Minería de Datos Web. 1 er Cuatrimestre Página Web. Prof. Dra. Daniela Godoy.

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Minería de Datos Web. 1 er Cuatrimestre 2015. Página Web. Prof. Dra. Daniela Godoy. http://www.exa.unicen.edu.ar/catedras/ageinweb/"

Transcripción

1 Minería de Datos Web 1 er Cuatrimestre 2015 Página Web Prof. Dra. Daniela Godoy ISISTAN Research Institute UNICEN University Tandil, Bs. As., Argentina

2 Clustering de Documentos Clasificación de Documentos Es un método supervisado para dividir documentos en base a categorías predefinidas Los ejemplos tienen que ser etiquetados (con clases asignadas) Clustering de Documentos Es un método no supervisado para dividir ejemplos en grupos cuando no existen categorías predefinidas El aprendizaje no supervisado es un método descriptivo para interpretar un conjunto de datos

3 Clustering de Documentos Es el proceso de buscar un agrupamiento natural en un conjunto de datos en base a su similitud Objetivo Dividir un conjunto de ejemplos (documentos) pertenecientes a clases desconocidas en subconjuntos disjuntos de clusters tal que: Los ejemplos que estén en un mismo cluster sean lo más similares posible entre sí Los ejemplos que estén en clusters diferentes sean lo más disímiles posible entre sí

4 Clustering de Documentos Espacio de características (términos) Los documentos se representan como vectores de frecuencia en un espacio de términos La similitud de dos documentos está dada por el coseno de ambos vectores

5 Clustering de Documentos Espacio de características (términos)

6 Clustering de Documentos Espacio de características (términos) Deportes Política Música

7 Clustering de Documentos El aprendizaje no supervisado es un método descriptivo para interpretar un conjunto de datos, algunas aplicaciones posibles: Clustering de los documentos recuperados para una consulta: se presentan los resultados de una búsqueda en forma más organizada y clara para el usuario (por ej. Vivísimo) Clustering de documentos en una colección: hipótesis de clustering, documentos similares tienden a ser relevantes a la misma consulta durante la recuperación de documentos, se agregan los documentos que pertenecen a un mismo cluster que los recuperados inicialmente para mejorar el recall Clustering para generación automática de taxonomías: para facilitar la exploración de documentos (por ej. Yahoo!)

8 Clustering de Documentos Hipótesis Documentos similares tienden a ser relevantes a la misma consulta Un buen método de clustering debería identificar clusters que sean tanto compactos como separados entre sí. Es decir, que tengan: Alta similitud intra-cluster Baja similitud inter-cluster

9 Scatter/Gather Técnica de navegación de resultados basada en clustering: Agrupa documentos en temas generales Muestra el contenido por términos típicos El usuario puede seleccionar clusters interesantes Se aplica nuevamente cluster para identificar clusters más específicos Con cada iteración los clusters son menores y más detallados Clustering y re-clustering es automático

10 Scatter/Gather

11 Vivísimo

12 Clustering de Documentos Algoritmos basados en particionamiento: Particionan el conjunto de datos D de n objetos en un conjunto de k clusters Dado un k, intentan encontrar una partición de k clusters que optimiza el criterio de particionamiento k-means: cada cluster es representado por su centro del cluster

13 Clustering basado en Particionamiento Objetivo Particionar un conjunto de documentos D, conteniendo n documentos, en k clusters Dado un valor de k, encontrar una partición en k clusters que optimice un criterio de particionamiento: k-means: cada cluster es representado por el centroide del cluster

14 K-Means Las instancias son vectores de valores reales Los clusters se basan en centroides o centros de gravedad, que son a media de las instancias en el cluster c: μ c = 1 c x c x Las instancias se reasignan a los clusters en base a su distancia a los centroides

15 K-Means k-means 1. Seleccionar aleatoriamente k ejemplos (semillas) para ser centroides de los clusters 2. Asignar cada ejemplo al centroide con el que tenga mayor similitud 3. Recalcular los centroides de acuerdo a los ejemplos asignados a cada cluster 4. Si no se satisface el criterio de terminación establecido volver a 2

16 K-Means Algoritmo: Sea sim la medida de distancia entre documentos Seleccionar k documentos aleatoriamente {s 1, s 2, s k } como semillas Hasta que se satisface un criterio de terminación Para cada documento x i : Asignar x i a el cluster c j talque sim(x i, s j ) sea la mínima (Actualizar las semillas de cada cluster) Para cada cluster c j s j = (c j )

17 K-Means k-means

18 K-Means Seleccionar k=2 semillas en forma aleatoria

19 K-Means Asignar cada ejemplo al centroide con el que tenga mayor similitud

20 K-Means Asignar cada ejemplo al centroide con el que tenga mayor similitud

21 K-Means Recalcular los centroides de acuerdo a los ejemplos asignados a cada cluster c c

22 K-Means Asignar cada ejemplo al centroide con el que tenga mayor similitud c c

23 K-Means Asignar cada ejemplo al centroide con el que tenga mayor similitud c c

24 K-Means Recalcular los centroides de acuerdo a los ejemplos asignados a cada cluster c c

25 K-Means Recalcular los centroides de acuerdo a los ejemplos asignados a cada cluster c c

26 K-Means Asignar cada ejemplo al centroide con el que tenga mayor similitud c c

27 K-Means Recalcular los centroides de acuerdo a los ejemplos asignados a cada cluster c c

28 K-Means Los ejemplos no cambian de cluster, se satisface el criterio de terminación c c

29 K-Means Ventajas: Entre los algoritmos de particionamiento es eficiente Implementación sencilla Desventajas: Necesito conocer k de antemano Sensible a outliers, puede caer en mínimos locales Sensitivo a la elección de las semillas iniciales algunas semillas pueden resultar en una taza de convergencia menor la selección de semillas se puede basar en heurísticas o resultados obtenidos por otros métodos Es aplicable cuando es posible calcular el centroide, como en el caso de los documentos, pero es de difícil aplicación en atributos categóricos

30 Clustering Jerárquico Los algoritmos jerárquicos construyen un árbol binario o dendograma a partir de un conjunto de ejemplos Un dendograma muestra como se combinan los clusters La raíz es un cluster que contiene todos los ejemplos y las hojas contienen cada una un ejemplo Cortando en diferentes niveles se consiguen diferentes clusters

