, pero diferente dirección y sentido. En el Sistema Internacional de Unidades la intensidad de una fuerza se mide en newtons (N). Síntesis Fuerza es aquello que cambia el estado de movimiento o de reposo de un cuerpo. No es la causa del movimiento! Toda fuerza viene definida por su punto de aplicación, su intensidad, su dirección y su sentido. En el Sistema Internacional de Unidades la intensidad de una fuerza se mide en newton (N)

Las leyes del movimiento

Las leyes del movimiento Las leyes del movimiento Prof. Bartolomé Yankovic Nola (2012) 1 En el siglo XVII uno de los hombres de ciencia más grandes de todos los tiempos, el italiano Galileo Galilei, realizó los primeros experimentos

Más detalles

La sala de clases! Fuerza y movimiento en la Educación Básica

La sala de clases! Fuerza y movimiento en la Educación Básica La sala de clases! Fuerza y movimiento en la Educación Básica Prof. Bartolomé Yankovic Nola, 2012 1 Los contenidos sobre fuerza y movimiento se concentran en los cursos 4º, 7º y 8º, en estos últimos cursos,

Más detalles

Tema 1. Movimiento de una Partícula

Tema 1. Movimiento de una Partícula Tema 1. Movimiento de una Partícula CONTENIDOS Rapidez media, velocidad media, velocidad instantánea y velocidad constante. Velocidades relativas sobre una línea recta (paralelas y colineales) Movimiento

Más detalles

ACTIVIDAD: DIAGRAMA DE FUERZAS

ACTIVIDAD: DIAGRAMA DE FUERZAS ACTIVIDAD: DIAGRAMA DE FUERZAS Cómo se representan las fuerzas? Las fuerzas no se pueden ver, sólo podemos ver sus efectos, como por ejemplo, cuando estiras un elástico, o cuando modelas una figura en

Más detalles

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j.

1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. 1 1. El vector de posición de una partícula viene dado por la expresión: r = 3t 2 i 3t j. a) Halla la posición de la partícula para t = 3 s. b) Halla la distancia al origen para t = 3 s. 2. La velocidad

Más detalles

Hernán Verdugo Fabiani Profesor de Matemática y Física

Hernán Verdugo Fabiani Profesor de Matemática y Física Fuerza de roce Las fuerzas de roce son fuerzas, entre cuerpos en contacto, que por su naturaleza se oponen a cualquier tipo de movimiento de uno respecto al otro. Si alguien quiere desplazar algo que está

Más detalles

2. Qué sucede con la energía cinética de una bola que se mueve horizontalmente cuando:

2. Qué sucede con la energía cinética de una bola que se mueve horizontalmente cuando: PONTIFICIA UNIERSIA CATOLICA MARE Y MAESTA EPARTAMENTO E CIENCIAS BASICAS. INTROUCCION A LA FISICA Prof. Remigia Cabrera Unidad I. TRABAJO Y ENERGIA 1. emuestre que la energía cinética en el movimiento

Más detalles

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable

Mecánica I, 2009. Trabajo efectuado por una fuerza constante. Trabajo hecho por una fuerza variable Departamento de Física Facultad de Ciencias Universidad de Chile Profesor: Gonzalo Gutiérrez Ayudantes: Uta Naether Felipe González Mecánica I, 2009 Guía 5: Trabajo y Energía Jueves 7 Mayo Tarea: Problemas

Más detalles

Conceptos básicos: movimiento, trayectoria, y desplazamiento

Conceptos básicos: movimiento, trayectoria, y desplazamiento Conceptos básicos: movimiento, trayectoria, y desplazamiento 1. El movimiento: cambio de posición Prof. Bartolomé Yankovic Nola 1 Cómo procedemos cuando nos piden los datos de ubicación de objetos? Podemos

Más detalles

TEMA 7: TRABAJO Y ENERGÍA.

TEMA 7: TRABAJO Y ENERGÍA. Física y Química 4 ESO TRABAJO Y ENERGÍA Pág. 1 TEMA 7: TRABAJO Y ENERGÍA. DEFINICIÓN DE ENERGÍA La energía no es algo tangible. Es un concepto físico, una abstracción creada por la mente humana que ha

Más detalles

Con una serie de leyes muy sencillas pudo sintetizar y explicar entre otras cosas los fundamentos de la dinámica clásica. Pero: Qué es la dinámica?

Con una serie de leyes muy sencillas pudo sintetizar y explicar entre otras cosas los fundamentos de la dinámica clásica. Pero: Qué es la dinámica? 4 año secundario Leyes de Newton Isaac newton (1642-1727), es considerado por los historiadores como un verdadero revolucionario en lo que se refriere a las ciencias y en particular a las ciencias naturales.

