CLASIFICACIÓN NO SUPERVISADA CLASIFICACIÓN NO SUPERVISADA N. QUEIPO, S. PINTOS COPYRIGHT 2005 FUNDAMENTOS DE DATA MINING Y SUS APLICACIONES

Tamaño: px
Comenzar la demostración a partir de la página:

Download "CLASIFICACIÓN NO SUPERVISADA CLASIFICACIÓN NO SUPERVISADA N. QUEIPO, S. PINTOS COPYRIGHT 2005 FUNDAMENTOS DE DATA MINING Y SUS APLICACIONES"

Transcripción

1 DEFINICIÓN: AGRUPAR UN CONJUNTO DE n OBJETOS, DEFINIDOS POR p VARIABLES, EN c CLASES, DONDE EN CADA CLASE LOS ELEMENTOS POSEAN CARACTERÍSTICAS AFINES Y SEAN MÁS SIMILARES ENTRE SÍ QUE RESPECTO AELEMENTOS PERTENE- CIENTESAOTRAS CLASES PROPÓSITOS GRAFICAR GRUPOS AFINES, COMO ES EL CASO DE LOS DENDROGRAMASDE LAS TAXONOMÍAS SIMPLEMENTE ORGANIZAR INFORMACIÓN ABUNDANTE Y COMPLEJA HALLAR EL NÚMERO CDE CLASES ADECUADO ENCONTRARSUBCLASES DENTRO DE CLASESNATURALES 1

2 OBJETIVOS DUALES EN LA OBTENCIÓN DE UNA CLASIFICACIÓN ÓPTIMA MINIMIZAR LAS DESVIACIONES ENTRE LAS OBSERVACIONES QUEPERTENECEN AL MISMOGRUPO MAXIMIZAR LAS DISTANCIAS ENTRE LOS CENTROS DE LOS GRUPOS DISPERSIÓN DE UNA CLASE DEFINICIÓN: SE LLAMARÁ S Wj,DISPERSIÓN EN LA CLASE j, ALA SUMA DE LAS DISTANCIAS AL CUADRADO DE CADA OBSERVACIÓN X i AL CENTROm j DE LA CLASE (j)quela CONTIENE Clase(j) S Wj = Nj i= 1 X i m j 2 m j 2

3 CRITERIO DE OPTIMIZACIÓN MINIMIZARLASUMADE LAS DISPERSIONESDEDE LAS CLASES: min C P W = S Wj j = 1 DISPERSIÓN TOTAL: ST = N i= 1 X i m 2 INDICADOR,R 2 R 2 =1 Pw ST MIDELABONDAD DE LACLASIFICACIÓN m 0 R 2 1 3

4 INDICADORDEDE DAVIES BOULDIN(Idb) 1 Idb = c ( Qk ) sc ( Ql ) d ( Q Q ) C max sc + = 1 l k ce k, l k DONDE: s c : ES EL PROMEDIO DE LAS DISTANCIAS DE LOS PUNTOSALCENTRO DE LA CLASE s c = i x m i N k k d ce :ES LA DISTANCIA ENTRE LOS CENTROS, m k Ym l,de DOS CLASES, k Y l, RESPECTIVAMENTE d ce = m k m l INDICADORDEDE DAVIES BOULDIN(Idb) ( Qk ) sc( Ql ) d ( Q, Q ) sc + ce k l ESTARAZÓN, ENTRE LASUMADE LAMEDIADE LAS DISTANCIAS ACADA CLASE YLA DISTANCIA ENTRE CLASES ES PEQUEÑA SI LAS CLASES SON COMPACTAS Y ALEJADAS ENTRE SÍ. EN CONSECUENCIA, LA PARTICIÓN EN CLASES QUE MINIMICE EL INDICADOR DE DAVIES BOULDIN ES UNA PARTICIÓN ADECUADA 4

5 OBJETIVOSDE UNA BUENACLASIFICACIÓN MAXIMIZARR 2 MINIMIZAR Idb 4 3CLASES 2 CLASES R 2 Idb ROJO AZUL CUÁNTAS PARTICIONES SON POSIBLES? EL NÚMERO DE PARTICIONES DE UN CONJUNTO DE ELEMENTOS EN cclases ESTÁ DADO POR LOS NÚMEROS DE STIRLINGDE SEGUNDACLASE : n N C PARTICIONES POREJEMPLO: ES IMPRÁCTICOHALLAR ELÓPTIMOCALCULANDO EXHAUSTIVAMENTE ELVALORDE Pw PARACADAPARTICIÓN 5