31 Clustering Jerárquico Métodos de clustering: Aglomerativo (bottom-up) Métodos que comienzan con cada ejemplo en un cluster diferente y combinan iterativamente los clusters para formar clusters mayores Divisivo (top-down) Métodos que comienzan con todos los ejemplos en un mismo cluster y los separan sucesivamente en clusters de menor tamaño

32 Clustering Jerárquico Clustering Jerárquico Aglomerativo: Asume que existe una función de similitud que determina la similitud de dos instancias: Por ejemplo, similitud del coseno en caso de documentos Asume que existe una función de similitud que determina la similitud de dos clusters conteniendo múltiples instancias: Single link Complete link Group average

33 Clustering Jerárquico Single Link La similitud de los clusters es la de los dos ejemplos más similares entre ambos clusters

34 Clustering Jerárquico Single Link La similitud de los clusters es la de los dos ejemplos más similares entre ambos clusters Complete Link La similitud de los clusters es la de los dos ejemplos menos similares entre ambos clusters

35 Clustering Jerárquico Single Link La similitud de los clusters es la de los dos ejemplos más similares entre ambos clusters Complete Link La similitud de los clusters es la de los dos ejemplos menos similares entre ambos clusters Group Average Promedio de similitudes entre los ejemplos de ambos clusters

36 Clustering Jerárquico Clustering Aglomerativo Jerárquico: 1. Asignar cada ejemplo a un cluster diferente (n ejemplos, n clusters) 2. Encontrar el par de clusters más similares y combinarlos en un único cluster 3. Recalcular las similitud o distancias entre el nuevo cluster y los clusters restantes 4. Hasta que solo quede un cluster de tamaño n, volver a 2

37 Clustering Jerárquico Algoritmo: Comienza con todos los ejemplos en su propio cluster Hasta que quede un único cluster: Entre todos los cluster existentes determinar los dos clusters c i y c j que son más similares Reemplazar c i y c j por un único cluster c i c j

38 Clustering Jerárquico Asignar cada ejemplo a un cluster diferente d 1 d 2 d 3 d 4 d d d 3 10 d 1 d 2 d 3 d 4 d 4

39 Clustering Jerárquico Encontrar el par de clusters más similares y combinarlos en un único cluster d 1 d 2 d 3 d 4 d d d 3 10 d 1 d 2 d 3 d 4 d 4

40 Clustering Jerárquico Encontrar el par de clusters más similares y combinarlos en un único cluster d 1 d 2 d 3 d 4 d d d 3 10 d 1 d 4 d 2 d 3 d 4 c 1

41 Clustering Jerárquico Recalcular las similitud o distancias entre el nuevo cluster y los clusters restantes c 1 d 2 d 3 c d 2 15 d 3 d 1 d 4 d 2 d 3 c 1

42 Clustering Jerárquico Encontrar el par de clusters más similares y combinarlos en un único cluster c 1 d 2 d 3 c d 2 15 d 3 d 1 d 4 d 2 d 3 c 2

43 Clustering Jerárquico Recalcular las similitud o distancias entre el nuevo cluster y los clusters restantes c 2 d 3 c 2 20 d 2 d 3 d 1 d 4 d 2 d 3 c 2

44 Clustering Jerárquico Encontrar el par de clusters más similares y combinarlos en un único cluster c 2 d 3 c d 2 d 3 d 1 d 4 d 2 d 3

45 Clustering Jerárquico Únicamente queda un cluster de tamaño n c 3 c 3 d 1 d 4 d 2 d 3 c 3

46 Clustering Jerárquico Ventajas: No es necesario establecer un número de clusters Se puede explorar el dendograma en diferentes niveles, más rico para el análisis de los datos que el particionamiento Desventajas: No se recupera de decisiones incorrectas Computacionalmente costoso

Facultad de Ciencias Económicas Universidad Nacional de Córdoba Carrera de Doctorado

Facultad de Ciencias Económicas Universidad Nacional de Córdoba Carrera de Doctorado Facultad de Ciencias Económicas Universidad Nacional de Córdoba Carrera de Doctorado Materia: Estadística Aplicada a la Investigación Profesora: Dra. Hebe Goldenhersh Octubre del 2002 1 Determinación de

Más detalles

Similaridad y Clustering

Similaridad y Clustering Similaridad y Clustering 1 web results motivación Problema 1: ambigüedad de consultas Problema 2: construcción manual de jerarquías de tópicos y taxonomías Problema 3: acelerar búsqueda por similaridad

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Análisis Estadístico de Datos Climáticos Análisis de agrupamiento (o clusters) (Wilks, Cap. 14) Facultad de Ciencias Facultad de Ingeniería 2013 Objetivo Idear una clasificación o esquema de agrupación

Más detalles

CLASIFICACIÓN NO SUPERVISADA

CLASIFICACIÓN NO SUPERVISADA CLASIFICACIÓN NO SUPERVISADA CLASIFICACION IMPORTANCIA PROPÓSITO METODOLOGÍAS EXTRACTORES DE CARACTERÍSTICAS TIPOS DE CLASIFICACIÓN IMPORTANCIA CLASIFICAR HA SIDO, Y ES HOY DÍA, UN PROBLEMA FUNDAMENTAL

Más detalles

Método k-medias. [ U n a i n t r o d u c c i ó n ]

Método k-medias. [ U n a i n t r o d u c c i ó n ] Método k-medias [ U n a i n t r o d u c c i ó n ] Método K-Means (Nubes Dinámicas) 0 3 4 5 6 7 8 9 0 0 3 4 5 6 7 8 9 0 0 3 4 5 6 7 8 9 0 0 3 4 5 6 7 8 9 0 0 3 4 5 6 7 8 9 0 0 3 4 5 6 7 8 9 0 0 3 4 5 6

Más detalles

CURSO MINERÍA DE DATOS AVANZADO

CURSO MINERÍA DE DATOS AVANZADO CURSO MINERÍA DE DATOS AVANZADO La minería de datos (en inglés, Data Mining) se define como la extracción de información implícita, previamente desconocida y potencialmente útil, a partir de datos. En

Más detalles

Text Mining Introducción a Minería de Datos

Text Mining Introducción a Minería de Datos Text Mining Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu.ar/~laura SADIO 12 de Marzo de 2008 qué es la minería de datos? A technique using software tools

Más detalles

CLUSTERING MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN)

