Introducción al Data Mining Clases 5. Cluster Analysis. Ricardo Fraiman Centro de Matemática, Udelar y Universidad de San Andrés, Argentina

Save this PDF as:
 WORD  PNG  TXT  JPG

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Introducción al Data Mining Clases 5. Cluster Analysis. Ricardo Fraiman Centro de Matemática, Udelar y Universidad de San Andrés, Argentina"

Transcripción

1 Introducción al Data Mining Clases 5 Cluster Analysis Ricardo Fraiman Centro de Matemática, Udelar y Universidad de San Andrés, Argentina

2 Cluster Análisis 1

3 El término cluster analysis (usado por primera vez por Tryon, 1939) se refiere a diferentes métodos para agrupar objetos de tipo similar en categorías. Es una técnica de análisis exploratorio que intenta ordenar diferentes objetos en grupos, de forma que el grado de asociación entre dos objetos sea máximo si pertenecen al mismo grupo Cluster analysis se usa para encontrar estructuras en los datos sin proveer una explicación/interpretación. Cluster analysis simplemente descubre estructuras en los datos sin explicar porqué existen. 2

4 Ejemplos de problemas 3

5 (a) Motivación y planteo del problema. (b) Dos caminos. (c) k-medias. Versión poblacional. (d) k-medias. Versión empírica. (e) k-medias recortadas. (NO) (f) Caso infinito dimensional (NO) 4

6 (g) Cluster jerárquico. Versión poblacional (h) Cluster jerárquico. Versión empírica (i) Ejemplos y aplicaciones. * WSE

7 Qué problema queremos resolver? Dado un conjunto de vectores X 1,..., X n queremos formar con ellos K grupos homogeneos que sean distintos entre ellos... Está bien formulado el problema? Quién es K? Qué quiere decir homogeneos que sean distintos entre ellos...? Los métodos propuestos están asociados a distintas respuestas a esta pregunta. (Cuál es la versión poblacional de lo que queremos hacer??) 5

8 Si bien el problema es similar al de clasificación, en nuestro caso no tenemos una muestra de entrenamiento en la cual guiarnos para agrupar los datos. En el caso de clasificación tenemos una función objetivo clara a minimizar: el error de Bayes. En el caso de clasificación no supervisada (cluster) el problema es más difícil y aún no ha sido propuesta una cota inferior razonable que juegue el rol del error de Bayes, con consenso en la comunidad estadística. 6

9 Planteo del problema En Fraiman, Justel y Svarc (2008) se propone lo siguiente: Dado un vector aleatorio X en R p, una medida de dispersión multivariada D : R p R + para la cual D(X) es finita y una familia de métodos de partición f K : R p {1,..., K}, definimos las variables aleatorias: W j,k := X f K (X) = j, j = 1,..., K, la restricción del vector aleatorio X a los subconjuntos de la partición f K (X) = j. 7

10 Una versión poblacional del problema de cluster es buena para la familia de métodos dados por f K si las siguientes tres cantidades son suficientemente pequeñas: Kj=1 D(W j,k ), D(X) Kj=1 D(W j,k ) K 1 j=1 D(W j,k 1), K+1 j=1 D(W j,k+1) Kj=1 D(W j,k ) 1. (1) La primera requiere que la dispersión dentro de clusters sea pequeña respecto a la dispersión total. La segunda y la tercera reflejan el hecho que estamos tratando con el número correcto de clusters K. 8

11 Claramente la primera condición sola no es suficiente, pues podemos disminuir la dispersión de las variables W j,k simplemente aumentando el número de clusters!!! Dado un valor fijo de K, una cota inferior (que juega el rol del error de Bayes) puede ser el mínimo sobre todas las posibles particiones de tamaño K de K j=1 D(W j,k )/D(X), donde W j,k es la restricción del vector aleatorio X al subconjunto G j. En lo que sigue supondremos que el valor de K es conocido. Se han propuesto algunos métodos para estimar K.

12 K medias Supongamos K = 2. Buscaremos entonces dos centros c 1, c 2 R p de los clusters de modo que minimizen E ( mín( X c 1 2, X c 2 2 ) ), (2) y entonces el grupo G 1 esta dado por G 1 = {x R p : x c 1 x c 2 }, mientras que G 2 = G c 1. En este caso, se toma como función objetivo a minimizar la dada por (2). 9

13 En general, buscamos (c 1,..., c K ) centros de modo que minimizen g(c 1,..., c K ) = E ( mín X c j 2 j=1,...,k ), (3) y asignamos cada punto de R p a su centro más cercano. Los clusters resultan ser entonces las celdas de Voronoi asociadas a los K centros (c 1,..., c K ). En resumen, necesitamos estimar los K centros y luego asignar cada dato X 1,..., X n a su centro más cercano.

14 Versión empírica de K medias Dados X 1,..., X n consideramos la versión empírica de la ecuación (3), es decir g n (c 1,..., c K ) = 1 n n i=1 y buscamos {ĉ 1,..., ĉ K } que minimize (4). mín X i c j 2, (4) j=1,...,k Cada dato luego se asigna a su centro más cercano. Teoría asintótica: ver por ejemplo Pollard (1984). 10

15 En la práctica Que distancia usar? Estandarizar los datos? Si hay datos discretos? K medioides en lugar de K medias... es robusto?? Que pasa si ponemos un punto al infinito? Como se resuelve? Que son las medias podadas imparciales? 11

16 K medias podadas imparciales Buscamos (c 1,..., c K ) centros y una función de poda τ, τ(t)dp (t) = 1 α de modo que minimicen E ( τ(x) mín X c j 2 j=1,...,k ), (5) Este tour queda postergado para otra ocasión. 12

17 Características del consumo eléctrico 1 Cluster 1 1 Cluster :00 12:00 18: :00 12:00 18:00 13

18 Métodos jerárquicos. Hartigan Los métodos jerárquicos están basados en un concepto diferente. En la estimación de densidades!! Más precisamente en la estimación de los conjuntos de nivel de la densidad S(c) := {x R p : f(x) > c}, para cierto valor de c > 0. Más precisamente con las componentes conexas del conjunto de nivel S(c). 14

19 c no debe considerarse aquí como un parámetro de suavizado a ser asignado de forma óptima; el valor de c indica el nivel de resolución elegido para el problema de cluster. Luego volveremos sobre este problema. Referencias:Hartigan (1975) Wong and Lane (1983), Silverman (1986), Cuevas, Febrero and Fraiman (2001). 15