6 MÉTODOS DE CLASIFICACIÓN NO SUPERVISADA ANÁLISIS DE CONGLOMERADOS DIRECTOS JERÁRQUICOS MAPAS AUTO-ORGANIZATIVOS MÉTODOS DIRECTOS CARACTERÍSTICAS: CALCULAN POSIBLES LAS DISTANCIAS DE LAS OBSERVACIONES CENTROS DE LAS CLASES, PARA A LUEGO MODIFICAR ESTOS ÚLTIMOS SIGUIENDO EL CRITERIO DE OPTIMIZACIÓN NOHACEN USO DE LAS DISTANCIASENTRE LOSELEMENTOS ELNÚMERO DE CLASES SE FIJADE ANTEMANO PRINCIPALMENTE USADO CUANDO NES GRANDE (N >5000, POREJEMPLO) 6

7 ALGORITMO ITERATIVO DE EVOLUCIÓN DE LOS CENTROS (K-MEANS) ETAPAS: UBICACIÓN DE LOS CENTROS INICIALES DE LAS CLASES ASIGNACIÓN DE LAS OBSERVACIONES A LA CLASE MÁS CERCANA DETERMINACIÓN DE LOS NUEVOS CENTROS DE LAS CLASES VERIFICAR SI SE CUMPLE ALGUNO DE LOS CRITERIOS DE FINALIZACIÓN DEL ALGORITMO K-MEANS Centros al azar 7

8 K-MEANS Centros de masa K-MEANS 8

9 DETERMINACIÓN DEL NÚMERO DE CLASES EJEMPLO DE DATOS BIDIMENSIONALES DETERMINACIÓN DEL NÚMERO ÓPTIMO DE CLASES EN FUNCIÓN DEL R 2 R 2 NOSE OBTIENE UN BENEFICIO SIGNIFICATIVO PORDESGLOSAR ENMÁS DE 4 CLASES ÓPTIMO 9

10 NÚMERO ÓPTIMO DE CLASES = 4 CENTROS FINALES MÉTODOS JERÁRQUICOS PROPÓSITO: DADO UN CONJUNTO INICIAL DONDE CADA ELEMENTO ES UNA CLASE, CREAR UN ARBOL JERÁRQUICO AGRUPANDO EN CADA ETAPA LAS DOS CLASES UBICADAS AMÍNIMA DISTANCIA, ÉSTA INDICALA ALTURA SOBRE EL ÁRBOL A B C D E ALTURA 10

11 CARACTERÍSTICAS CLASIFICAN APARTIR DE LA MATRIZ DE DISTANCIA ENTRE LASOBSERVACIONES NOSE FIJA EL NÚMERO DE CLASES SE DETERMINA EL NÚMERO ÓPTIMO DE CLASES ANALIZANDO ELÁRBOL JERÁRQUICO APROPIADOS SÓLO SI EL TAMAÑO DEL CONJUNTO ES PEQUEÑO, EN CUYO CASO SON MÁS EFICIENTES QUE LOS MÉTODOSDIRECTOSDIRECTOS DISTANCIAS A DISTINGUIR ENTREELEMENTOS EUCLÍDEA ESTANDAR MAHALANOBIS ENTRE CLASES DISTANCIA MÍNIMA DISTANCIA PROMEDIO PONDERADO DISTANCIA PROTOTIPO (CENTROIDE) MÍNIMA VARIANZA (WARD) 11

12 CLASIFICACIÓN SUPERVISADA DISTANCIAS ENTRE ELEMENTOS EUCLIDIA Altura Peso CLASIFICACIÓN SUPERVISADA DISTANCIAS ENTRE ELEMENTOS MAHALANOBIS Altura T 1 ( x y) Σ ( x y) Peso 12

13 CLASIFICACIÓN SUPERVISADA DISTANCIAS ENTRE ELEMENTOS MAHALANOBIS Altura T 1 ( x y) Σ ( x y) Peso DISTANCIAS ENTRE CLASES DISTANCIA MÍNIMA Puntos más cercanos entre las clases 13

14 DISTANCIAS ENTRE CLASES DISTANCIA PROMEDIO PONDERADO DISTANCIAS ENTRE CLASES DISTANCIA PROTOTIPO (CENTROIDE) Centros de masa 14

15 DISTANCIAS ENTRE CLASES MÍNIMA VARIANZA (WARD) S A A P w =S A + S B + S C + S D C P w1 =S AB + S C + S D B S AB S C D distward(a,b)=p w1 -P w =S AB -(S A +S B ) S B S D DISTANCIAS ENTRE CLASES MÍNIMA VARIANZA (WARD) S A A P w =S A + S B + S C + S D S AC C P w2 =S AC + S B + S D B S C D distward(a,c) =S AC -(S A +S C ) S B S D 15

16 DISTANCIAS ENTRE CLASES MÍNIMA VARIANZA (WARD) S A B A C S C P w =S A + S B + S C + S D P w3 =S AD + S B + S C S AD distward(a,d) =S AD -(S A +S D ) D S B S D DISTANCIAS ENTRE CLASES MÍNIMA VARIANZA (WARD) S A A C S C distward(b,c) distward(c,d) B D distward(b,d) S B S D Min( distward(a,b), distward(a,c), distward(a,d), distward(b,c), distward(b,d), distward(c,d) ) 16