CLUSTERING MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN) CLASIFICACIÓN NO SUPERVISADA CLUSTERING Y MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN) info@clustering.50webs.com Indice INTRODUCCIÓN 3 RESUMEN DEL CONTENIDO 3 APRENDIZAJE

Más detalles

Procesamiento de Texto y Modelo Vectorial

Procesamiento de Texto y Modelo Vectorial Felipe Bravo Márquez 6 de noviembre de 2013 Motivación Cómo recupera un buscador como Google o Yahoo! documentos relevantes a partir de una consulta enviada? Cómo puede procesar una empresa los reclamos

Más detalles

MINERIA DE DATOS Y Descubrimiento del Conocimiento

MINERIA DE DATOS Y Descubrimiento del Conocimiento MINERIA DE DATOS Y Descubrimiento del Conocimiento UNA APLICACIÓN EN DATOS AGROPECUARIOS INTA EEA Corrientes Maximiliano Silva La información Herramienta estratégica para el desarrollo de: Sociedad de

Más detalles

Técnicas de análisis multivariante para agrupación

Técnicas de análisis multivariante para agrupación TEMA 2: TÉCNICAS DE ANÁLISIS MULTIVARIANTE PARA AGRUPACIÓN Métodos cluster Técnicas de segmentación Clasificación no supervisada Ana Justel 1 Técnicas de análisis multivariante para agrupación Motivación

Más detalles

PREPROCESADO DE DATOS PARA MINERIA DE DATOS

PREPROCESADO DE DATOS PARA MINERIA DE DATOS Ó 10.1007/978-3-319-02738-8-2. PREPROCESADO DE DATOS PARA MINERIA DE DATOS Miguel Cárdenas-Montes Frecuentemente las actividades de minería de datos suelen prestar poca atención a las actividades de procesado

Más detalles

Cómo se usa Data Mining hoy?

Cómo se usa Data Mining hoy? Cómo se usa Data Mining hoy? 1 Conocer a los clientes Detectar segmentos Calcular perfiles Cross-selling Detectar buenos clientes Evitar el churning, attrition Detección de morosidad Mejora de respuesta

Más detalles

TESIS DE MAGISTER EN INGENIERIA DE SOFTWARE CATEGORIZACION AUTOMATICA DE DOCUMENTOS CON MAPAS AUTO-ORGANIZADOS DE KOHONEN

TESIS DE MAGISTER EN INGENIERIA DE SOFTWARE CATEGORIZACION AUTOMATICA DE DOCUMENTOS CON MAPAS AUTO-ORGANIZADOS DE KOHONEN TESIS DE MAGISTER EN INGENIERIA DE SOFTWARE CATEGORIZACION AUTOMATICA DE DOCUMENTOS CON MAPAS AUTO-ORGANIZADOS DE KOHONEN Autor: Lic. Daniel Goldenberg Directores de Tesis: M. Ing. Hernán Merlino M. Ing.

Más detalles

ÍNDICE. Introducción... Capítulo 1. El concepto de Data Mining... 1

ÍNDICE. Introducción... Capítulo 1. El concepto de Data Mining... 1 ÍNDICE Introducción... XV Capítulo 1. El concepto de Data Mining... 1 Introducción... 1 Una definición de Data Mining... 3 El proceso de Data Mining... 6 Selección de objetivos... 8 La preparación de los

Más detalles

Capítulo 12: Indexación y asociación

Capítulo 12: Indexación y asociación Capítulo 12: Indexación y asociación Conceptos básicos Índices ordenados Archivos de índice de árbol B+ Archivos de índice de árbol B Asociación estática Asociación dinámica Comparación entre indexación

Más detalles

6.3.4. 4 Etapa : Caracterización de la partición P 4 de los n individuos de la tabla T(22, 3)

6.3.4. 4 Etapa : Caracterización de la partición P 4 de los n individuos de la tabla T(22, 3) 6.3.4. 4 Etapa : Caracterización de la partición P 4 de los n individuos de la tabla T(22, 3) - Resultados y conclusiones Las tres variables contribuyen significativamente a caracterizar las clases de

Más detalles

Introducción al Data Mining Clases 5. Cluster Analysis. Ricardo Fraiman Centro de Matemática, Udelar y Universidad de San Andrés, Argentina

Introducción al Data Mining Clases 5. Cluster Analysis. Ricardo Fraiman Centro de Matemática, Udelar y Universidad de San Andrés, Argentina Introducción al Data Mining Clases 5 Cluster Analysis Ricardo Fraiman Centro de Matemática, Udelar y Universidad de San Andrés, Argentina Cluster Análisis 1 El término cluster analysis (usado por primera

Más detalles

Inteligencia en Redes de Comunicaciones. Tema 7 Minería de Datos. Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda

Inteligencia en Redes de Comunicaciones. Tema 7 Minería de Datos. Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda Inteligencia en Redes de Comunicaciones Tema 7 Minería de Datos Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda {jvillena, rcrespo, rueda}@it.uc3m.es Índice Definición y conceptos

Más detalles

4. MÉTODOS DE CLASIFICACIÓN

4. MÉTODOS DE CLASIFICACIÓN 4. MÉTODOS DE CLASIFICACIÓN Una forma de sintetizar la información contenida en una tabla multidimensional (por ejemplo una tabla léxica agregada), es mediante la conformación y caracterización de grupos.

Más detalles

Base de datos II Facultad de Ingeniería. Escuela de computación.