Más detalles

FÍSICA 2014. Unidad Nº 4 : El trabajo y la Energía

FÍSICA 2014. Unidad Nº 4 : El trabajo y la Energía Diseño Industrial FÍSICA 2014 P R O F. I NG. C E C I L I A A R I A G N O I NG. D A N I E L M O R E N O Unidad Nº 4 : El trabajo y la Energía Introducción: La materia no puede por sí sola ponerse en movimiento

Más detalles

dos Segundo bimestre Una explicación del cambio:

dos Segundo bimestre Una explicación del cambio: Segundo bimestre 00 Tema dos Una explicación del cambio: la idea de fuerza Cómo es la relación entre las fuerzas y los objetos? LA IDEA DE FUERZA: EL RESULTADO DE LAS ITERACCIOES La familia de Valeria

Más detalles

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1

Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 4a 4a 6a Guía para el examen de 4ª y 6ª oportunidad de FÍsica1 Capitulo 1 Introducción a la Física a) Clasificación y aplicaciones b) Sistemas de unidades Capitulo 2 Movimiento en una dimensión a) Conceptos

Más detalles

EJERCICIOS PROPUESTOS

EJERCICIOS PROPUESTOS 3 LAS FUERZAS Y EL MOVIMIENTO EJERCICIOS PROPUESTOS 3.1 Un malabarista juega con varias pelotas lanzándolas hacia arriba y volviéndolas a coger. Indica cuándo actúan fuerzas a distancia y cuándo por contacto

Más detalles

ACTIVIDADES Y EJERCICIOS PARA JUGADORES MENORES DE 10 AÑOS

ACTIVIDADES Y EJERCICIOS PARA JUGADORES MENORES DE 10 AÑOS APÉNDICE ACTIVIDADES Y EJERCICIOS PARA JUGADORES MENORES DE 10 AÑOS Entrada en calor El calentamiento debe ayudar a los niños a desarrollar las habilidades físicas apropiadas para la edad, pero sobre todo

Más detalles

Guía 7 4 de mayo 2006

Guía 7 4 de mayo 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 7 4 de mayo 2006 Conservación de la energía mecánica

Más detalles

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA

ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS DEBER # 3 TRABAJO Y ENERGÍA 1.- El bloque mostrado se encuentra afectado por fuerzas que le permiten desplazarse desde A hasta B.

Más detalles

Tema 3. Trabajo y Energía

Tema 3. Trabajo y Energía Tema 3. Trabajo y Energía CONTENIDOS Energía, trabajo y potencia. Unidades SI (conceptos y cálculos) Teorema del trabajo y la energía. Energía cinética (conceptos y cálculos) Fuerzas conservativas. Energía

Más detalles

LANZAMIENTOS VERTICALES soluciones

LANZAMIENTOS VERTICALES soluciones LANZAMIENTOS VERTICALES soluciones 1.- Desde un puente se lanza una piedra con una velocidad inicial de 10 m/s y tarda 2 s en llegar al agua. Calcular la velocidad que lleva la piedra en el momento de

Más detalles

Trabajo Práctico º 2 Movimiento en dos o tres dimensiones

Trabajo Práctico º 2 Movimiento en dos o tres dimensiones Departamento de Física Año 011 Trabajo Práctico º Movimiento en dos o tres dimensiones Problema 1. Se está usando un carrito robot para explorar la superficie de Marte. El módulo de descenso es el origen

Más detalles

Teorema trabajo-energía: el trabajo efectuado por un cuerpo es igual al cambio de energía cinética o potencia.

Teorema trabajo-energía: el trabajo efectuado por un cuerpo es igual al cambio de energía cinética o potencia. INSTITUCION EDUCATIVA NACIONAL LOPERENA DEPARTAMENTO DE CIENCIAS NATURALES. FISICA I. CUESTIONARIO GENERAL IV PERIODO. NOTA: Es importante que cada una de las cuestiones así sean tipo Icfes, deben ser

Más detalles

Soluciones. Fuerza: conceptos

Soluciones. Fuerza: conceptos Soluciones Fuerza: conceptos 1. Qué efecto tiene la fricción en un objeto en movimiento?... Le disminuye la velocidad. 2. La rapidez de una pelota aumenta conforme baja rodando por una pendiente y disminuye

Más detalles

FÍSICA Y QUÍMICA Solucionario CINEMÁTICA

FÍSICA Y QUÍMICA Solucionario CINEMÁTICA FÍSICA Y QUÍMICA Solucionario CINEMÁTICA 1.* Indicad qué tipo o tipos de movimiento corresponden a cada afirmación. a) MRU b) MRUA c) MCU d) Caída libre e) No hay movimiento 1.1. Una piedra lanzada desde

Más detalles

La masa es la magnitud física que mide la inercia de los cuerpos: N

La masa es la magnitud física que mide la inercia de los cuerpos: N Pág. 1 16 Las siguientes frases, son verdaderas o falsas? a) Si el primer niño de una fila de niños que corren a la misma velocidad lanza una pelota verticalmente hacia arriba, al caer la recogerá alguno