17 DISTANCIA DE VUELOS ENTRE CIUDADES 17

CLASIFICACIÓN NO SUPERVISADA

CLASIFICACIÓN NO SUPERVISADA CLASIFICACIÓN NO SUPERVISADA CLASIFICACION IMPORTANCIA PROPÓSITO METODOLOGÍAS EXTRACTORES DE CARACTERÍSTICAS TIPOS DE CLASIFICACIÓN IMPORTANCIA CLASIFICAR HA SIDO, Y ES HOY DÍA, UN PROBLEMA FUNDAMENTAL

Más detalles

4. MÉTODOS DE CLASIFICACIÓN

4. MÉTODOS DE CLASIFICACIÓN 4. MÉTODOS DE CLASIFICACIÓN Una forma de sintetizar la información contenida en una tabla multidimensional (por ejemplo una tabla léxica agregada), es mediante la conformación y caracterización de grupos.

Más detalles

Análisis Estadístico de Datos Climáticos

Análisis Estadístico de Datos Climáticos Análisis Estadístico de Datos Climáticos Análisis de agrupamiento (o clusters) (Wilks, Cap. 14) Facultad de Ciencias Facultad de Ingeniería 2013 Objetivo Idear una clasificación o esquema de agrupación

Más detalles

Minería de Datos Web. 1 er Cuatrimestre 2015. Página Web. Prof. Dra. Daniela Godoy. http://www.exa.unicen.edu.ar/catedras/ageinweb/

Minería de Datos Web. 1 er Cuatrimestre 2015. Página Web. Prof. Dra. Daniela Godoy. http://www.exa.unicen.edu.ar/catedras/ageinweb/ Minería de Datos Web 1 er Cuatrimestre 2015 Página Web http://www.exa.unicen.edu.ar/catedras/ageinweb/ Prof. Dra. Daniela Godoy ISISTAN Research Institute UNICEN University Tandil, Bs. As., Argentina http://www.exa.unicen.edu.ar/~dgodoy

Más detalles

Análisis multivariable

Análisis multivariable Análisis multivariable Las diferentes técnicas de análisis multivariante cabe agruparlas en tres categorías: «Análisis de dependencia» tratan de explicar la variable considerada independiente a través

Más detalles

6.3.4. 4 Etapa : Caracterización de la partición P 4 de los n individuos de la tabla T(22, 3)

6.3.4. 4 Etapa : Caracterización de la partición P 4 de los n individuos de la tabla T(22, 3) 6.3.4. 4 Etapa : Caracterización de la partición P 4 de los n individuos de la tabla T(22, 3) - Resultados y conclusiones Las tres variables contribuyen significativamente a caracterizar las clases de

Más detalles

Redes de Kohonen y la Determinación Genética de las Clases

Redes de Kohonen y la Determinación Genética de las Clases Redes de Kohonen y la Determinación Genética de las Clases Angel Kuri Instituto Tecnológico Autónomo de México Octubre de 2001 Redes Neuronales de Kohonen Las Redes de Kohonen, también llamadas Mapas Auto-Organizados

Más detalles

PRESENTACIÓN DE LOS MÉTODOS DE CLASIFICACIÓN. Eduardo CRIVISQUI

PRESENTACIÓN DE LOS MÉTODOS DE CLASIFICACIÓN. Eduardo CRIVISQUI PRESENTACIÓN DE LOS MÉTODOS DE CLASIFICACIÓN Eduardo CRIVISQUI ADVERTENCIA SÓLO EL CONOCIMIENTO DE LAS PROPIEDADES LÓGICAS DE LOS MÉTODOS ESTADÍSTICOS PERMITE EVITAR EL EMPLEO «A CIEGAS» DE LOS MISMOS.

Más detalles

Métodos de la Minería de Datos

Métodos de la Minería de Datos This is page i Printer: Opaue this Métodos de la Minería de Datos Dr. Oldemar Rodríguez Rojas de noviembre de 2005 ii Contents This is page iii Printer: Opaue this iv This is page v Printer: Opaue this

Más detalles

CREACIÓN DE UNA TIPOLOGÍA DE GENES MEDIANTE TÉCNICAS DE DATA MINING PARA Drosophila

CREACIÓN DE UNA TIPOLOGÍA DE GENES MEDIANTE TÉCNICAS DE DATA MINING PARA Drosophila CREACIÓN DE UNA TIPOLOGÍA DE GENES MEDIANTE TÉCNICAS DE DATA MINING PARA Drosophila Ramón Álvarez 1 Flavio Pazos 2 Adrián Valentín 2 Curso de data Mining-2012,Instituto Pasteur 1 IESTA(Instituto de Estadística)