Base de datos II Facultad de Ingeniería. Escuela de computación. Base de datos II Facultad de Ingeniería. Escuela de computación. Introducción Este manual ha sido elaborado para orientar al estudiante de Bases de datos II en el desarrollo de sus prácticas de laboratorios,

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Contenido Introducción: Inteligencia de negocios (Business Intelligence). Componentes Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica. Fases

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 9 - Juan Alfonso Lara Torralbo 1 Índice de contenidos Actividad. Qué es un modelo de Data Mining Qué es

Más detalles

Algoritmos. Jordi Gironés Roig PID_00197284

Algoritmos. Jordi Gironés Roig PID_00197284 Algoritmos Jordi Gironés Roig PID_00197284 CC-BY-NC-ND PID_00197284 Algoritmos Los textos e imágenes publicados en esta obra están sujetos excepto que se indique lo contrario a una licencia de Reconocimiento-NoComercial-SinObraDerivada

Más detalles

Análisis multivariable

Análisis multivariable Análisis multivariable Las diferentes técnicas de análisis multivariante cabe agruparlas en tres categorías: «Análisis de dependencia» tratan de explicar la variable considerada independiente a través

Más detalles

Algoritmos y Estructuras de Datos 2. Web Mining Esteban Meneses

Algoritmos y Estructuras de Datos 2. Web Mining Esteban Meneses Algoritmos y Estructuras de Datos 2 Web Mining Esteban Meneses 2005 Motivación La Web contiene miles de millones de documentos con información sobre casi cualquier tópico. Es la Biblioteca de Alejandría

Más detalles

HADES: Hidrocarburos Análisis de Datos de Estaciones de Servicio

HADES: Hidrocarburos Análisis de Datos de Estaciones de Servicio Hidrocarburos: Análisis de Pablo Burgos Casado (Jefe de Área Desarrollo (SGTIC - MITYC)) María Teresa Simino Rueda Rubén Pérez Gómez Israel Santos Montero María Ángeles Rodelgo Sanchez 1. INTRODUCCIÓN

Más detalles

EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO

EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO I. INTRODUCCIÓN Beatriz Meneses A. de Sesma * En los estudios de mercado intervienen muchas variables que son importantes para el cliente, sin embargo,

Más detalles

KNime. KoNstanz Information MinEr. KNime - Introducción. KNime - Introducción. Partes de la Herramienta. Editor Window. Repositorio de Nodos

KNime. KoNstanz Information MinEr. KNime - Introducción. KNime - Introducción. Partes de la Herramienta. Editor Window. Repositorio de Nodos KNime - Introducción KNime Significa KoNstanz Information MinEr. Se pronuncia [naim]. Fue desarrollado en la Universidad de Konstanz (Alemania). Esta escrito en Java y su entorno grafico esta desarrollado

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Vallejos, Sofia Contenido Introducción: Inteligencia de negocios (Business Intelligence). Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica.

Más detalles

Redes de Kohonen y la Determinación Genética de las Clases

Redes de Kohonen y la Determinación Genética de las Clases Redes de Kohonen y la Determinación Genética de las Clases Angel Kuri Instituto Tecnológico Autónomo de México Octubre de 2001 Redes Neuronales de Kohonen Las Redes de Kohonen, también llamadas Mapas Auto-Organizados

Más detalles

Sistemas de Recuperación de Información

Sistemas de Recuperación de Información Sistemas de Recuperación de Información Los SRI permiten el almacenamiento óptimo de grandes volúmenes de información y la recuperación eficiente de la información ante las consultas de los usuarios. La

Más detalles

INFORMÁTICA APLICADA AL ANÁLISIS ECONÓMICO - FONDO SOCIAL EUROPEO ANÁLISIS CLUSTER IDEA CONCEPTUAL BÁSICA: DEFINICIÓN:

INFORMÁTICA APLICADA AL ANÁLISIS ECONÓMICO - FONDO SOCIAL EUROPEO ANÁLISIS CLUSTER IDEA CONCEPTUAL BÁSICA: DEFINICIÓN: IDEA CONCEPTUAL BÁSICA: La heterogeneidad de una población constituye la materia prima del análisis cuantitativo...... sin embargo, en ocasiones, el individuo u objeto particular, aislado, resulta un "recipiente"

Más detalles

CLASIFICACIÓN NO SUPERVISADA DE DOCUMENTOS

CLASIFICACIÓN NO SUPERVISADA DE DOCUMENTOS UNIVERSIDAD SAN PABLO - CEU ESCUELA POLITÉCNICA SUPERIOR INGENIERÍA SUPERIOR DE TELECOMUNICACIÓN PROYECTO FIN DE CARRERA CLASIFICACIÓN NO SUPERVISADA DE DOCUMENTOS Autor: David Bravo Alcobendas. Director:

Más detalles

Similaridad y Clustering

Similaridad y Clustering web results Similaria y Clustering motivación Problema : ambigüea e consultas Problema 2: construcción manual e jerarquías e tópicos y taxonomías Problema 3: acelerar búsquea por similaria (clusters más

Más detalles

BASE DE DATOS UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA T.S.U. EN ESTADISTICA DE SALUD CATEDRA DE COMPUTACIÓN II. Comenzar presentación

BASE DE DATOS UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA T.S.U. EN ESTADISTICA DE SALUD CATEDRA DE COMPUTACIÓN II. Comenzar presentación UNIVERSIDAD DE LOS ANDES FACULTAD DE MEDICINA T.S.U. EN ESTADISTICA DE SALUD CATEDRA DE COMPUTACIÓN II BASE DE DATOS Comenzar presentación Base de datos Una base de datos (BD) o banco de datos es un conjunto

Más detalles

Introducción a selección de. Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012

Introducción a selección de. Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012 Introducción a selección de atributos usando WEKA Blanca A. Vargas Govea blanca.vargas@cenidet.edu.mx Reconocimiento de patrones cenidet Octubre 1, 2012 Contenido 1 Introducción a WEKA El origen Interfaces

Más detalles

Capítulo 1. Introducción

Capítulo 1. Introducción Capítulo 1. Introducción El WWW es la mayor fuente de imágenes que día a día se va incrementando. Según una encuesta realizada por el Centro de Bibliotecas de Cómputo en Línea (OCLC) en Enero de 2005,

Más detalles

2010 Coordinación de Ciencias Computacionales INAOE. Reporte Técnico No. CCC-10-001 25 de enero de 2010

2010 Coordinación de Ciencias Computacionales INAOE. Reporte Técnico No. CCC-10-001 25 de enero de 2010 Algoritmos dinámicos para el agrupamiento con traslape Airel Pérez Suárez, José Fco. Martínez Trinidad, José E. Medina Pagola, Jesús Ariel Carrasco Ochoa Reporte Técnico No. CCC-1-1 25 de enero de 21 21

Más detalles

Introducción al Análisis Cluster. Consideraciones generales.