Más detalles

2-Trabajo hecho por una fuerza constante

2-Trabajo hecho por una fuerza constante TRABAJO POTENCIA Y ENERGIA 1-Trabajo y Energía En el lenguaje ordinario, trabajo y energía tienen un significado distinto al que tienen en física. Por ejemplo una persona sostiene una maleta; lo que estamos

Más detalles

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway

PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CUARTA, QUINTA Y SEXTA EDICION SERWAY. Raymond A. Serway PROBLEMAS RESUELTOS TRABAJO Y ENERGIA CAPITULO 7 FISICA I CUARTA, QUINTA Y SEXTA EDICION SERWAY Raymond A. Serway Sección 7.1 Trabajo hecho por una fuerza constante Sección 7. El producto escalar de dos

Más detalles

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante

Problemas sobre Trabajo y Energía. Trabajo hecho por una fuerza constante Problemas sobre Trabajo y Energía Trabajo hecho por una fuerza constante 1. Si una persona saca de un pozo una cubeta de 20 kg y realiza un trabajo equivalente a 6.00 kj, Cuál es la profundidad del pozo?

Más detalles

Unidad: Conservación de la energía y el momentum lineal

Unidad: Conservación de la energía y el momentum lineal Unidad: Conservación de la energía y el momentum lineal En esta unidad veremos como la conservación de la energía y el momentum lineal conducen a resultados sorprendentes en algunos experimentos. Seguramente

Más detalles

El aro se encuentra en equilibrio? 53 o. 37 o 37º. Los tres dinamómetros, miden en Newton. III 0,5 1,0 1,5 0 0,5 1,0 1,5

El aro se encuentra en equilibrio? 53 o. 37 o 37º. Los tres dinamómetros, miden en Newton. III 0,5 1,0 1,5 0 0,5 1,0 1,5 -Un aro metálico de masa despreciable se encuentra sujetado, mediante hilos, por los tres dinamómetros, tal como se muestra en la figura. partir de la representación de la lectura de los tres instrumentos:

Más detalles

INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO

INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO INSTITUCION EDUCATIVA SAN JORGE MONTELIBANO GUAS DE ESTUDIO PARA LOS GRADOS: 11º AREA: FISICA PROFESOR: DALTON MORALES TEMA DE LA FISICA A TRATAR: ENERGÍA I La energía desempeña un papel muy importante

Más detalles

5.3 Teorema de conservación de la cantidad de movimiento

5.3 Teorema de conservación de la cantidad de movimiento 105 UNIDAD V 5 Sistemas de Partículas 5.1 Dinámica de un sistema de partículas 5.2 Movimiento del centro de masa 5.3 Teorema de conservación de la cantidad de movimiento 5.4 Teorema de conservación de

Más detalles

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él?

IES Menéndez Tolosa. La Línea de la Concepción. 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? IES Menéndez Tolosa. La Línea de la Concepción 1 Es posible que un cuerpo se mueva sin que exista fuerza alguna sobre él? Si. Una consecuencia del principio de la inercia es que puede haber movimiento

Más detalles

1erg = 10^-7 J, y la libra- pie (lb pie), donde 1lb pie = 1.355 J.

1erg = 10^-7 J, y la libra- pie (lb pie), donde 1lb pie = 1.355 J. El TRABAJO efectuado por una fuerza F se define de la siguiente manera. Como se muestra en la figura, una fuerza F actúa sobre un cuerpo. Este presenta un desplazamiento vectorial s. La componente de F

Más detalles

10-25 MINUTOS MOVER AL ADVERSARIO EN UN PELOTEO DESDE LA LÍNEA DE FONDO: Pelota naranja

10-25 MINUTOS MOVER AL ADVERSARIO EN UN PELOTEO DESDE LA LÍNEA DE FONDO: Pelota naranja OBJETIVOS DE LA SESIÓN Mover al adversario utilizando servicio y devolución básicos (pelota Roja/ Naranja) Comprender la posición en la cancha en individuales Jugar desde la línea de fondo en individuales

Más detalles

LEYES DE LA DINÁMICA Y APLICACIONES

LEYES DE LA DINÁMICA Y APLICACIONES CONTENIDOS. LEYES DE LA DINÁMICA Y APLICACIONES Unidad 14 1.- Cantidad de movimiento. 2.- Primera ley de Newton (ley de la inercia). 3.- Segunda ley de la Dinámica. 4.- Impulso mecánico. 5.- Conservación

Más detalles

TEMA 1 FUERZAS Y ESTRUCTURAS

TEMA 1 FUERZAS Y ESTRUCTURAS 1 TEMA 1 FUERZAS Y ESTRUCTURAS FUERZA es aquella causa capaz de producir cambios en el movimiento de un cuerpo o de cambiar su forma. (Por lo tanto, los cuerpos no tienen fuerza, tienen energía. La fuerza

Más detalles

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba

Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Soluciones Energía mecánica y Caída Libre y lanzamiento vertical hacia arriba Si no se dice otra cosa, no debe considerarse el efecto del roce con el aire. 1.- Un objeto de masa m cae libremente de cierta

Más detalles

Ideas básicas sobre movimiento

Ideas básicas sobre movimiento Ideas básicas sobre movimiento Todos conocemos por experiencia qué es el movimiento. En nuestra vida cotidiana, observamos y realizamos infinidad de movimientos. El desplazamiento de los coches, el caminar

Más detalles

Respuestas a las preguntas conceptuales.