20 Versión empírica Sea ˆf n := ˆf n (t; h) := 1 n n i=1 K h (t X i ) un estimador basado en núcleos de la densidad f. Los cluster empíricos se definen como las componentes conexas de S n (c) := { ˆf n > c}. Finalmente, los datos X 1,..., X n se agrupan de acuerdo al correspondiente cluster empírico al que pertenecen. 16

21 17

22 El procedimiento de cluster propuesto es robusto en el sentido de que incluye un procedimiento automático para detectar y excluir outliers. Los outliers serán las observaciones no clasificadas por no pertenecer al c soporte {X i : f(x i ) > c}, que coincide con la noción habitual de identificar observaciones atípicas alejadas del central core de los datos. Aunque S n es un conjunto conocido, sus componentes conexas no están, en general, expĺıcitamente definidas. Por tanto, se requerirá de un algoritmo para hallarlas, o sea agrupar los datos originales en clusters. 18

23 Un algoritmo: Convolution Resampling Algorithm - CRA La herramienta básica para construir el algoritmo es el siguiente estimador del soporte (compacto) de una distribución: Si Z 1,..., Z n es una muestra aleatoria de una distribución con soporte (compacto) C, un estimador natural de C es la unión de las bolas cerradas de radio ɛ n centradas en los Z i, donde ɛ n 0. Ĉ n = n i=1 B(Z i, ɛ n ) (6) Referencias: Devroye and Wise (1985), Korostelev and Tsybakov (1993), Cuevas and Fraiman (1997), Cuevas, Febrero and Fraiman (2000). Lo interesante del estimador (6) es el hecho que sus componentes conexas son facilmente identificables. 19

24 Idea del algoritmo Tomemos una muestra (bootstrap) de ˆf n condicionada a ˆf n > c. (Convertimos el problema en uno de estimación del soporte.!! Usemos esta muestra para estimar las componentes conexas de S n = { ˆf n > c} (los clusters empíricos) por un estimador de tipo (6) construído a partir de las muestras bootstrap (que llamaremos clusters artificiales. Finalmente clasificar los datos originales de acuerdo al cluster artificial al que pertenecen. 20

25 La estructura de convolución del estimador de densidad basado en núcleos hace que las muestras bootstrap sean muy fáciles de calcular!!! X j + W j... Los detalles del algoritmo se pueden ver en Cuevas, Febrero y Fraiman (2001, pag ). En particular da un algoritmo para construir el Minimum Spanning Tree.

26 Validez (consistencia) del algoritmo La validez del algoritmo CRA esta basada en el hecho de que el conjunto de nivel S = {f > c} se puede estimar consistentemente (con respecto a la clásica distancia de Hausdorff entre conjuntos) por la versión empírica S n = { ˆf n > c}. Algunas referencias sobre la validez de este resultado son Cuevas y Fraiman (1997), Walther (1997), Tsybakov (1997), Molchanov (1998). Sin embargo, la convergencia de S n a S en la métrica de Hausdorff no garantiza en principio que las componentes conexas del conjunto S n converjan a las de S. La posibilidad de que una componente conexa de S pueda ser aproximada por la unión de varias componentes conexas de S n que estén cada vez más cerca no puede ser excluida a priori. 21

27 Prunning: colapsando grupos Esto, sin embargo no es un problema desde un punto de vista práctico: si a 0 es la distancia mínima entre las componentes conexas de S, que supondremos estrictamente positiva, se tiene que para cualquier 0 < a < a 0 la consistencia en Hausdorff de S n a S asegura que, para n suficientemente grande todos los clusters espúreos correspondientes a la misma componente conexa de S estarán a una distancia entre si menor a a/2 y por tanto podrán ser detectados y agrupados. 22

28 Comparación cualitativa con k medias Shape oriented clustering vs globular clustering El uso de métodos shape oriented como los jerárquicos, nos permiten evitar algunas patologías que aparecen con k medias. El método de k medias es especialmente adecuado cuando tenemos clusters globulares (por ejemplo elipsoidales). Por otro lado, tiene serias dificultades en otros casos. 23

29 Ejemplo Supongamos que nuestros datos X 1,..., X n están en dimensión 1 y que vienen de una mezcla 1 2 U[0, 2] + 1 U[3, 10], 2 uniformes entre 0 y 2 y entre 3 y 10 respectivamente. Hay claramente... grupos. 24

30 Si usamos 2 medias, los centros estimados convergen a c 1, c 2 solución de (c 1, c 2 ) = argmine (min( X c 1, X c 2 )) En este caso, resulta que c 1 > 1 y b > 6, 5, y por tanto todas las observaciones por debajo de 3.75 se clasificarán en el primer grupo. Mas precisamente, todas las observaciones en el intervalo [3,4.55] se clasifican en el primer grupo, cuando la partición natural debería ser [0,2], [3,10]. 25

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 9 - Juan Alfonso Lara Torralbo 1 Índice de contenidos Actividad. Qué es un modelo de Data Mining Qué es

Más detalles

CLUSTERING MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN)

CLUSTERING MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN) CLASIFICACIÓN NO SUPERVISADA CLUSTERING Y MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN) info@clustering.50webs.com Indice INTRODUCCIÓN 3 RESUMEN DEL CONTENIDO 3 APRENDIZAJE

Más detalles

Minería de Datos Web. 1 er Cuatrimestre 2015. Página Web. Prof. Dra. Daniela Godoy. http://www.exa.unicen.edu.ar/catedras/ageinweb/

Minería de Datos Web. 1 er Cuatrimestre 2015. Página Web. Prof. Dra. Daniela Godoy. http://www.exa.unicen.edu.ar/catedras/ageinweb/ Minería de Datos Web 1 er Cuatrimestre 2015 Página Web http://www.exa.unicen.edu.ar/catedras/ageinweb/ Prof. Dra. Daniela Godoy ISISTAN Research Institute UNICEN University Tandil, Bs. As., Argentina http://www.exa.unicen.edu.ar/~dgodoy

Más detalles

MINERIA DE DATOS Y Descubrimiento del Conocimiento

MINERIA DE DATOS Y Descubrimiento del Conocimiento MINERIA DE DATOS Y Descubrimiento del Conocimiento UNA APLICACIÓN EN DATOS AGROPECUARIOS INTA EEA Corrientes Maximiliano Silva La información Herramienta estratégica para el desarrollo de: Sociedad de