Introducción al Análisis Cluster. Consideraciones generales. Capítulo 1 Introducción al Análisis Cluster. Consideraciones generales. 1.1. El problema de la clasificación. Una de las actividades más primitivas, comunes y básicas del hombre consiste en clasificar

Más detalles

Encuesta Permanente de Hogares

Encuesta Permanente de Hogares Minería de Datos Aplicada a la Encuesta Permanente de Hogares Disertante: Luis Alfonso Cutro Adscripto a la asignatura Diseño y Administración de Datos. Prof. Coordinador: Mgter. David Luís la Red Martínez

Más detalles

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING Aprendizaje Automático y Data Mining Bloque IV DATA MINING 1 Índice Definición y aplicaciones. Grupos de técnicas: Visualización. Verificación. Descubrimiento. Eficiencia computacional. Búsqueda de patrones

Más detalles

Ruth Vilà, María-José Rubio, Vanesa Berlanga, Mercedes Torrado. Cómo aplicar un cluster jerárquico en SPSS.

Ruth Vilà, María-José Rubio, Vanesa Berlanga, Mercedes Torrado. Cómo aplicar un cluster jerárquico en SPSS. Universitat de Barcelona. Institut de Ciències de l Educació Cómo aplicar un cluster jerárquico en SPSS Ruth Vilà-Baños, María-José Rubio-Hurtado, Vanesa Berlanga-Silvente, Mercedes Torrado-

Más detalles

Evaluación de modelos para la predicción de la Bolsa

Evaluación de modelos para la predicción de la Bolsa Evaluación de modelos para la predicción de la Bolsa Humberto Hernandez Ansorena Departamento de Ingeniería Telemática Universidad Carlos III de Madrid Madrid, España 10003975@alumnos.uc3m.es Rico Hario

Más detalles

Visión global del KDD

Visión global del KDD Visión global del KDD Series Temporales Máster en Computación Universitat Politècnica de Catalunya Dra. Alicia Troncoso Lora 1 Introducción Desarrollo tecnológico Almacenamiento masivo de información Aprovechamiento

Más detalles

El diseño de la base de datos de un Data Warehouse. Marta Millan millan@eisc.univalle.edu.co www.eisc.univalle.edu.co/materias

El diseño de la base de datos de un Data Warehouse. Marta Millan millan@eisc.univalle.edu.co www.eisc.univalle.edu.co/materias El diseño de la base de datos de un Data Warehouse Marta Millan millan@eisc.univalle.edu.co www.eisc.univalle.edu.co/materias El modelo Multidimensional Principios básicos Marta Millan millan@eisc.univalle.edu.co

Más detalles

ANALISIS DE CONGLOMERADOS

ANALISIS DE CONGLOMERADOS ANALISIS DE CONGLOMERADOS Jorge Galbiati R Consiste en buscar grupos (conglomerados) en un conjunto de observaciones de forma tal que aquellas que pertenecen a un mismo grupo se parecen, mientras que aquellas

Más detalles

Notas. Modelo conceptual para el diseño e implementación del sitio web de un museo regional * Resumen. 1. Introducción y formulación del problema

Notas. Modelo conceptual para el diseño e implementación del sitio web de un museo regional * Resumen. 1. Introducción y formulación del problema Notas Modelo conceptual para el diseño e implementación del sitio web de un museo regional * Resumen El presente artículo propone el modelo conceptual para la creación de un sitio Web de un museo regional

Más detalles

CLASIFICACIÓN NO SUPERVISADA CLASIFICACIÓN NO SUPERVISADA N. QUEIPO, S. PINTOS COPYRIGHT 2005 FUNDAMENTOS DE DATA MINING Y SUS APLICACIONES

CLASIFICACIÓN NO SUPERVISADA CLASIFICACIÓN NO SUPERVISADA N. QUEIPO, S. PINTOS COPYRIGHT 2005 FUNDAMENTOS DE DATA MINING Y SUS APLICACIONES DEFINICIÓN: AGRUPAR UN CONJUNTO DE n OBJETOS, DEFINIDOS POR p VARIABLES, EN c CLASES, DONDE EN CADA CLASE LOS ELEMENTOS POSEAN CARACTERÍSTICAS AFINES Y SEAN MÁS SIMILARES ENTRE SÍ QUE RESPECTO AELEMENTOS

Más detalles

PRESENTACIÓN DE LOS MÉTODOS DE CLASIFICACIÓN. Eduardo CRIVISQUI

PRESENTACIÓN DE LOS MÉTODOS DE CLASIFICACIÓN. Eduardo CRIVISQUI PRESENTACIÓN DE LOS MÉTODOS DE CLASIFICACIÓN Eduardo CRIVISQUI ADVERTENCIA SÓLO EL CONOCIMIENTO DE LAS PROPIEDADES LÓGICAS DE LOS MÉTODOS ESTADÍSTICOS PERMITE EVITAR EL EMPLEO «A CIEGAS» DE LOS MISMOS.

Más detalles

USO DE LA TECNOLOGIA COMO RECURSO PARA LA ENSEÑANZA. Sistema de búsqueda en Internet. Mtro. Julio Márquez Rodríguez

USO DE LA TECNOLOGIA COMO RECURSO PARA LA ENSEÑANZA. Sistema de búsqueda en Internet. Mtro. Julio Márquez Rodríguez USO DE LA TECNOLOGIA COMO RECURSO PARA LA ENSEÑANZA Sistema de búsqueda en Internet Mtro. Julio Márquez Rodríguez SISTEMA DE BUSQUEDA EN INTERNET Por el tipo de tecnología que utilizan, los sistemas de

Más detalles

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003 MINERÍA DE DATOS Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE Octubre - 2003 CONTENIDO Qué es Data Warehousing Data Warehouse Objetivos del Data Warehouse

Más detalles

2. MARCO TEÓRICO 2.1. GRAFOS

2. MARCO TEÓRICO 2.1. GRAFOS 2. MARCO TEÓRICO Este capítulo presenta conceptos relacionados con grafos, técnicas y herramientas de visualización de grafos. Además, incluye la definición del modelo de datos GDM (5), los operadores

Más detalles

PROYECTO JAZO 2007. Título. Participantes. Datos Generales. Detección y seguimiento de sucesos para euskera y español. Ametzagaiña A.I.E.