Respuestas a las preguntas conceptuales. Respuestas a las preguntas conceptuales. 1. Respuesta: En general es más extensa la distancia recorrida. La distancia recorrida es una medición que pasa por todos los puntos de una trayectoria, sin embargo

Más detalles

LOS11+ Un programa completo de calentamiento

LOS11+ Un programa completo de calentamiento LOS11+ Un programa completo de calentamiento Parte 1 & 3 A A }6m Parte 2! preparación A: Running del exercise terreno B: Jog back Se colocan 6 marcaciones en dos filas paralelas, con una separación de

Más detalles

APUNTES DE FÍSICA Y QUÍMICA

APUNTES DE FÍSICA Y QUÍMICA Departamento de Física y Química I.E.S. La Arboleda APUNTES DE FÍSICA Y QUÍMICA 1º de Bachillerato Volumen II. Física Unidad VII TRABAJO Y ENERGÍA Física y Química 1º de Bachillerato 1.- CONCEPTO DE ENERGÍA

Más detalles

UNGS 1er semestre 2009 Física General. Guía de problemas nº 4 Trabajo - Energía. Problemas de Nivel 1.

UNGS 1er semestre 2009 Física General. Guía de problemas nº 4 Trabajo - Energía. Problemas de Nivel 1. UNGS 1er semestre 009 Física General. Guía de problemas nº 4 Trabajo - Energía. Problemas de Nivel 1. 1.- Un niño, de 00 N de peso, sube 10 m de altura con la ayuda de una escalera vertical. Halle el trabajo

Más detalles

CHOQUE.(CANTIDAD DE MOVIMIENTO )

CHOQUE.(CANTIDAD DE MOVIMIENTO ) APUNTES Materia: Tema: Curso: Física y Química Momento Lineal 4º ESO CHOQUE.(CANTIDAD DE MOVIMIENTO ) CANTIDAD DE MOVIMIENTO Si un cuerpo de masa m se está moviendo con velocidad v, la cantidad de movimiento

Más detalles

Manual de generación de rutas con el software Google Earth

Manual de generación de rutas con el software Google Earth Manual de generación de rutas con el software Google Earth Información básica de Google Earth El siguiente diagrama describe algunas de las funciones disponibles en la ventana principal de Google Earth:

Más detalles

ilustrando sus respuestas con la ayuda de gráficas x-t ó v-t según corresponda.

ilustrando sus respuestas con la ayuda de gráficas x-t ó v-t según corresponda. FÍSICA GENERAL I Descripción del movimiento 1 Responda las siguientes cuestiones en el caso de un movimiento rectilíneo ilustrando sus respuestas con la ayuda de gráficas x-t ó v-t según corresponda. a

Más detalles

IES Chapela Departamento de Educación Física 4º ESO EL BÉISBOL

IES Chapela Departamento de Educación Física 4º ESO EL BÉISBOL 1. BREVE HISTORIA EL BÉISBOL El béisbol tal y como lo conocemos hoy en día se creó en Estados Unidos a partir de un juego infantil británico llamado rounders, derivado del críquet inglés, que era practicado

Más detalles

manual práctico del tenis de mesa Ping-pong o tenis de mesa? A 21 tantos o a 11? Existe la media? Cuántos sets son? todo eso aquí gipuzkoa

manual práctico del tenis de mesa Ping-pong o tenis de mesa? A 21 tantos o a 11? Existe la media? Cuántos sets son? todo eso aquí gipuzkoa manual práctico del tenis de mesa Ping-pong o tenis de mesa? A 21 tantos o a 11? Existe la media? Cuántos sets son? todo eso aquí gipuzkoa índice 4 18 manual de tenis de mesa 4 historia 6 normas 10 nivel

Más detalles

PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE

PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE PROBLEMAS RESUELTOS SOBRE MOVIMIENTO ARMÓNICO SIMPLE ) La ecuación de un M.A.S. es x(t) cos 0t,, en la que x es la elongación en cm y t en s. Cuáles son la amplitud, la frecuencia y el período de este

Más detalles

VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10

VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10 VI CO CURSO ACIO AL DE TALE TOS E FISICA 2010 1 de 10 Instrucciones: Al final de este examen se encuentra la hoja de respuestas que deberá contestar. o ponga su nombre en ninguna de las hojas, escriba

Más detalles

EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO

EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO EJERCICIOS SOBRE CINEMÁTICA: EL MOVIMIENTO Estrategia a seguir para resolver los ejercicios. 1. Lea detenidamente el ejercicio las veces que necesite, hasta que tenga claro en qué consiste y qué es lo

Más detalles

FS-2 GUÍA CURSOS ANUALES. Ciencias Plan Común. Física 2009. Descripción del movimiento I

FS-2 GUÍA CURSOS ANUALES. Ciencias Plan Común. Física 2009. Descripción del movimiento I FS-2 Ciencias Plan Común Física 2009 Descripción del movimiento I Introducción: La presente guía tiene por objetivo proporcionarte distintas instancias didácticas relacionadas con el proceso de aprendizaje-enseñanza.