Más detalles

Redes de Kohonen y la Determinación Genética de las Clases

Redes de Kohonen y la Determinación Genética de las Clases Redes de Kohonen y la Determinación Genética de las Clases Angel Kuri Instituto Tecnológico Autónomo de México Octubre de 2001 Redes Neuronales de Kohonen Las Redes de Kohonen, también llamadas Mapas Auto-Organizados

Más detalles

Análisis multivariable

Análisis multivariable Análisis multivariable Las diferentes técnicas de análisis multivariante cabe agruparlas en tres categorías: «Análisis de dependencia» tratan de explicar la variable considerada independiente a través

Más detalles

CLASIFICACIÓN NO SUPERVISADA

CLASIFICACIÓN NO SUPERVISADA CLASIFICACIÓN NO SUPERVISADA CLASIFICACION IMPORTANCIA PROPÓSITO METODOLOGÍAS EXTRACTORES DE CARACTERÍSTICAS TIPOS DE CLASIFICACIÓN IMPORTANCIA CLASIFICAR HA SIDO, Y ES HOY DÍA, UN PROBLEMA FUNDAMENTAL

Más detalles

MÁQUINA DE VECTORES DE SOPORTE

MÁQUINA DE VECTORES DE SOPORTE MÁQUINA DE VECTORES DE SOPORTE La teoría de las (SVM por su nombre en inglés Support Vector Machine) fue desarrollada por Vapnik basado en la idea de minimización del riesgo estructural (SRM). Algunas

Más detalles

CURSO MINERÍA DE DATOS AVANZADO

CURSO MINERÍA DE DATOS AVANZADO CURSO MINERÍA DE DATOS AVANZADO La minería de datos (en inglés, Data Mining) se define como la extracción de información implícita, previamente desconocida y potencialmente útil, a partir de datos. En

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Análisis Estadístico de Datos Climáticos Análisis de agrupamiento (o clusters) (Wilks, Cap. 14) Facultad de Ciencias Facultad de Ingeniería 2013 Objetivo Idear una clasificación o esquema de agrupación

Más detalles

Data Mining Técnicas y herramientas

Data Mining Técnicas y herramientas Data Mining Técnicas y herramientas Introducción POR QUÉ? Empresas necesitan aprender de sus datos para crear una relación one-toone con sus clientes. Recogen datos de todos lo procesos. Datos recogidos

Más detalles

Análisis III. Joaquín M. Ortega Aramburu

Análisis III. Joaquín M. Ortega Aramburu Análisis III Joaquín M. Ortega Aramburu Septiembre de 1999 Actualizado en julio de 2001 2 Índice General 1 Continuidad en el espacio euclídeo 5 1.1 El espacio euclídeo R n...............................

Más detalles

Parte I: Introducción

Parte I: Introducción Parte I: Introducción Introducción al Data Mining: su Aplicación a la Empresa Cursada 2007 POR QUÉ? Las empresas de todos los tamaños necesitan aprender de sus datos para crear una relación one-to-one

Más detalles

ESTIMACIÓN. puntual y por intervalo

ESTIMACIÓN. puntual y por intervalo ESTIMACIÓN puntual y por intervalo ( ) Podemos conocer el comportamiento del ser humano? Podemos usar la información contenida en la muestra para tratar de adivinar algún aspecto de la población bajo estudio

Más detalles

Cómo se usa Data Mining hoy?

Cómo se usa Data Mining hoy? Cómo se usa Data Mining hoy? 1 Conocer a los clientes Detectar segmentos Calcular perfiles Cross-selling Detectar buenos clientes Evitar el churning, attrition Detección de morosidad Mejora de respuesta

Más detalles

El Teorema de existencia y unicidad de Picard

El Teorema de existencia y unicidad de Picard Tema 2 El Teorema de existencia y unicidad de Picard 1 Formulación integral del Problema de Cauchy El objetivo del presente Tema, y del siguiente, es analizar el Problema de Cauchy para un SDO de primer

Más detalles

1. DATOS DE LA ASIGNATURA

1. DATOS DE LA ASIGNATURA 1. DATOS DE LA ASIGNATURA Nombre de la asignatura: Curso Avanzado de Estadística Titulación: Máster en Matemáticas y aplicaciones Código Breve Descripción: El curso está centrado en dos temas relativamente

Más detalles

Introducción al Análisis Complejo

Introducción al Análisis Complejo Introducción al Análisis Complejo Aplicado al cálculo de integrales impropias Complementos de Análisis, I.P.A Prof.: Federico De Olivera Leandro Villar 13 de diciembre de 2010 Introducción Este trabajo

Más detalles

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales

Matemáticas 2º BTO Aplicadas a las Ciencias Sociales Matemáticas 2º BTO Aplicadas a las Ciencias Sociales CONVOCATORIA EXTRAORDINARIA DE JUNIO 2014 MÍNIMOS: No son contenidos mínimos los señalados como de ampliación. I. PROBABILIDAD Y ESTADÍSTICA UNIDAD

Más detalles

Análisis Real: Primer Curso. Ricardo A. Sáenz

Análisis Real: Primer Curso. Ricardo A. Sáenz Análisis Real: Primer Curso Ricardo A. Sáenz Índice general Introducción v Capítulo 1. Espacios Métricos 1 1. Métricas 1 2. Métricas en espacios vectoriales 4 3. Topología 9 Ejercicios 17 Capítulo 2.

Más detalles

Límites. Definición de derivada.