Más detalles

CLUSTERING MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN)

CLUSTERING MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN) CLASIFICACIÓN NO SUPERVISADA CLUSTERING Y MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN) info@clustering.50webs.com Indice INTRODUCCIÓN 3 RESUMEN DEL CONTENIDO 3 APRENDIZAJE

Más detalles

Técnicas de análisis multivariante para agrupación

Técnicas de análisis multivariante para agrupación TEMA 2: TÉCNICAS DE ANÁLISIS MULTIVARIANTE PARA AGRUPACIÓN Métodos cluster Técnicas de segmentación Clasificación no supervisada Ana Justel 1 Técnicas de análisis multivariante para agrupación Motivación

Más detalles

Análisis e Interpretación de Datos Unidad XI. Prof. Yanilda Rodríguez MSN Prof. Madeline Fonseca MSN Prof. Reina del C.Rivera MSN

Análisis e Interpretación de Datos Unidad XI. Prof. Yanilda Rodríguez MSN Prof. Madeline Fonseca MSN Prof. Reina del C.Rivera MSN Análisis e Interpretación de Datos Unidad XI Prof. Yanilda Rodríguez MSN Prof. Madeline Fonseca MSN Prof. Reina del C.Rivera MSN Competencias de Aprendizaje Al finalizar la actividad los estudiantes serán

Más detalles

PROYECTO DETECCIÓN DE CLUSTERS INTRODUCCIÓN AL RECONOCIMIENTO DE PATRONES

PROYECTO DETECCIÓN DE CLUSTERS INTRODUCCIÓN AL RECONOCIMIENTO DE PATRONES PROYECTO DETECCIÓN DE CLUSTERS INTRODUCCIÓN AL RECONOCIMIENTO DE PATRONES Diego Introini 4.379.988-6 Daniel Lena 4.870.247-2 1 INDICE Introducción..3 Marco Teórico.. 4 Clustering....4 K-means.........4

Más detalles

ANALISIS DE CONGLOMERADOS

ANALISIS DE CONGLOMERADOS ANALISIS DE CONGLOMERADOS Jorge Galbiati R Consiste en buscar grupos (conglomerados) en un conjunto de observaciones de forma tal que aquellas que pertenecen a un mismo grupo se parecen, mientras que aquellas

Más detalles

Lección n 5. Modelos de distribución n potencial de especies

Lección n 5. Modelos de distribución n potencial de especies Lección n 5. Modelos de distribución n potencial de especies 1. Elaboración de modelos de distribución de especies. a. Planteamiento. El modelado del nicho ambiental se basa en el principio de que la distribución

Más detalles

Ruth Vilà, María-José Rubio, Vanesa Berlanga, Mercedes Torrado. Cómo aplicar un cluster jerárquico en SPSS.

Ruth Vilà, María-José Rubio, Vanesa Berlanga, Mercedes Torrado. Cómo aplicar un cluster jerárquico en SPSS. Universitat de Barcelona. Institut de Ciències de l Educació Cómo aplicar un cluster jerárquico en SPSS Ruth Vilà-Baños, María-José Rubio-Hurtado, Vanesa Berlanga-Silvente, Mercedes Torrado-

Más detalles

Facultad de Ciencias Económicas Universidad Nacional de Córdoba Carrera de Doctorado

Facultad de Ciencias Económicas Universidad Nacional de Córdoba Carrera de Doctorado Facultad de Ciencias Económicas Universidad Nacional de Córdoba Carrera de Doctorado Materia: Estadística Aplicada a la Investigación Profesora: Dra. Hebe Goldenhersh Octubre del 2002 1 Determinación de

Más detalles

ANALISIS MULTIVARIANTE

ANALISIS MULTIVARIANTE ANALISIS MULTIVARIANTE Es un conjunto de técnicas que se utilizan cuando se trabaja sobre colecciones de datos en las cuáles hay muchas variables implicadas. Los principales problemas, en este contexto,

Más detalles

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez

Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos Álvarez Curso de Análisis de investigaciones con programas Informáticos 1 UNIVERSIDAD DE JAÉN Material del curso Análisis de datos procedentes de investigaciones mediante programas informáticos Manuel Miguel Ramos

Más detalles

Introducción al Data Mining Clases 5. Cluster Analysis. Ricardo Fraiman Centro de Matemática, Udelar y Universidad de San Andrés, Argentina

Introducción al Data Mining Clases 5. Cluster Analysis. Ricardo Fraiman Centro de Matemática, Udelar y Universidad de San Andrés, Argentina Introducción al Data Mining Clases 5 Cluster Analysis Ricardo Fraiman Centro de Matemática, Udelar y Universidad de San Andrés, Argentina Cluster Análisis 1 El término cluster analysis (usado por primera

Más detalles

Tema 5. Reconocimiento de patrones

Tema 5. Reconocimiento de patrones Tema 5. Reconocimiento de patrones Introducción al reconocimiento de patrones y a la clasificación de formas Un modelo de general de clasificador Características discriminantes Tipos de clasificación Clasificadores

Más detalles

MAPAS AUTOORGANIZATIVOS Y MODELOS SIMILARES

MAPAS AUTOORGANIZATIVOS Y MODELOS SIMILARES MAPAS AUTOORGANIZATIVOS Y MODELOS SIMILARES José D. Martín Guerrero, Emilio Soria, Antonio J. Serrano PROCESADO Y ANÁLISIS DE DATOS AMBIENTALES Curso 2009-2010 Page 1 of 11 1. Learning Vector Quantization.