Más detalles

TRABAJO Y ENERGIA MECANICA

TRABAJO Y ENERGIA MECANICA TRABAJO Y ENERGIA MECANICA 1. Si una persona saca de un pozo una cubeta de 20 [kg] y realiza 6.000 [J] de trabajo, cuál es la profundidad del pozo? (30,6 [m]) 2. Una gota de lluvia (3,35x10-5 [kg] apx.)

Más detalles

VIAJANDO EN EL TELEFÉRICO EJERCICIOS PRÁCTICOS PARA APRENDER Y DIVERTIRSE CUADERNO DEL ALUMNO

VIAJANDO EN EL TELEFÉRICO EJERCICIOS PRÁCTICOS PARA APRENDER Y DIVERTIRSE CUADERNO DEL ALUMNO IAJANDO EN EL TELEFÉRICO EJERCICIO PRÁCTICO PARA APRENDER Y DIERTIRE CUADERNO DEL ALUMNO DECRIPCIÓN Un viaje tranquilo y sin sobresaltos de 2,4km de longitud a través del cielo de Madrid alcanzando una

Más detalles

LEYES DE LA DINÁMICA

LEYES DE LA DINÁMICA LEYES DE LA DINÁMICA Introducción. Se requiere una fuerza para que exista movimiento? Qué o quién mueve a los planetas en sus órbitas? Estas preguntas, que durante años se hizo el hombre, fueron contestadas

Más detalles

Módulo 1: Mecánica Cantidad de movimiento (momentum) Un objeto A golpea a un objeto B. Qué pasa?

Módulo 1: Mecánica Cantidad de movimiento (momentum) Un objeto A golpea a un objeto B. Qué pasa? Módulo 1: Mecánica Cantidad de movimiento (momentum) Un objeto A golpea a un objeto B. Qué pasa? Cantidad de movimiento La cantidad de movimiento de un objeto es, Cantidad de movimiento = Masa Velocidad

Más detalles

Departamento de Educación Física

Departamento de Educación Física TEMA 2. EL VOLEIBOL El voleibol, vóleibol, volibol, balonvolea o simplemente vóley (del inglés: volleyball), es un deporte donde dos equipos se enfrentan sobre un terreno de juego liso separados por una

Más detalles

CAPITULO V TRABAJO Y ENERGÍA

CAPITULO V TRABAJO Y ENERGÍA CAPITULO V TRABAJO Y ENERGÍA La energía está presente en el Universo en varias formas: energía mecánica, electromagnética, nuclear, etc. Además, una forma de energía puede convertirse en otra. Cuando la

Más detalles

Observa el diagrama del centro y determina cual de los siguientes corresponde a un diagrama v-t para ese movimiento

Observa el diagrama del centro y determina cual de los siguientes corresponde a un diagrama v-t para ese movimiento De las gráficas. Indica aquellas que presentan movimiento rectilíneo uniforme así como las que pertenecen al movimiento rectilíneo uniformemente acelerado Observa el diagrama del centro y determina cual

Más detalles

1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t 2 2 t) j.

1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t 2 2 t) j. IES ARQUITECTO PEDRO GUMIEL BA1 Física y Química UD 1: Cinemática 1. El vector de posición de una partícula, en unidades del SI, queda determinado por la expresión: r (t)=3t i +(t t) j. a) Determina los

Más detalles

1º ESO APUNTES BALONCESTO

1º ESO APUNTES BALONCESTO 1º ESO APUNTES BALONCESTO El Baloncesto es un deporte en el que dos equipos luchan por conseguir mayor número de puntos. Estos se logran al introducir el balón en la canasta, y en función de cómo haya

Más detalles

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por

GUIA DE PROBLEMAS. 3) La velocidad de un auto en función del tiempo, sobre un tramo recto de una carretera, está dada por Unidad : Cinemática de la partícula GUIA DE PROBLEMAS 1)-Un automóvil acelera en forma uniforme desde el reposo hasta 60 km/h en 8 s. Hallar su aceleración y desplazamiento durante ese tiempo. a = 0,59

Más detalles

Ejercicios de cinemática

Ejercicios de cinemática Ejercicios de cinemática 1.- Un ciclista recorre 32,4 km. en una hora. Calcula su rapidez media en m/s. (9 m/s) 2.- La distancia entre dos pueblos es de 12 km. Un ciclista viaja de uno a otro a una rapidez