PROYECTO JAZO 2007. Título. Participantes. Datos Generales. Detección y seguimiento de sucesos para euskera y español. Ametzagaiña A.I.E. PROYECTO JAZO 2007 Título Detección y seguimiento de sucesos para euskera y español Participantes Ametzagaiña A.I.E. Datos Generales Tipo: Proyecto de Plan de Especialización Años de actividad: 2007-2008

Más detalles

Ampliación de Estructuras de Datos

Ampliación de Estructuras de Datos Ampliación de Estructuras de Datos Amalia Duch Barcelona, marzo de 2007 Índice 1. Diccionarios implementados con árboles binarios de búsqueda 1 2. TAD Cola de Prioridad 4 3. Heapsort 8 1. Diccionarios

Más detalles

Vicente Toledo Israel Miralles. Base de Datos Distribuidas

Vicente Toledo Israel Miralles. Base de Datos Distribuidas Bases de Datos Distribuidas Vicente Toledo Israel Miralles Pg-1 Indice 1. - Que son Bases de Datos Distribuidas? Pg-3 1. -Comparación Pg-3 2. -Arquitectura de las Bases de Datos Pg-4 1. -Ejemplo de una

Más detalles

clustering: Clasificación no Supervisada

clustering: Clasificación no Supervisada clustering: Clasificación no Supervisada Gráficas estadística y minería de datos con python Miguel Cárdenas Montes Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, Madrid, Spain miguel.cardenas@ciemat.es

Más detalles

Apoyo a la toma de Decisiones. Carlos A. Olarte Bases de Datos II

Apoyo a la toma de Decisiones. Carlos A. Olarte Bases de Datos II Carlos A. Olarte Bases de Datos II Contenido 1 Introducción 2 OLAP 3 Data Ware Housing 4 Data Mining Introducción y Motivación Cómo puede analizarse de forma eficiente volúmenes masivos de datos? La consulta,

Más detalles

Introducción a la Minería de Datos

Introducción a la Minería de Datos Introducción a la Minería de Datos Abdelmalik Moujahid, Iñaki Inza y Pedro Larrañaga Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad del País Vasco Índice 1 Minería de

Más detalles

Universidad Nacional de Trujillo

Universidad Nacional de Trujillo FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS ESCUELA ACADEMICO PROFESIONAL DE INFORMATICA INFORME FINAL DE TRABAJO DE GRADUACION DISEÑO DE UN MODELO COMPUTACIONAL BASADO EN ALGORITMOS DE AGRUPAMIENTO PARA

Más detalles

APOYO PARA LA TOMA DE DECISIONES

APOYO PARA LA TOMA DE DECISIONES APOYO PARA LA TOMA DE DECISIONES Cátedra: Gestión de Datos Profesor: Santiago Pérez Año: 2006 Bibliografía: Introducción a las Bases de Datos. DATE - 1 - 1. INTRODUCCION APOYO PARA LA TOMA DE DECISIONES

Más detalles

Desarrollando una ontología sencilla Curso de Doctorado: Sistemas Multiagente Dpt. Informática Curso 2002-03

Desarrollando una ontología sencilla Curso de Doctorado: Sistemas Multiagente Dpt. Informática Curso 2002-03 Desarrollando una ontología sencilla Curso de Doctorado: Sistemas Multiagente Dpt. Informática Curso 2002-03 11/12/2002 Desarrollando una ontología sencilla - (c) César Llamas. Dpt. Informática (UVA) 1

Más detalles

Taller de sistemas operativos PLANIFICADOR

Taller de sistemas operativos PLANIFICADOR Taller de sistemas operativos PLANIFICADOR Agenda Introducción Clases de planificación Prioridades Timeslice Prioridad dinámica Estructuras del planificador Planificador en funcionamiento Nuevo planificador

Más detalles

Capítulo 2. Técnicas de procesamiento digital de imágenes y reconocimiento de patrones.

Capítulo 2. Técnicas de procesamiento digital de imágenes y reconocimiento de patrones. Capítulo 2. Técnicas de procesamiento digital de imágenes y reconocimiento de patrones. 2.1 Revisión sistema reconocimiento caracteres [9]: Un sistema de reconocimiento típicamente esta conformado por

Más detalles

&$3Ì78/2 $/*25,7026 (92/87,926 $9$1=$'26 3$5$ 763 6.1. INTRODUCCIÓN

&$3Ì78/2 $/*25,7026 (92/87,926 $9$1=$'26 3$5$ 763 6.1. INTRODUCCIÓN &$3Ì78/2 6.1. INTRODUCCIÓN Los primeros avances para solucionar el TSP, por medio de Algoritmos Evolutivos han sido introducidos por Goldberg y Lingle en [68] y Grefenstette en [72]. En éste área muchos

Más detalles

Máster en Ciencia y Tecnología Informática

Máster en Ciencia y Tecnología Informática Departamento de Informática Universidad Carlos III de Madrid Máster en Ciencia y Tecnología Informática Programación Automática Examen Normas generales del examen El tiempo para realizar el examen es de

Más detalles

Santiago de la Fuente Fernández. Análisis Conglomerados

Santiago de la Fuente Fernández. Análisis Conglomerados Santiago de la Fuente Fernández Análisis Conglomerados Santiago de la Fuente Fernández Análisis Conglomerados ANÁLISIS DE CONGLOMERADOS Análisis de Conglomerados El Análisis Cluster, conocido como Análisis

Más detalles

CONSIDERACIONES GENERALES DEL WEB MINING

CONSIDERACIONES GENERALES DEL WEB MINING CONSIDERACIONES GENERALES DEL WEB MINING Sandra Milena Leal Elizabeth Castiblanco Calderón* RESUMEN: el presente artículo describe los conceptos básicos para la utilización del Webmining, dentro de los

Más detalles

WBS:Work Breakdown Structure. WBS - Work Breakdown Structure. WBS - Work Breakdown Structure. WBS:Work Breakdown Structure...

WBS:Work Breakdown Structure. WBS - Work Breakdown Structure. WBS - Work Breakdown Structure. WBS:Work Breakdown Structure... WBS - Work Breakdown Structure WBS:Work Breakdown Structure WBS: es una descripción jerárquica del trabajo que se debe realizar para completar el proyecto. El trabajo se divide en actividades. Las actividades

Más detalles

1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2.