Límites. Definición de derivada. Capítulo 4 Límites. Definición de derivada. 4.1. Límites e indeterminaciones Hemos visto en el capítulo anterior que para resolver el problema de la recta tangente tenemos que enfrentarnos a expresiones

Más detalles

Ejercicios Propuestos Tema 2

Ejercicios Propuestos Tema 2 Ejercicios Propuestos Tema 2 1 Programar la función: fx, A, X = a 0 + a 1 x x 1 + a 2 x x 1 x x 2 + + a n x x 1 x x 2 x x n, donde A = [a 0, a 1,, a n ], X = [x 1, x 2,, x n ], con x R Calcular todas las

Más detalles

CREACIÓN DE UNA TIPOLOGÍA DE GENES MEDIANTE TÉCNICAS DE DATA MINING PARA Drosophila

CREACIÓN DE UNA TIPOLOGÍA DE GENES MEDIANTE TÉCNICAS DE DATA MINING PARA Drosophila CREACIÓN DE UNA TIPOLOGÍA DE GENES MEDIANTE TÉCNICAS DE DATA MINING PARA Drosophila Ramón Álvarez 1 Flavio Pazos 2 Adrián Valentín 2 Curso de data Mining-2012,Instituto Pasteur 1 IESTA(Instituto de Estadística)

Más detalles

5.1. Redes de aprendizaje supervisado basadas en la cuantificación vectorial. Curso de doctoramiento Técnicas de Computación Flexíbeis

5.1. Redes de aprendizaje supervisado basadas en la cuantificación vectorial. Curso de doctoramiento Técnicas de Computación Flexíbeis 5.1. Redes de aprendizaje supervisado basadas en la cuantificación vectorial Curso de doctoramiento Técnicas de Computación Flexíbeis Learning Vector Quantization (LVQ) Versión supervisada de SOM (SOM

Más detalles

TEMA 3: TRATAMIENTO DE DATOS EN MS. EXCEL (I)

TEMA 3: TRATAMIENTO DE DATOS EN MS. EXCEL (I) VARIABLES Variable: característica de cada sujeto (cada caso) de una base de datos. Se denomina variable precisamente porque varía de sujeto a sujeto. Cada sujeto tiene un valor para cada variable. El

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

Inferencia Estadística

Inferencia Estadística MaMaEuSch Management Mathematics for European Schools http://www.mathematik.unikl.de/ mamaeusch Inferencia Estadística Paula Lagares Barreiro * Justo Puerto Albandoz * MaMaEuSch ** Management Mathematics

Más detalles

INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA

INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA INTRODUCCIÓN A LA PROGRAMACIÓN MATEMÁTICA Dentro del campo general de la teoría de la optimización, también conocida como programación matemática conviene distinguir diferentes modelos de optimización.

Más detalles

clustering: Clasificación no Supervisada

clustering: Clasificación no Supervisada clustering: Clasificación no Supervisada Gráficas estadística y minería de datos con python Miguel Cárdenas Montes Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, Madrid, Spain miguel.cardenas@ciemat.es

Más detalles

3º Tema.- Síntesis de mecanismos.

3º Tema.- Síntesis de mecanismos. Universidad de Huelva ESCUELA POLITECNICA SUPERIOR Departamento de Ingeniería Minera, Mecánica y Energética Asignatura: Ingeniería de Máquinas [570004027] 5º curso de Ingenieros Industriales 3º Tema.-

Más detalles

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Programación Lineal Entera

Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 Programación Lineal Entera Fundamentos de Investigación de Operaciones Investigación de Operaciones 1 11 de septiembre de 2003 1. Introducción Un LP donde se requiere que todas las variables sean enteras se denomina un problema

Más detalles

Tema 3. Problemas de valores iniciales. 3.1. Teoremas de existencia y unicidad

Tema 3. Problemas de valores iniciales. 3.1. Teoremas de existencia y unicidad Tema 3 Problemas de valores iniciales 3.1. Teoremas de existencia y unicidad Estudiaremos las soluciones aproximadas y su error para funciones escalares, sin que ésto no pueda extenderse para funciones

Más detalles

Técnicas de análisis multivariante para agrupación

Técnicas de análisis multivariante para agrupación TEMA 2: TÉCNICAS DE ANÁLISIS MULTIVARIANTE PARA AGRUPACIÓN Métodos cluster Técnicas de segmentación Clasificación no supervisada Ana Justel 1 Técnicas de análisis multivariante para agrupación Motivación

Más detalles

MAPAS AUTOORGANIZATIVOS Y MODELOS SIMILARES

MAPAS AUTOORGANIZATIVOS Y MODELOS SIMILARES MAPAS AUTOORGANIZATIVOS Y MODELOS SIMILARES José D. Martín Guerrero, Emilio Soria, Antonio J. Serrano PROCESADO Y ANÁLISIS DE DATOS AMBIENTALES Curso 2009-2010 Page 1 of 11 1. Learning Vector Quantization.

Más detalles

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD

DIRECTRICES Y ORIENTACIONES GENERALES PARA LAS PRUEBAS DE ACCESO A LA UNIVERSIDAD Curso Asignatura 2009/2010 MATEMÁTICAS APLICADAS A LAS CIENCIAS SOCIALES II 1º Comentarios acerca del programa del segundo curso del Bachillerato, en relación con la Prueba de Acceso a la Universidad INTRODUCCIÓN

Más detalles

Las Matemáticas En Ingeniería

Las Matemáticas En Ingeniería Las Matemáticas En Ingeniería 1.1. Referentes Nacionales A nivel nacional se considera que el conocimiento matemático y de ciencias naturales, sus conceptos y estructuras, constituyen una herramienta para

Más detalles

Técnicas Clásicas de Segmentación de Imagen

Técnicas Clásicas de Segmentación de Imagen Técnicas Clásicas de Segmentación de Imagen Marcos Martín 21 de mayo de 2002 1. Introducción El primer paso en cualquier proceso de análisis de imagen es la segmentación. Mediante la segmentación vamos

Más detalles

Subconjuntos destacados en la

Subconjuntos destacados en la 2 Subconjuntos destacados en la topología métrica En este capítulo, introducimos una serie de conceptos ligados a los puntos y a conjuntos que por el importante papel que juegan en la topología métrica,

Más detalles

2 Métodos combinatorios

2 Métodos combinatorios 2 Métodos combinatorios Las pruebas pueden aplicarse de muchas maneras, es decir, existen diferentes formas de preparar casos de prueba. En este capítulo se presentan dos formas de prueba muy fáciles de

Más detalles

MASTER DE INGENIERÍA BIOMÉDICA. Métodos de ayuda al diagnóstico clínico. Tema 5: Redes Neuronales

MASTER DE INGENIERÍA BIOMÉDICA. Métodos de ayuda al diagnóstico clínico. Tema 5: Redes Neuronales MASTER DE INGENIERÍA BIOMÉDICA. Métodos de ayuda al diagnóstico clínico. Tema 5: Redes Neuronales 1 Objetivos del tema Conocer las limitaciones de los modelos lineales en problemas de modelización/ clasificación.