Más detalles

PRIMERA EVALUACIÓN. Física del Nivel Cero A

PRIMERA EVALUACIÓN. Física del Nivel Cero A PRIMERA EVALUACIÓN DE Física del Nivel Cero A Marzo 9 del 2012 VERSION CERO (0) NOTA: NO ABRIR ESTA PRUEBA HASTA QUE SE LO AUTORICEN! Este examen, sobre 70 puntos, consta de 32 preguntas de opción múltiple

Más detalles

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N

14º Un elevador de 2000 kg de masa, sube con una aceleración de 1 m/s 2. Cuál es la tensión del cable que lo soporta? Sol: 22000 N Ejercicios de dinámica, fuerzas (4º de ESO/ 1º Bachillerato): 1º Calcular la masa de un cuerpo que al recibir una fuerza de 0 N adquiere una aceleración de 5 m/s. Sol: 4 kg. º Calcular la masa de un cuerpo

Más detalles

FUERZA CENTRIPETA Y CENTRIFUGA. De acuerdo con la segunda ley de Newton =

FUERZA CENTRIPETA Y CENTRIFUGA. De acuerdo con la segunda ley de Newton = FUEZA CENTIPETA Y CENTIFUGA. De acuerdo con la segunda ley de Newton = F m a para que un cuerpo pesa una aceleración debe actuar permanentemente sobre el una fuerza resultante y la aceleración tiene el

Más detalles

APUNTES DE VOLEIBOL. - Nunca un jugador puede dar dos toques seguidos excepto tras un bloqueo.

APUNTES DE VOLEIBOL. - Nunca un jugador puede dar dos toques seguidos excepto tras un bloqueo. Departamento EF IES Saulo Torón 1.- QUÉ ES EL VOLEIBOL? APUNTES DE VOLEIBOL Es un deporte colectivo jugado por dos equipos de seis jugadores que juegan en una pista de 18 x 9 metros con una línea central

Más detalles

Movimiento Armónico Simple

Movimiento Armónico Simple Movimiento Armónico Simple Introducción al Movimiento Armónico Simple En esta página se pretende que el alumno observe la representación del Movimiento Armónico Simple (en lo que sigue M.A.S.), identificando

Más detalles

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA

TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA TRABAJO ENERGÍA CONSERVACIÓN DE ENERGÍA MECÁNICA 1. La figura muestra una bola de 100 g. sujeta a un resorte sin estiramiento, de longitud L 0 = 19 cm y constante K desconocida. Si la bola se suelta en

Más detalles

Guías MATCH: Aprendiendo Matemáticas con Scratch. Recomendado para: 9 ó 10 años Nivel de Scratch: Inicial Trabajo en aula: 2 horas

Guías MATCH: Aprendiendo Matemáticas con Scratch. Recomendado para: 9 ó 10 años Nivel de Scratch: Inicial Trabajo en aula: 2 horas Guías MATCH: Aprendiendo Matemáticas con Scratch Actividad: Recomendado para: 9 ó 10 años Nivel de Scratch: Inicial Trabajo en aula: 2 horas La rueda rueda Autores: Equipo de trabajo del Proyecto MATCH

Más detalles

Capítulo 4 Trabajo y energía

Capítulo 4 Trabajo y energía Capítulo 4 Trabajo y energía 17 Problemas de selección - página 63 (soluciones en la página 116) 10 Problemas de desarrollo - página 69 (soluciones en la página 117) 61 4.A PROBLEMAS DE SELECCIÓN Sección

Más detalles

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA

FÍSICA Y QUÍMICA - 4º ESO LAS FUERZAS PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA PRINCIPIOS FUNDAMENTALES DE LA DINÁMICA (LEYES DE NEWTON) INERCIA 1. Todo cuerpo tiene tendencia a permanecer en su estado de movimiento. Esta tendencia recibe el nombre de inercia. 2. La masa es una medida

Más detalles

CIENCIAS NATURALES 7 BÁSICO

CIENCIAS NATURALES 7 BÁSICO CIENCIAS NATURALES 7 BÁSICO FUERZAS EN ACCIÓN Material elaborado por: Gloria Núñez V Irene Reyes L. 1. DESCRIPCIÓN DE LA UNIDAD El objetivo de esta Unidad es que los y las estudiantes puedan identificar

Más detalles

Es la parte de la física que estudia el movimiento de las partículas o cuerpos teniendo en cuenta las causas que lo originan (fuerzas)

Es la parte de la física que estudia el movimiento de las partículas o cuerpos teniendo en cuenta las causas que lo originan (fuerzas) DINAMICA Es la parte de la física que estudia el movimiento de las partículas o cuerpos teniendo en cuenta las causas que lo originan (fuerzas) El movimiento según Aristóteles Aristóteles (siglo IV a.c.)