Más detalles

Estadística Descriptiva

Estadística Descriptiva Estadística Descriptiva 1. El porcentaje de algodón en una tela utilizada para elaborar camisas para hombre se presenta en la siguiente tabla. Calcular los estadísticos más importantes y realícese el histograma

Más detalles

Ensayo: Construcción de la Frontera Eficiente de Markowitz mediante el uso de la herramienta SOLVER de Excel y el modelo Matricial.

Ensayo: Construcción de la Frontera Eficiente de Markowitz mediante el uso de la herramienta SOLVER de Excel y el modelo Matricial. UNIVERSIDAD DE ORIENTE NÚCLEO DE MONAGAS POST GRADO EN CIENCIAS ADMINISTRATIVAS MENCIÓN FINANZAS FINANZAS INTERNACIONALES Ensayo: Construcción de la Frontera Eficiente de Markowitz mediante el uso de la

Más detalles

Darío Álvarez Néstor Lemo www.autonomo.edu.uy

Darío Álvarez Néstor Lemo www.autonomo.edu.uy Data Mining para Optimización de Distribución de Combustibles Darío Álvarez Néstor Lemo Agenda Qué es DODC? Definición de Data Mining El ciclo virtuoso de Data Mining Metodología de Data Mining Tareas

Más detalles

2 Resolución de algunos ejemplos y ejercicios del tema 2.

2 Resolución de algunos ejemplos y ejercicios del tema 2. INTRODUCCIÓN A LA ESTADÍSTICA. GRUPO 71 LADE. 8 2 Resolución de algunos ejemplos y ejercicios del tema 2. 2.1 Ejemplos. Ejemplo 13 La siguiente tabla de frecuencias absolutas corresponde a 200 observaciones

Más detalles

TÉCNICAS DE PLANIFICACIÓN Y CONTROL DE PROYECTOS 1

TÉCNICAS DE PLANIFICACIÓN Y CONTROL DE PROYECTOS 1 Técnicas de planificación y control de proyectos Andrés Ramos Universidad Pontificia Comillas http://www.iit.comillas.edu/aramos/ Andres.Ramos@comillas.edu TÉCNICAS DE PLANIFICACIÓN Y CONTROL DE PROYECTOS

Más detalles

INFORMÁTICA APLICADA AL ANÁLISIS ECONÓMICO - FONDO SOCIAL EUROPEO ANÁLISIS CLUSTER IDEA CONCEPTUAL BÁSICA: DEFINICIÓN:

INFORMÁTICA APLICADA AL ANÁLISIS ECONÓMICO - FONDO SOCIAL EUROPEO ANÁLISIS CLUSTER IDEA CONCEPTUAL BÁSICA: DEFINICIÓN: IDEA CONCEPTUAL BÁSICA: La heterogeneidad de una población constituye la materia prima del análisis cuantitativo...... sin embargo, en ocasiones, el individuo u objeto particular, aislado, resulta un "recipiente"

Más detalles

Capítulo 8. Tipos de interés reales. 8.1. Introducción

Capítulo 8. Tipos de interés reales. 8.1. Introducción Capítulo 8 Tipos de interés reales 8.1. Introducción A lo largo de los capítulos 5 y 7 se ha analizado el tipo de interés en términos nominales para distintos vencimientos, aunque se ha desarrollado más

Más detalles

UNAM ESCUELA NACIONAL DE ESTUDIOS PROFESIONALES CAMPUS ACATLAN TEMAS SELECTOS DE CÓMPUTO VILLANUEVA ARREGUÍN AZAEL

UNAM ESCUELA NACIONAL DE ESTUDIOS PROFESIONALES CAMPUS ACATLAN TEMAS SELECTOS DE CÓMPUTO VILLANUEVA ARREGUÍN AZAEL UNAM ESCUELA NACIONAL DE ESTUDIOS PROFESIONALES CAMPUS ACATLAN TEMAS SELECTOS DE CÓMPUTO VILLANUEVA ARREGUÍN AZAEL Mas a todos los que le recibieron, a los que creen en su nombre, les dio potestad de ser

Más detalles

En este capitulo se presentan los métodos y algoritmos utilizados para el desarrollo del

En este capitulo se presentan los métodos y algoritmos utilizados para el desarrollo del 33 En este capitulo se presentan los métodos y algoritmos utilizados para el desarrollo del sistema de procesamiento de imágenes para controlar un robot manipulador y se describen en la forma como serán

Más detalles

Empresa o Entidad C.A Electricidad de Valencia. Autores del Trabajo Nombre País e-mail Jimmy Martínez Venezuela jmartinez@eleval.