1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2. 1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2. GENERALIDADES SOBRE LAS TÉCNICAS DE INVESTIGACIÓN SOCIAL Y DE MERCADOS

Más detalles

UNIVERSIDADDE CHilE FACULTADDE CIENCIAS FíSICAS Y MATEMÁTICAS DEPARTAMENTODE INGENIERIAINDUSTRIAL

UNIVERSIDADDE CHilE FACULTADDE CIENCIAS FíSICAS Y MATEMÁTICAS DEPARTAMENTODE INGENIERIAINDUSTRIAL UNIVERSIDADDE CHilE FACULTADDE CIENCIAS FíSICAS Y MATEMÁTICAS DEPARTAMENTODE INGENIERIAINDUSTRIAL SEGMENTACiÓNDE LOS CONTRIBUYENTESQUE DECLARANIVA. UTILIZANDOTÉCNICASDE DATAMINING MEMORIA PARA OPTAR AL

Más detalles

Minería de Datos. Preprocesamiento: Reducción de Datos - Discretización

Minería de Datos. Preprocesamiento: Reducción de Datos - Discretización Minería de Datos Preprocesamiento: Reducción de Datos - Discretización Dr. Edgar Acuña Departamento de Ciencias Matemáticas Universidad de Puerto Rico-Mayaguez E-mail: edgar.acuna@upr.edu, eacunaf@gmail.com

Más detalles

Capítulo 5. Implementación y Tecnologías Utilizadas

Capítulo 5. Implementación y Tecnologías Utilizadas Capítulo 5. Implementación y Tecnologías Utilizadas Cada vez más, se está utilizando Flash para desarrollar aplicaciones basadas en Web, pues permite la construcción de ambientes con mayor interacción.

Más detalles

En nuestro capitulo final, daremos las conclusiones y las aplicaciones a futuro

En nuestro capitulo final, daremos las conclusiones y las aplicaciones a futuro Capitulo 6 Conclusiones y Aplicaciones a Futuro. En nuestro capitulo final, daremos las conclusiones y las aplicaciones a futuro para nuestro sistema. Se darán las conclusiones para cada aspecto del sistema,

Más detalles

Registro (record): es la unidad básica de acceso y manipulación de la base de datos.

Registro (record): es la unidad básica de acceso y manipulación de la base de datos. UNIDAD II 1. Modelos de Bases de Datos. Modelo de Red. Representan las entidades en forma de nodos de un grafo y las asociaciones o interrelaciones entre estas, mediante los arcos que unen a dichos nodos.

Más detalles

WINDOWS 2003 SERVER DIRECTORIO ACTIVO Y DNS

WINDOWS 2003 SERVER DIRECTORIO ACTIVO Y DNS WINDOWS 2003 SERVER DIRECTORIO ACTIVO Y DNS ESCUELA COLOMBIANA DE INGENIERÍA JULIO GARAVITO LABORATORIO DE INFORMÁTICA BOGOTÁ D. C. 2007-2 TABLA DE CONTENIDO INTRODUCCIÓN... 3 1. EL DIRECTORIO ACTIVO Y

Más detalles

Recuperación de Información en Internet Tema 3: Principios de Recuperación de Información

Recuperación de Información en Internet Tema 3: Principios de Recuperación de Información Recuperación de Información en Internet Tema 3: Principios de Recuperación de Información Mestrado Universitario Língua e usos profesionais Miguel A. Alonso Jesús Vilares Departamento de Computación Facultad

Más detalles

Qué es DataMining? Mg. Cecilia Ruz Luis Azaña Bocanegra

Qué es DataMining? Mg. Cecilia Ruz Luis Azaña Bocanegra Qué es DataMining? Mg. Cecilia Ruz Luis Azaña Bocanegra Agenda Qué es Data Mining? Cómo se integra en el proceso de Descubrimiento del conocimiento? Funcionalidades del Data Mining Técnicas Supervisadas

Más detalles

Métodos de la Minería de Datos

Métodos de la Minería de Datos This is page i Printer: Opaue this Métodos de la Minería de Datos Dr. Oldemar Rodríguez Rojas de noviembre de 2005 ii Contents This is page iii Printer: Opaue this iv This is page v Printer: Opaue this

Más detalles

Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322

Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322 Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322 Nicole García Gómez 2830047-6 Diego Riquelme Adriasola 2621044-5 RESUMEN.- La minería de datos corresponde a la extracción

Más detalles

VivaMéxico sin PRI. Quiero que mi país sea de todos. Dr. Ivo H. Pineda Torres. Otoño 2013

VivaMéxico sin PRI. Quiero que mi país sea de todos. Dr. Ivo H. Pineda Torres. Otoño 2013 VivaMéxico sin PRI Quiero que mi país sea de todos. Dr. Ivo H. Pineda Torres Facultad de Ciencias de la Computación Benemérita Universidad Autónoma de Puebla Otoño 2013 IMAGENESpemexmorena Adquisición

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 12 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 12 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 12 - Juan Alfonso Lara Torralbo 1 Índice de contenidos Fundamentos de clustering Ejemplo inicial Aplicaciones

Más detalles

Julian López Franco Universidad de La Salle Carrera 2 No. 10 70 Bogotá, Colombia jullopez@unisalle.edu.co

Julian López Franco Universidad de La Salle Carrera 2 No. 10 70 Bogotá, Colombia jullopez@unisalle.edu.co ESTRATEGIAS PARA EL DISEÑO E HIBRIDACIÓN DE UNA METAHEURÍSTICA BASADA EN BÚSQUEDA DISPERSA QUE RESUELVA EL PROBLEMA MDVRP MULTIOBJETIVO: COSTO Y BALANCEO DE CARGA Julian López Franco Universidad de La

Más detalles

Análisis de medidas no-supervisadas de calidad en clusters obtenidos por K-means y Particle Swarm Optimization

Análisis de medidas no-supervisadas de calidad en clusters obtenidos por K-means y Particle Swarm Optimization Análisis de medidas no-supervisadas de calidad en clusters obtenidos por K-means y Particle Swarm Optimization Andrea Villagra, Ana Guzmán, Daniel Pandolfi Universidad Nacional de la Patagonia Austral,

Más detalles

Leonardo Collado Torres Licenciatura en Ciencias Genómicas, UNAM www.lcg.unam.mx/~lcollado/index.php. Cuernavaca, México Oct-Nov, 2008

Leonardo Collado Torres Licenciatura en Ciencias Genómicas, UNAM www.lcg.unam.mx/~lcollado/index.php. Cuernavaca, México Oct-Nov, 2008 Leonardo Collado Torres Licenciatura en Ciencias Genómicas, UNAM www.lcg.unam.mx/~lcollado/index.php Cuernavaca, México Oct-Nov, 2008 1 / 40 Bioconductor 1 2 3 2 / 40 Nuestro problema a reproducir Para