Más detalles

Programa de Formación de Entrenadores de la ITF Curso de Nivel 2. Biomecánica del tenis: Introducción

Programa de Formación de Entrenadores de la ITF Curso de Nivel 2. Biomecánica del tenis: Introducción Programa de Formación de Entrenadores de la ITF Curso de Nivel 2 Biomecánica del tenis: Introducción Al final de esta clase podrá: Comprender lo que es la técnica óptima mediante el conocimiento de la

Más detalles

PRINCIPIOS APLICABLES A TODAS LAS TÉCNICAS DE NADO

PRINCIPIOS APLICABLES A TODAS LAS TÉCNICAS DE NADO PRINCIPIOS FÌSICOS Para recordar de lo ya estudiado, solo enunciaremos los principios físicos aplicables a la Natación y los principios a tener en cuenta en todas las técnicas Principio de Arquímedes:

Más detalles

Taller: Análisis gráfico de situaciones dinámicas. Por: Ricardo De la Garza González, MC.

Taller: Análisis gráfico de situaciones dinámicas. Por: Ricardo De la Garza González, MC. Taller: Análisis gráfico de situaciones dinámicas Por: Ricardo De la Garza González, MC. Agenda Introducción La ciencia escolar Enfoque epistémico Modelo de Giere Breve semblanza histórica del estudio

Más detalles

Departamento de Educación Física EL BÉISBOL

Departamento de Educación Física EL BÉISBOL TEMA 9. EL BÉISBOL EL BÉISBOL 1. BREVE HISTORIA El béisbol tal y como lo conocemos hoy en día se creó en Estados Unidos a partir de un juego infantil británico llamado rounders, derivado del críquet inglés,

Más detalles

Trabajo y Energía. Herramientas procedimentales

Trabajo y Energía. Herramientas procedimentales Trabajo y Energía Herramientas procedimentales Trabajo de una fuerza. Una manera de entender qué es una fuerza es pensar en una cañita voladora. Lo que quiero decir es: O sea, como si fuera una especie

Más detalles

Guía 9 Miércoles 14 de Junio, 2006

Guía 9 Miércoles 14 de Junio, 2006 Física I GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 9 Miércoles 14 de Junio, 2006 Movimiento rotacional

Más detalles

Preguntas y Problemas de Física www.librosmaravillosos.com L. Tarasov y A. Tarasova

Preguntas y Problemas de Física www.librosmaravillosos.com L. Tarasov y A. Tarasova 1 Prefacio Los autores de este libro han sabido, en la forma más expresiva del diálogo, analizar profundamente casi todas las preguntas del programa y en especial aquellas que son de difícil comprensión.

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

LAS FUERZAS Y EL MOVIMIENTO

LAS FUERZAS Y EL MOVIMIENTO Página 1 LAS UEZAS Y EL MOVIMIENTO DINÁMICA: Es la parte de la ísica que estudia las fuerzas como productoras de movimientos. UEZA: Es toda causa capaz de modificar el estado de reposo o movimiento de

Más detalles

El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad

El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad 3. Fuerza e ímpetu El concepto de ímpetu (cantidad de movimiento o momentum surge formalmente en 1969 y se define como: El ímpetu de un cuerpo es el producto de la masa del cuerpo por su vector velocidad

Más detalles

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010

5ª GUIA DE EJERCICIOS 2º SEMESTRE 2010 UNIVRSI HIL - FULT INIS - PRTMNTO FISI 5ª GUI JRIIOS 2º SMSTR 2010 NRGÍ 1.- María y José juegan deslizándose por un tobogán de superficie lisa. Usan para ello un deslizador de masa despreciable. mbos parten

Más detalles

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS

TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS TRABAJO Y ENERGÍA; FUERZAS CONSERVATIVAS Y NO CONSERVATIVAS 1. CONCEPTO DE TRABAJO: A) Trabajo de una fuerza constante Todos sabemos que cuesta trabajo tirar de un sofá pesado, levantar una pila de libros

Más detalles

UNIDAD 6.- NEUMÁTICA.

UNIDAD 6.- NEUMÁTICA. UNIDAD 6.- NEUMÁTICA. 1.-ELEMENTOS DE UN CIRCUITO NEUMÁTICO. El aire comprimido se puede utilizar de dos maneras distintas: Como elemento de mando y control: permitiendo que se abran o cierren determinadas

Más detalles

1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE

1. Trabajo y energía TRABAJO HECHO POR UNA FUERZA CONSTANTE Trabajo y energía 1. Trabajo y energía Hasta ahora hemos estudiado el movimiento traslacional de un objeto en términos de las tres leyes de Newton. En este análisis la fuerza ha jugado un papel central.