Empresa o Entidad C.A Electricidad de Valencia. Autores del Trabajo Nombre País e-mail Jimmy Martínez Venezuela jmartinez@eleval. Título Estudio Estadístico de Base de Datos Comercial de una Empresa Distribuidora de Energía Eléctrica. Nº de Registro 231 Empresa o Entidad C.A Electricidad de Valencia Autores del Trabajo Nombre País

Más detalles

CURSO MINERÍA DE DATOS AVANZADO

CURSO MINERÍA DE DATOS AVANZADO CURSO MINERÍA DE DATOS AVANZADO La minería de datos (en inglés, Data Mining) se define como la extracción de información implícita, previamente desconocida y potencialmente útil, a partir de datos. En

Más detalles

EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO

EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO EL ANÁLISIS DE CONGLOMERADOS EN LOS ESTUDIOS DE MERCADO I. INTRODUCCIÓN Beatriz Meneses A. de Sesma * En los estudios de mercado intervienen muchas variables que son importantes para el cliente, sin embargo,

Más detalles

MINERIA DE DATOS Y Descubrimiento del Conocimiento

MINERIA DE DATOS Y Descubrimiento del Conocimiento MINERIA DE DATOS Y Descubrimiento del Conocimiento UNA APLICACIÓN EN DATOS AGROPECUARIOS INTA EEA Corrientes Maximiliano Silva La información Herramienta estratégica para el desarrollo de: Sociedad de

Más detalles

INFORME TÉCNICO PREVIO DE EVALUACIÓN DE SOFTWARE

INFORME TÉCNICO PREVIO DE EVALUACIÓN DE SOFTWARE "AA0 DE LA INTEGRACION NACIONAL Y EL RECONOCIMIENTO DE NUESTRA DIVERSIDAD" INFORME TÉCNICO PREVIO DE EVALUACIÓN DE SOFTWARE l. NOMBRE DEL ÁREA Gerencia de Informática 11. RESPONSABLE DE LA EVALUACIÓN Felix

Más detalles

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 -

Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos. - Sesión 9 - Fundamentos y Aplicaciones Prácticas del Descubrimiento de Conocimiento en Bases de Datos - Sesión 9 - Juan Alfonso Lara Torralbo 1 Índice de contenidos Actividad. Qué es un modelo de Data Mining Qué es

Más detalles

clustering: Clasificación no Supervisada

clustering: Clasificación no Supervisada clustering: Clasificación no Supervisada Gráficas estadística y minería de datos con python Miguel Cárdenas Montes Centro de Investigaciones Energéticas Medioambientales y Tecnológicas, Madrid, Spain miguel.cardenas@ciemat.es

Más detalles

Santiago de la Fuente Fernández. Análisis Conglomerados

Santiago de la Fuente Fernández. Análisis Conglomerados Santiago de la Fuente Fernández Análisis Conglomerados Santiago de la Fuente Fernández Análisis Conglomerados ANÁLISIS DE CONGLOMERADOS Análisis de Conglomerados El Análisis Cluster, conocido como Análisis

Más detalles

Estadística. Conceptos de Estadística. Un individuo o unidad estadística es cada uno de los elementos que componen la población.

Estadística. Conceptos de Estadística. Un individuo o unidad estadística es cada uno de los elementos que componen la población. Estadística La Estadística trata del recuento, ordenación y clasificación de los datos obtenidos por las observaciones, para poder hacer comparaciones y sacar conclusiones. Un estudio estadístico consta

Más detalles

Método k-medias. [ U n a i n t r o d u c c i ó n ]

Método k-medias. [ U n a i n t r o d u c c i ó n ] Método k-medias [ U n a i n t r o d u c c i ó n ] Método K-Means (Nubes Dinámicas) 0 3 4 5 6 7 8 9 0 0 3 4 5 6 7 8 9 0 0 3 4 5 6 7 8 9 0 0 3 4 5 6 7 8 9 0 0 3 4 5 6 7 8 9 0 0 3 4 5 6 7 8 9 0 0 3 4 5 6

Más detalles

Un programa entero de dos variables. 15.053 Jueves, 4 de abril. La región factible. Por qué programación entera? Variables 0-1

Un programa entero de dos variables. 15.053 Jueves, 4 de abril. La región factible. Por qué programación entera? Variables 0-1 15.053 Jueves, 4 de abril Un programa entero de dos variables Introducción a la programación entera Modelos de programación entera Handouts: material de clase maximizar 3x + 4y sujeto a 5x + 8y 24 x, y