Más detalles

Tema 5. Reconocimiento de patrones

Tema 5. Reconocimiento de patrones Tema 5. Reconocimiento de patrones Introducción al reconocimiento de patrones y a la clasificación de formas Un modelo de general de clasificador Características discriminantes Tipos de clasificación Clasificadores

Más detalles

Método k-medias. [ U n a i n t r o d u c c i ó n ]

Método k-medias. [ U n a i n t r o d u c c i ó n ] Método k-medias [ U n a i n t r o d u c c i ó n ] Método K-Means (Nubes Dinámicas) 0 3 4 5 6 7 8 9 0 0 3 4 5 6 7 8 9 0 0 3 4 5 6 7 8 9 0 0 3 4 5 6 7 8 9 0 0 3 4 5 6 7 8 9 0 0 3 4 5 6 7 8 9 0 0 3 4 5 6

Más detalles

VivaMéxico sin PRI. Quiero que mi país sea de todos. Dr. Ivo H. Pineda Torres. Otoño 2013

VivaMéxico sin PRI. Quiero que mi país sea de todos. Dr. Ivo H. Pineda Torres. Otoño 2013 VivaMéxico sin PRI Quiero que mi país sea de todos. Dr. Ivo H. Pineda Torres Facultad de Ciencias de la Computación Benemérita Universidad Autónoma de Puebla Otoño 2013 IMAGENESpemexmorena Adquisición

Más detalles

Ensayo: Construcción de la Frontera Eficiente de Markowitz mediante el uso de la herramienta SOLVER de Excel y el modelo Matricial.

Ensayo: Construcción de la Frontera Eficiente de Markowitz mediante el uso de la herramienta SOLVER de Excel y el modelo Matricial. UNIVERSIDAD DE ORIENTE NÚCLEO DE MONAGAS POST GRADO EN CIENCIAS ADMINISTRATIVAS MENCIÓN FINANZAS FINANZAS INTERNACIONALES Ensayo: Construcción de la Frontera Eficiente de Markowitz mediante el uso de la

Más detalles

LA GESTIÓN DEL CONOCIMIENTO

LA GESTIÓN DEL CONOCIMIENTO Plan de Formación 2006 ESTRATEGIAS Y HABILIDADES DE GESTIÓN DIRECTIVA MÓDULO 9: 9 LA ADMINISTRACIÓN ELECTRÓNICA EN LA SOCIEDAD DE LA INFORMACIÓN LA GESTIÓN DEL CONOCIMIENTO José Ramón Pereda Negrete Jefe

Más detalles

Inecuaciones y Sistemas de Inecuaciones Lineales con una Incóg

Inecuaciones y Sistemas de Inecuaciones Lineales con una Incóg PreUnAB Inecuaciones y Sistemas de Inecuaciones Lineales con una Incógnita Clase # 11 Agosto 2014 Intervalos Reales Orden en R Dados dos números reales a y b, se dice que a es menor que b, a < b, si b

Más detalles

8. Estimación puntual

8. Estimación puntual 8. Estimación puntual Estadística Ingeniería Informática Curso 2009-2010 Estadística (Aurora Torrente) 8. Estimación puntual Curso 2009-2010 1 / 30 Contenidos 1 Introducción 2 Construcción de estimadores

Más detalles

Clasificación de Música por Genero Utilizando Redes Neuronales Artificiales. Elkin García, Germán Mancera, Jorge Pacheco

Clasificación de Música por Genero Utilizando Redes Neuronales Artificiales. Elkin García, Germán Mancera, Jorge Pacheco Clasificación de Música por Genero Utilizando Redes Neuronales Artificiales Elkin García, Germán Mancera, Jorge Pacheco Presentación Los autores han desarrollado un método de clasificación de música a

Más detalles

Aplicación de teoría de grafos a redes con elementos autónomos

Aplicación de teoría de grafos a redes con elementos autónomos Utiliza matemáticas Aplicación de teoría de grafos a redes con elementos autónomos Nombre: Marta Apellidos: Vega Bayo email: marta.vega@edu.uah.es Modalidad: Universidad Estudios cursados en la UAH: Grado

Más detalles

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez Curso de Análisis de investigaciones con programas Informáticos 1 UNIVERSIDAD DE JAÉN Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos

Más detalles

DYANE Versión 4 Diseño y Análisis de Encuestas

DYANE Versión 4 Diseño y Análisis de Encuestas DYANE Versión 4 Diseño y Análisis de Encuestas Miguel Santesmases Mestre 1. DESCRIPCIÓN GENERAL DEL PROGRAMA DYANE 1. FINALIDAD Y MÉTODO DEL PROGRAMA DYANE (Diseño y Análisis de Encuestas) es un programa

Más detalles

1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2.

1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2. 1. INTRODUCCIÓN AL CONCEPTO DE LA INVESTIGACIÓN DE MERCADOS 1.1. DEFINICIÓN DE INVESTIGACIÓN DE MERCADOS 1.2. EL MÉTODO CIENTÍFICO 2. GENERALIDADES SOBRE LAS TÉCNICAS DE INVESTIGACIÓN SOCIAL Y DE MERCADOS

Más detalles

T.3 ESTIMACIÓN PUNTUAL

T.3 ESTIMACIÓN PUNTUAL T.3 ESTIMACIÓN PUNTUAL 1. INTRODUCCIÓN: ESTIMACIÓN Y ESTIMADOR 2. PROPIEDADES DE LOS ESTIMADORES 3. MÉTODOS DE ESTIMACIÓN. EJEMPLO 1, EJEMPLO 2 1. Introducción: Estimación y Estimador En este tema se analizan

Más detalles

EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO

EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO I. INTRODUCCIÓN Beatriz Meneses A. de Sesma * En los estudios de mercado intervienen muchas variables que son importantes para el cliente, sin embargo,

Más detalles

CARACTERIZACIÓN DE CURVAS OXIMÉTRICAS EN NIÑOS PREMATUROS MEDIANTE CLUSTERING DE DATOS FUNCIONALES

CARACTERIZACIÓN DE CURVAS OXIMÉTRICAS EN NIÑOS PREMATUROS MEDIANTE CLUSTERING DE DATOS FUNCIONALES CARACTERIZACIÓN DE CURVAS OXIMÉTRICAS EN NIÑOS PREMATUROS MEDIANTE CLUSTERING DE DATOS FUNCIONALES Papalardo, Cecilia 1 ; Castro, Sebastián 1 Chiappella, Lilian 2 ; Criado, Alexandra 2 Moreira, Isabel