Más detalles

Tarea 7 natación. 1. Las fases: 2. La acción de brazos: La brazada de espalda consta de cuatro barridos y un recobro:

Tarea 7 natación. 1. Las fases: 2. La acción de brazos: La brazada de espalda consta de cuatro barridos y un recobro: Tarea 7 natación. 1. Las fases: La brazada de espalda consta de cuatro barridos y un recobro: 2. La acción de brazos: BARRIDO, TRACCIÓN O FASE ACUÁTICA 1. Entrada de la mano (brazo izquierdo): La mano

Más detalles

TRABAJO Y POTENCIA. LA ENERGÍA

TRABAJO Y POTENCIA. LA ENERGÍA Tema 5 TRABAJO Y POTENCIA. LA ENERGÍA 1 - CONCEPTO DE TRABAJO Generalmente suele asociarse la idea del trabajo con la del esfuerzo. En ciertos casos es verdad, como cuando una persona arrastra un objeto,

Más detalles

GUÍA DE APOYO PARA TRABAJO COEF. 2 SEGUNDO AÑO MEDIO TRABAJO Y ENERGÍA

GUÍA DE APOYO PARA TRABAJO COEF. 2 SEGUNDO AÑO MEDIO TRABAJO Y ENERGÍA Liceo N 1 de niñas Javiera Carrera Departamento de Física. Prof.: L. Lastra- M. Ramos. GUÍA DE APOYO PARA TRABAJO COEF. 2 SEGUNDO AÑO MEDIO TRABAJO Y ENERGÍA Estimada alumna la presente guía corresponde

Más detalles

EDUCACIÓN EN VALORES CRITERIOS DE EVALUACIÓN. Actitudes PROGRAMACIÓN DE AULA

EDUCACIÓN EN VALORES CRITERIOS DE EVALUACIÓN. Actitudes PROGRAMACIÓN DE AULA PROGRAMACIÓN DE AULA Elaborar esquemas claros que faciliten la resolución de problemas en los que intervienen fuerzas. Saber elegir los ejes más apropiados para la resolución de un problema en el que aparecen

Más detalles

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento

M.R.U. v = cte. rectilíneo. curvilíneo. compos. movimiento RECUERDA: La cinemática, es la ciencia, parte de la física, que se encarga del estudio del movimiento de los cuerpos, tratando de definirlos, clasificarlos y dotarlos de alguna utilidad práctica. El movimiento

Más detalles

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o.

1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de tiro es de 30 o. Problemas de Cinemática 1 o Bachillerato Tiro parabólico y movimiento circular 1. Hallar a qué velocidad hay que realizar un tiro parabólico para que llegue a una altura máxima de 100 m si el ángulo de

Más detalles

Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA. Objetivos. Teoría

Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA. Objetivos. Teoría Experimento 6 LA CONSERVACIÓN DE LA ENERGÍA Y EL TEOREMA DEL TRABAJO Y LA ENERGÍA Objetivos 1. Definir las energías cinética, potencial y mecánica. Explicar el principio de conservación de la energía mecánica

Más detalles

Unidad: Energía Cinética y Potencial

Unidad: Energía Cinética y Potencial Unidad: Energía Cinética y Potencial El teorema del Trabajo y la Energía Cinética dice que: El cambio de la Energía Cinética de un objeto que se mueve es igual al Trabajo hecho por la fuerza (neta) que

Más detalles

PRUEBA FORMATIVA DE FISICA

PRUEBA FORMATIVA DE FISICA PRUEBA FORMATIVA DE FISICA TEMA 1: Un vector tiene 10 de módulo y sus componentes están en la relación 1:2. La componente rectangular de menor valor es: a) 5 b) c) d) e)... TEMA 2: Una partícula parte

Más detalles

Pregunta Señala tu respuesta 1 A B C D E 2 A B C D E 3 A B C D E 4 A B C D E 5 A B C D E 6 A B C D E 7 A B C D E Tiempo = 90 minutos

Pregunta Señala tu respuesta 1 A B C D E 2 A B C D E 3 A B C D E 4 A B C D E 5 A B C D E 6 A B C D E 7 A B C D E Tiempo = 90 minutos XVI OLIMPIADA DE LA FÍSICA- FASE LOCAL- Enero 2005 UNIVERSIDAD DE CASTILLA-LA MANCHA PUNTUACIÓN Apellidos Nombre DNI Centro Población Provincia Fecha Teléfono e-mail Las siete primeras preguntas no es

Más detalles

"LAS FASES DEL SWING

LAS FASES DEL SWING FUNDAMENTOS TÉCNICOS: GOLF "LAS FASES DEL SWING INTRODUCCIÓN El objetivo de cualquier jugador de golf es conseguir un swing fácil de repetir. Cuanto menor sea el número de movimientos del swing, menos

Más detalles

PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010

PROBLEMAS RESUELTOS DE PLANO INCLINADO. Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 2010 PROBLEMAS RESUELOS DE PLANO INCLINADO Erving Quintero Gil Ing. Electromecánico Bucaramanga Colombia 010 Para cualquier inquietud o consulta escribir a: quintere@hotmail.com quintere@gmail.com quintere006@yahoo.com

Más detalles