Más detalles

3. Clasificación no supervisada

3. Clasificación no supervisada 3. El presente capítulo y el siguiente tratan de clasificación, es por ello que antes de abordar el tema específico de este capítulo, previamente se hará una introducción al tema de clasificación. 3.1

Más detalles

DESCRIPCIÓN DE LA METODOLOGÍA UTILIZADA EN EL PROGRAMA DE CESTAS REDUCIDAS ÓPTIMAS

DESCRIPCIÓN DE LA METODOLOGÍA UTILIZADA EN EL PROGRAMA DE CESTAS REDUCIDAS ÓPTIMAS DESCRIPCIÓN DE LA METODOLOGÍA UTILIZADA EN EL PROGRAMA DE CESTAS REDUCIDAS ÓPTIMAS Replicar un índice Formar una cartera que replique un índice (o un futuro) como el IBEX 35, no es más que hacerse con

Más detalles

CONTENIDOS MÍNIMOS BACHILLERATO

CONTENIDOS MÍNIMOS BACHILLERATO CONTENIDOS MÍNIMOS BACHILLERATO I.E.S. Vasco de la zarza Dpto. de Matemáticas CURSO 2013-14 ÍNDICE Primero de Bachillerato de Humanidades y CCSS...2 Primero de Bachillerato de Ciencias y Tecnología...5

Más detalles

Robustez y flexibilidad en los mapas autoorganizativos para ambientes no estacionarios.

Robustez y flexibilidad en los mapas autoorganizativos para ambientes no estacionarios. Robustez y flexibilidad en los mapas autoorganizativos para ambientes no estacionarios. Sebastián Moreno A. Universidad Técnica Federico Santa María, Departamento de Informática, Valparaíso, Chile, 239-23.

Más detalles

Control Interno CONTROL INTERNO Y SUS SISTEMAS A IMPLEMENTAR EN LAS UNIONES DE CREDITO

Control Interno CONTROL INTERNO Y SUS SISTEMAS A IMPLEMENTAR EN LAS UNIONES DE CREDITO Control Interno CONTROL INTERNO Y SUS SISTEMAS A IMPLEMENTAR EN LAS UNIONES DE CREDITO CONTENIDO 1. ANTECEDENTES E INTRODUCCIÓN 2. OBJETIVOS 3. CARACTERISTICAS 4. ESTRUCTURA 5. ELEMENTOS DEL CONTROL INTERNO

Más detalles

Introducción al Análisis Cluster. Consideraciones generales.

Introducción al Análisis Cluster. Consideraciones generales. Capítulo 1 Introducción al Análisis Cluster. Consideraciones generales. 1.1. El problema de la clasificación. Una de las actividades más primitivas, comunes y básicas del hombre consiste en clasificar

Más detalles

Support Vector Machine

Support Vector Machine Juan Carlos Caicedo Juan Carlos Mendivelso Maestria en Ingenieria de Sistemas y Computacion Universidad Nacional de Colombia 20 de marzo de 2007 Agenda 1 2 3 4 Outline 1 2 3 4 Clasificador lineal que utiliza

Más detalles

Base de datos II Facultad de Ingeniería. Escuela de computación.

Base de datos II Facultad de Ingeniería. Escuela de computación. Base de datos II Facultad de Ingeniería. Escuela de computación. Introducción Este manual ha sido elaborado para orientar al estudiante de Bases de datos II en el desarrollo de sus prácticas de laboratorios,

Más detalles

SISTEMA DE ALERTAS TEMPRANAS

SISTEMA DE ALERTAS TEMPRANAS SISTEMA DE ALERTAS TEMPRANAS CONTENIDO ANTECEDENTES Y ESPECIFICIÓN DE INDICADORES ASPECTOS PRÁCTICOS DEL MONITOREO EN LÍNEA COSTARRICENSE ANTECEDENTES SUPERVISIÓN A DISTANCIA (MODELO MANUAL) CONDICIONES

Más detalles

PROBLEMAS RESUELTOS DE INVESTIGACIÓN DE OPERACIONES

PROBLEMAS RESUELTOS DE INVESTIGACIÓN DE OPERACIONES PROBLEMAS RESUELTOS DE INVESTIGAIÓN DE OPERAIONES Enero 13 TEMA 1: REDES 1. Encuentre la ruta más corta de la siguiente red. Los números representan las distancias correspondientes reales entre los nodos.

Más detalles

MÓDULO III SEIS SIGMA ESTRATEGIA PARA LA MEJORA DE PROYECTOS

MÓDULO III SEIS SIGMA ESTRATEGIA PARA LA MEJORA DE PROYECTOS MÓDULO III SEIS SIGMA ESTRATEGIA PARA LA MEJORA DE PROYECTOS 1 ÍNDICE DEFINIR. 3 MEDIR.... 4 ANALIZAR..... 5 MEJORAR. 6 CONTROLAR... 7 GLOSARIO... 8 MAPA CONCEPTUAL. 10 2 DEFINIR: Iniciación del proyecto.