Más detalles

TEMA 1. Introducción

TEMA 1. Introducción TEMA 1. Introducción Francisco José Ribadas Pena, Santiago Fernández Lanza Modelos de Razonamiento y Aprendizaje 5 o Informática ribadas@uvigo.es, sflanza@uvigo.es 28 de enero de 2013 1.1 Aprendizaje automático

Más detalles

TEMA 7: Análisis de la Capacidad del Proceso

TEMA 7: Análisis de la Capacidad del Proceso TEMA 7: Análisis de la Capacidad del Proceso 1 Introducción Índices de capacidad 3 Herramientas estadísticas para el análisis de la capacidad 4 Límites de tolerancia naturales 1 Introducción La capacidad

Más detalles

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos

Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Curso: Métodos de Monte Carlo. Unidad 1, Sesión 2: Conceptos básicos Departamento de Investigación Operativa Instituto de Computación, Facultad de Ingeniería Universidad de la República, Montevideo, Uruguay

Más detalles

Algoritmos de búsqueda de vecinos más próximos en espacios métricos

Algoritmos de búsqueda de vecinos más próximos en espacios métricos Algoritmos de búsqueda de vecinos más próximos en espacios métricos Tesis doctoral de: María Luisa Micó Andrés Dirigida por: Jose Oncina Carratalá Enrique Vidal Ruiz Departamento de Sistemas Informáticos

Más detalles

CUANTIFICANDO LA CLASE MEDIA EN MÉXICO: UN EJERCICIO EXPLORATORIO

CUANTIFICANDO LA CLASE MEDIA EN MÉXICO: UN EJERCICIO EXPLORATORIO CUANTIFICANDO LA CLASE MEDIA EN MÉXICO: UN EJERCICIO EXPLORATORIO Nota Técnica 2 Introducción El análisis de agrupamiento o clustering es una herramienta estadística que tiene como objetivo identificar

Más detalles

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍAS MAESTRÍA EN INGENIERÍA DE SISTEMAS Y COMPUTACIÓN ANÁLISIS MULTIVARIADO

UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍAS MAESTRÍA EN INGENIERÍA DE SISTEMAS Y COMPUTACIÓN ANÁLISIS MULTIVARIADO UNIVERSIDAD TECNOLÓGICA DE PEREIRA FACULTAD DE INGENIERÍAS MAESTRÍA EN INGENIERÍA DE SISTEMAS Y COMPUTACIÓN ANÁLISIS MULTIVARIADO OBJETIVO GENERAL El curso es de un nivel matemático intermedio y tiene

Más detalles

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba

Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida. Por: Prof. Elena del C. Coba Técnicas de análisis para el uso de resultados de encuestas y estudios aplicados al VIH/sida Por: Prof. Elena del C. Coba Encuestas y estudios aplicados al VIH/sida Definir la fuente de los datos: Datos

Más detalles

Ruth Vilà, María-José Rubio, Vanesa Berlanga, Mercedes Torrado. Cómo aplicar un cluster jerárquico en SPSS.

Ruth Vilà, María-José Rubio, Vanesa Berlanga, Mercedes Torrado. Cómo aplicar un cluster jerárquico en SPSS. Universitat de Barcelona. Institut de Ciències de l Educació Cómo aplicar un cluster jerárquico en SPSS Ruth Vilà-Baños, María-José Rubio-Hurtado, Vanesa Berlanga-Silvente, Mercedes Torrado-

Más detalles

Ejemplo: Ing. Raúl Canelos. Solución CONFIABILIDAD SEP 1

Ejemplo: Ing. Raúl Canelos. Solución CONFIABILIDAD SEP 1 Ejemplo: Basándose en ciertos estudios una compañía a clasificado de acuerdo con la posibilidad de encontrar petróleo en tres tipos de formaciones. La compañía quiere perforar un pozo en determinado lugar

Más detalles

ANALISIS MULTIVARIANTE

ANALISIS MULTIVARIANTE ANALISIS MULTIVARIANTE Es un conjunto de técnicas que se utilizan cuando se trabaja sobre colecciones de datos en las cuáles hay muchas variables implicadas. Los principales problemas, en este contexto,

Más detalles

SISTEMAS INTELIGENTES

SISTEMAS INTELIGENTES SISTEMAS INTELIGENTES T11: Métodos Kernel: Máquinas de vectores soporte {jdiez, juanjo} @ aic.uniovi.es Índice Funciones y métodos kernel Concepto: representación de datos Características y ventajas Funciones

Más detalles

(x + y) + z = x + (y + z), x, y, z R N.

(x + y) + z = x + (y + z), x, y, z R N. TEMA 1: EL ESPACIO R N ÍNDICE 1. El espacio vectorial R N 1 2. El producto escalar euclídeo 2 3. Norma y distancia en R N 4 4. Ángulo y ortogonalidad en R N 6 5. Topología en R N 7 6. Nociones topológicas

Más detalles

Notas de Análisis. Dr. Richard G. Wilson Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa comentarios: rgw@xanum.uam.

Notas de Análisis. Dr. Richard G. Wilson Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa comentarios: rgw@xanum.uam. Notas de Análisis Dr. Richard G. Wilson Departamento de Matemáticas, Universidad Autónoma Metropolitana-Iztapalapa comentarios: rgw@xanum.uam.mx Marzo del 2005 2 Contenido 1 Topología de espacios métricos

Más detalles

Desarrollo de un nuevo algoritmo para resolver programas lineales enteros y su aplicación práctica en el desarrollo económico.

Desarrollo de un nuevo algoritmo para resolver programas lineales enteros y su aplicación práctica en el desarrollo económico. Desarrollo de un nuevo algoritmo para resolver programas lineales enteros y su aplicación práctica en el desarrollo económico. 7071 Febrero, 2014 Resumen Es importante señalar que en un entorno social

Más detalles

PLANIFICACIÓN DE LA DOCENCIA UNIVERSITARIA GUÍA DOCENTE. Datamining y Aprendizaje Automático

PLANIFICACIÓN DE LA DOCENCIA UNIVERSITARIA GUÍA DOCENTE. Datamining y Aprendizaje Automático CENTRO UNIVERSITARIO DE TECNOLOGÍA Y ARTE DIGITAL PLANIFICACIÓN DE LA DOCENCIA UNIVERSITARIA GUÍA DOCENTE Datamining y Automático 1. DATOS DE IDENTIFICACIÓN DE LA ASIGNATURA. Título: Facultad: Grado en

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Vallejos, Sofia Contenido Introducción: Inteligencia de negocios (Business Intelligence). Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica.