Más detalles

PROYECTO DETECCIÓN DE CLUSTERS INTRODUCCIÓN AL RECONOCIMIENTO DE PATRONES

PROYECTO DETECCIÓN DE CLUSTERS INTRODUCCIÓN AL RECONOCIMIENTO DE PATRONES PROYECTO DETECCIÓN DE CLUSTERS INTRODUCCIÓN AL RECONOCIMIENTO DE PATRONES Diego Introini 4.379.988-6 Daniel Lena 4.870.247-2 1 INDICE Introducción..3 Marco Teórico.. 4 Clustering....4 K-means.........4

Más detalles

Informática II Ing. Industrial. Data Warehouse. Data Mining

Informática II Ing. Industrial. Data Warehouse. Data Mining Data Warehouse Data Mining Definición de un Data Warehouses (DW) Fueron creados para dar apoyo a los niveles medios y altos de una empresa en la toma de decisiones a nivel estratégico en un corto o mediano

Más detalles

MINERÍA DE DATOS Y DESCUBRIMIENTO DE CONOCIMIENTO (DATA MINING AND KNOWLEDGE DISCOVERY)

MINERÍA DE DATOS Y DESCUBRIMIENTO DE CONOCIMIENTO (DATA MINING AND KNOWLEDGE DISCOVERY) MINERÍA DE DATOS Y DESCUBRIMIENTO DE CONOCIMIENTO (DATA MINING AND KNOWLEDGE DISCOVERY) Autor: Lic. Manuel Ernesto Acosta Aguilera Entidad: Facultad de Economía, Universidad de La Habana Dirección: Edificio

Más detalles

Técnicas Clásicas de Segmentación de Imagen

Técnicas Clásicas de Segmentación de Imagen Técnicas Clásicas de Segmentación de Imagen Marcos Martín 21 de mayo de 2002 1. Introducción El primer paso en cualquier proceso de análisis de imagen es la segmentación. Mediante la segmentación vamos

Más detalles

Componentes de Integración entre Plataformas Información Detallada

Componentes de Integración entre Plataformas Información Detallada Componentes de Integración entre Plataformas Información Detallada Active Directory Integration Integración con el Directorio Activo Active Directory es el servicio de directorio para Windows 2000 Server.

Más detalles

Detección de Patrones de Daños y Averías en la Industria Automotriz

Detección de Patrones de Daños y Averías en la Industria Automotriz Universidad Tecnológica Nacional Facultad Regional Buenos Aires Tesis de Magister en Ingeniería en Sistemas de Información Detección de Patrones de Daños y Averías en la Industria Automotriz Directora:

Más detalles

Capítulo 1. Minería de datos: Conceptos, técnicas y sistemas...

Capítulo 1. Minería de datos: Conceptos, técnicas y sistemas... , INDICE Introducción, ; XVII Capítulo 1. Minería de datos: Conceptos, técnicas y sistemas... Aproximación al concepto de minería de datos... El proceso de extracción del conocimiento... Técnicas de minería

Más detalles

Trabajo final de Ingeniería

Trabajo final de Ingeniería UNIVERSIDAD ABIERTA INTERAMERICANA Trabajo final de Ingeniería Weka Data Mining Jofré Nicolás 12/10/2011 WEKA (Data Mining) Concepto de Data Mining La minería de datos (Data Mining) consiste en la extracción

Más detalles

Trabajo Practico N 12

Trabajo Practico N 12 Trabajo Practico N 12 Minería de Datos CATEDRA: Actualidad Informática Ingeniería del Software III Titular: Mgter. Horacio Kuna JTP: Lic. Sergio Caballero Auxiliar: Yachesen Facundo CARRERAS: Analista

Más detalles

Algoritmos genéticos como métodos de aproximación analítica y búsqueda de óptimos locales

Algoritmos genéticos como métodos de aproximación analítica y búsqueda de óptimos locales Algoritmos genéticos como métodos de aproximación analítica y búsqueda de óptimos locales Jorge Salas Chacón A03804 Rubén Jiménez Goñi A93212 Juan Camilo Carrillo Casas A91369 Marco Vinicio Artavia Quesada

Más detalles

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net Proyecto técnico MINERÍA DE DATOS Febrero 2014 www.osona-respon.net info@osona-respon.net 0. Índice 0. ÍNDICE 1. INTRODUCCIÓN... 2 2. LOS DATOS OCULTOS... 3 2.1. Origen de la información... 3 2.2. Data

Más detalles

Data Mining Técnicas y herramientas

Data Mining Técnicas y herramientas Data Mining Técnicas y herramientas Introducción POR QUÉ? Empresas necesitan aprender de sus datos para crear una relación one-toone con sus clientes. Recogen datos de todos lo procesos. Datos recogidos

Más detalles

ANÁLISIS DISCRIMINANTE

ANÁLISIS DISCRIMINANTE ANÁLISIS DISCRIMINANTE ANÁLISIS DISCRIMINANTE 1. Introducción 2. Etapas 3. Caso práctico Análisis de dependencias introducción varias relaciones una relación 1 variable dependiente > 1 variable dependiente

Más detalles

CATÁLOGO DE INFERENCIAS

CATÁLOGO DE INFERENCIAS Las inferencias son los elementos claves en los modelos de conocimiento o Son los elementos constitutivos de los procesos de razonamiento No existe ningún estándar CommonKADS ofrece un catálogo que cubre

Más detalles

ANÁLISIS DEL COMPORTAMIENTO DEL USUARIO EN LA WEB A PARTIR DE LA SIMULACIÓN DE SU NAVEGACIÓN USANDO OPTIMIZACIÓN DE COLONIA DE HORMIGA

ANÁLISIS DEL COMPORTAMIENTO DEL USUARIO EN LA WEB A PARTIR DE LA SIMULACIÓN DE SU NAVEGACIÓN USANDO OPTIMIZACIÓN DE COLONIA DE HORMIGA UNIVERSIDAD DE CHILE FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS DEPARTAMENTO DE INGENIERÍA INDUSTRIAL ANÁLISIS DEL COMPORTAMIENTO DEL USUARIO EN LA WEB A PARTIR DE LA SIMULACIÓN DE SU NAVEGACIÓN USANDO

Más detalles