Más detalles

PRUEBA ELEMENTAL DEL TEOREMA DE INVARIANCIA DE LA DIMENSION. 1. Introducción

PRUEBA ELEMENTAL DEL TEOREMA DE INVARIANCIA DE LA DIMENSION. 1. Introducción PRUEBA ELEMENTAL DEL TEOREMA DE INVARIANCIA DE LA DIMENSION RAFAEL POTRIE Resumen. La idea es dar una prueba elemental del Teorema de invariancia de la dimension que afirma que si U R n es un abierto homeomorfo

Más detalles

Similaridad y Clustering

Similaridad y Clustering Similaridad y Clustering 1 web results motivación Problema 1: ambigüedad de consultas Problema 2: construcción manual de jerarquías de tópicos y taxonomías Problema 3: acelerar búsqueda por similaridad

Más detalles

Empresa o Entidad C.A Electricidad de Valencia. Autores del Trabajo Nombre País e-mail Jimmy Martínez Venezuela jmartinez@eleval.

Empresa o Entidad C.A Electricidad de Valencia. Autores del Trabajo Nombre País e-mail Jimmy Martínez Venezuela jmartinez@eleval. Título Estudio Estadístico de Base de Datos Comercial de una Empresa Distribuidora de Energía Eléctrica. Nº de Registro 231 Empresa o Entidad C.A Electricidad de Valencia Autores del Trabajo Nombre País

Más detalles

Segmentación Recursiva de Proyectos Software para la Estimación del Esfuerzo de Desarrollo Software

Segmentación Recursiva de Proyectos Software para la Estimación del Esfuerzo de Desarrollo Software Segmentación Recursiva de Proyectos Software para la Estimación del Esfuerzo de Desarrollo Software J. Cuadrado Gallego 1, Miguel Ángel Sicilia 1, Miguel Garre Rubio 1 1 Dpto de Ciencias de la Computación,

Más detalles

Guías Excel 2007 Matrices Guía 77

Guías Excel 2007 Matrices Guía 77 MATRICES Las hojas de cálculo poseen prestaciones interesantes la gestión de matrices de tipo matemático. Unas consisten en facilitar los cálculos matriciales y otras están orientadas a cálculos estadísticos.

Más detalles

Integración de Monte Carlo Técnicas Avanzadas de Gráficos en 3D

Integración de Monte Carlo Técnicas Avanzadas de Gráficos en 3D Integración de Monte Carlo Técnicas Avanzadas de Gráficos en 3D Miguel Ángel Otaduy 26 Abril 2010 Contexto Cálculo de la integral de radiancia reflejada en la ecuación de rendering Cálculo de la integral

Más detalles

Capítulo 1. Minería de datos: Conceptos, técnicas y sistemas...

Capítulo 1. Minería de datos: Conceptos, técnicas y sistemas... , INDICE Introducción, ; XVII Capítulo 1. Minería de datos: Conceptos, técnicas y sistemas... Aproximación al concepto de minería de datos... El proceso de extracción del conocimiento... Técnicas de minería

Más detalles

CLASIFICACIÓN NO SUPERVISADA CLASIFICACIÓN NO SUPERVISADA N. QUEIPO, S. PINTOS COPYRIGHT 2005 FUNDAMENTOS DE DATA MINING Y SUS APLICACIONES

CLASIFICACIÓN NO SUPERVISADA CLASIFICACIÓN NO SUPERVISADA N. QUEIPO, S. PINTOS COPYRIGHT 2005 FUNDAMENTOS DE DATA MINING Y SUS APLICACIONES DEFINICIÓN: AGRUPAR UN CONJUNTO DE n OBJETOS, DEFINIDOS POR p VARIABLES, EN c CLASES, DONDE EN CADA CLASE LOS ELEMENTOS POSEAN CARACTERÍSTICAS AFINES Y SEAN MÁS SIMILARES ENTRE SÍ QUE RESPECTO AELEMENTOS

Más detalles

Minería de Datos. Preprocesamiento: Reducción de Datos - Discretización

Minería de Datos. Preprocesamiento: Reducción de Datos - Discretización Minería de Datos Preprocesamiento: Reducción de Datos - Discretización Dr. Edgar Acuña Departamento de Ciencias Matemáticas Universidad de Puerto Rico-Mayaguez E-mail: edgar.acuna@upr.edu, eacunaf@gmail.com

Más detalles

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net Proyecto técnico MINERÍA DE DATOS Febrero 2014 www.osona-respon.net info@osona-respon.net 0. Índice 0. ÍNDICE 1. INTRODUCCIÓN... 2 2. LOS DATOS OCULTOS... 3 2.1. Origen de la información... 3 2.2. Data

Más detalles

MEDIDAS DE DISPERSIÓN EMPLEANDO EXCEL

MEDIDAS DE DISPERSIÓN EMPLEANDO EXCEL MEDIDAS DE DISPERSIÓN EMPLEANDO EXCEL Las medias de tendencia central o posición nos indican donde se sitúa un dato dentro de una distribución de datos. Las medidas de dispersión, variabilidad o variación

Más detalles

UNIVERSIDAD DEL SALVADOR PROGRAMA. UNIDAD ACADÉMICA: Campus San Roque González de Santa Cruz. CARRERA: Veterinaria. DIVISIÓN / COMISIÓN: Primer Año

UNIVERSIDAD DEL SALVADOR PROGRAMA. UNIDAD ACADÉMICA: Campus San Roque González de Santa Cruz. CARRERA: Veterinaria. DIVISIÓN / COMISIÓN: Primer Año UNIVERSIDAD DEL SALVADOR PROGRAMA UNIDAD ACADÉMICA: Campus San Roque González de Santa Cruz. CARRERA: Veterinaria DIVISIÓN / COMISIÓN: Primer Año TURNO: Único OBLIGACIÓN ACADÉMICA: ESTADÍSTICA Y DISEÑO

Más detalles

Ingeniería del Software I Clase de Testing Funcional 2do. Cuatrimestre de 2007

Ingeniería del Software I Clase de Testing Funcional 2do. Cuatrimestre de 2007 Enunciado Se desea efectuar el testing funcional de un programa que ejecuta transferencias entre cuentas bancarias. El programa recibe como parámetros la cuenta de origen, la de cuenta de destino y el

Más detalles

Tema 5. Variables aleatorias discretas

Tema 5. Variables aleatorias discretas Tema 5. Variables aleatorias discretas Resumen del tema 5.1. Definición de variable aleatoria discreta 5.1.1. Variables aleatorias Una variable aleatoria es una función que asigna un número a cada suceso

Más detalles

Propiedades de Muestras Grandes y Simulación

Propiedades de Muestras Grandes y Simulación Propiedades de Muestras Grandes y Simulación Microeconomía Cuantitativa R. Mora Departmento of Economía Universidad Carlos III de Madrid Esquema 1 Propiedades en muestras grandes (W App C3) 2 3 Las propiedades

Más detalles

Capítulo 3. Técnicas de Minería de Datos basadas en Aprendizaje Automático

Capítulo 3. Técnicas de Minería de Datos basadas en Aprendizaje Automático Capítulo 3 Técnicas de Minería de Datos basadas en Aprendizaje Automático Capítulo 3. Técnicas de Minería de Datos basadas en Aprendizaje Automático 3.1. Técnicas de Minería de Datos Como ya se ha comentado,

Más detalles

OPTIMIZACIÓN EN MANTENIMIENTO

OPTIMIZACIÓN EN MANTENIMIENTO OPTIMIZACIÓN EN MANTENIMIENTO Entrenamiento en técnicas avanzadas para optimizar el remplazo de componentes e inspección de equipos Driven by knowledge info@apsoluti.es 2015 1 OPTIMIZACIÓN DE MANTENIMIENTO

Más detalles

Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico

Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico Máster Universitario en Ingeniería de Caminos, Canales y Puertos Introducción al Análisis Numérico Departamento de Matemática Aplicada Universidad Granada Introducción El Cálculo o Análisis Numérico es

Más detalles

CÁLCULO PARA LA INGENIERÍA 1

CÁLCULO PARA LA INGENIERÍA 1 CÁLCULO PARA LA INGENIERÍA 1 PROBLEMAS RESUELTOS Tema 3 Derivación de funciones de varias variables 3.1 Derivadas y diferenciales de funciones de varias variables! 1. Derivadas parciales de primer orden.!

Más detalles

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES

CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES CAPÍTULO II. CONTINUIDAD DE FUNCIONES DE VARIAS VARIABLES SECCIONES 1. Dominios y curvas de nivel. 2. Cálculo de ites. 3. Continuidad. 55 1. DOMINIOS Y CURVAS DE NIVEL. Muchos problemas geométricos y físicos

Más detalles

1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS

1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS 1. TEMPORALIZACIÓN POR EVALUACIONES DE LOS CONTENIDOS Primera Evaluación TEMA 1. NÚMEROS REALES Distintos tipos de números. Recta real. Radicales. Logaritmos. Notación científica. Calculadora. TEMA 2.

Más detalles

Tema 7. Introducción al reconocimiento de objetos

Tema 7. Introducción al reconocimiento de objetos Tema 7. Introducción al reconocimiento de objetos En resumen, un sistema de reconocimiento de patrones completo consiste en: Un sensor que recoge las observaciones a clasificar. Un sistema de extracción

Más detalles

Parte I. Iniciación a los Espacios Normados

Parte I. Iniciación a los Espacios Normados Parte I Iniciación a los Espacios Normados Capítulo 1 Espacios Normados Conceptos básicos Sea E un espacio vectorial sobre un cuerpo K = R ó C indistintamente. Una norma sobre E es una aplicación de E

Más detalles

Facultad de Ciencias Económicas Universidad Nacional de Córdoba Carrera de Doctorado

Facultad de Ciencias Económicas Universidad Nacional de Córdoba Carrera de Doctorado Facultad de Ciencias Económicas Universidad Nacional de Córdoba Carrera de Doctorado Materia: Estadística Aplicada a la Investigación Profesora: Dra. Hebe Goldenhersh Octubre del 2002 1 Determinación de

Más detalles

Estadística aplicada y modelización. 10 de septiembre de 2005

Estadística aplicada y modelización. 10 de septiembre de 2005 Estadística aplicada y modelización. 10 de septiembre de 005 SOLUCIÓN MODELO A 1. Una persona se está preparando para obtener el carnet de conducir, repitiendo un test de 0 preguntas. En la siguiente tabla

Más detalles

Master de Ingeniería Biomédica Sistemas de ayuda al diagnóstico clínico

Master de Ingeniería Biomédica Sistemas de ayuda al diagnóstico clínico Master de Ingeniería Biomédica Sistemas de ayuda al diagnóstico clínico Emilio Soria Olivas! Antonio José Serrano López! Departamento de Ingeniería Electrónica! Escuela Técnica Superior de Ingeniería!

Más detalles

Análisis del juego televisivo QUIÉN QUIERE SER MILLONARIO? R

Análisis del juego televisivo QUIÉN QUIERE SER MILLONARIO? R Análisis del juego televisivo QUIÉN QUIERE SER MILLONARIO? R Federico Perea Justo Puerto * MaMaEuSch ** Management Mathematics for European Schools 94342 - CP - 1-2001 - DE - COMENIUS - C21 * Universidad

Más detalles

Text Mining Introducción a Minería de Datos

Text Mining Introducción a Minería de Datos Text Mining Facultad de Matemática, Astronomía y Física UNC, Córdoba (Argentina) http://www.cs.famaf.unc.edu.ar/~laura SADIO 12 de Marzo de 2008 qué es la minería de datos? A technique using software tools

Más detalles

estudios estudios ESTÁNDARES DE BUENAS PRÁCTICAS PARA LA TOMA DE MUESTRAS Noviembre 2007 Nº7

estudios estudios ESTÁNDARES DE BUENAS PRÁCTICAS PARA LA TOMA DE MUESTRAS Noviembre 2007 Nº7 estudios estudios ESTÁNDARES DE BUENAS PRÁCTICAS PARA LA TOMA DE MUESTRAS Noviembre 2007 Nº7 ESTÁNDARES DE BUENAS PRÁCTICAS PARA LA TOMA DE MUESTRAS Claudia Matus C. Jefe de Departamento Investigación

Más detalles