Más detalles

Medidas de tendencia Central

Medidas de tendencia Central Medidas de tendencia Central 7.1 Media 7.1.1 Media para un conjunto de datos no agrupados Este parámetro lo usamos con tanta cotidianidad que nos será muy familiar, aunque también aprenderemos algunas

Más detalles

VivaMéxico sin PRI. Quiero que mi país sea de todos. Dr. Ivo H. Pineda Torres. Otoño 2013

VivaMéxico sin PRI. Quiero que mi país sea de todos. Dr. Ivo H. Pineda Torres. Otoño 2013 VivaMéxico sin PRI Quiero que mi país sea de todos. Dr. Ivo H. Pineda Torres Facultad de Ciencias de la Computación Benemérita Universidad Autónoma de Puebla Otoño 2013 IMAGENESpemexmorena Adquisición

Más detalles

2. Geométricamente: Hay dos métodos:

2. Geométricamente: Hay dos métodos: Ejercicio realizado por José Francisco Ramón Prados Enunciado: 1. Dado el ortoedro de vértices ABFDCHGE representado en la figura, indicar que vectores son equipolentes a los dados. Expresar las diagonales

Más detalles

INTRODUCCION A LA VERIFICACIÓN DE LA CALIDAD DE IMPRESIÓN DE UN CODIGO DE BARRAS MEDIANTE LA NORMA ISO/IEC 15416 (CEN/ANSI)

INTRODUCCION A LA VERIFICACIÓN DE LA CALIDAD DE IMPRESIÓN DE UN CODIGO DE BARRAS MEDIANTE LA NORMA ISO/IEC 15416 (CEN/ANSI) INTRODUCCION A LA VERIFICACIÓN DE LA CALIDAD DE IMPRESIÓN DE UN CODIGO DE BARRAS MEDIANTE LA NORMA ISO/IEC 15416 (CEN/ANSI) Barcelona Pg. Les Monges 2, 08392 Llavaneres (BCN) Tel. +34 937 930 255 Fax +34

Más detalles

Problema de Programación Lineal

Problema de Programación Lineal Problema de Programación Lineal Introducción La optimización es un enfoque que busca la mejor solución a un problema. Propósito: Maximizar o minimizar una función objetivo que mide la calidad de la solución,

Más detalles

ÍNDICE DE CONTENIDOS. Concepto y tipos de control Ámbito. de control. Técnicas PLANIFICACIÓN, PROGRAMACIÓN Y CONTROL DE PROYECTOS.

ÍNDICE DE CONTENIDOS. Concepto y tipos de control Ámbito. de control. Técnicas PLANIFICACIÓN, PROGRAMACIÓN Y CONTROL DE PROYECTOS. ÍNDICE DE CONTENIDOS 1 2 3 4 Concepto y etapas de la gestión de un proyecto Concepto y tipos de control Ámbito de control 1 Concepto y etapas de la gestión de un proyecto PROYECTO: Una serie de tareas

Más detalles

CAPITULO 4 JUSTIFICACION DEL ESTUDIO. En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de

CAPITULO 4 JUSTIFICACION DEL ESTUDIO. En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de CAPITULO 4 JUSTIFICACION DEL ESTUDIO En este capítulo se presenta la justificación del estudio, supuestos y limitaciones de estudios previos y los alcances que justifican el presente estudio. 4.1. Justificación.

Más detalles

La práctica del análisis de correspondencias

La práctica del análisis de correspondencias La práctica del análisis de correspondencias MICHAEL GREENACRE Catedrático de Estadística en la Universidad Pompeu Fabra Separata del capítulo Biplots en análisis de correspondencias Primera edición: julio

Más detalles

UNIDAD 6. Programación no lineal

UNIDAD 6. Programación no lineal UNIDAD 6 Programación no lineal En matemática Programación no lineal (PNL) es el proceso de resolución de un sistema de igualdades y desigualdades sujetas a un conjunto de restricciones sobre un conjunto

Más detalles

HADES: Hidrocarburos Análisis de Datos de Estaciones de Servicio

HADES: Hidrocarburos Análisis de Datos de Estaciones de Servicio Hidrocarburos: Análisis de Pablo Burgos Casado (Jefe de Área Desarrollo (SGTIC - MITYC)) María Teresa Simino Rueda Rubén Pérez Gómez Israel Santos Montero María Ángeles Rodelgo Sanchez 1. INTRODUCCIÓN

Más detalles

Diseño del Sistema de Información

Diseño del Sistema de Información Diseño del Sistema de Información ÍNDICE DESCRIPCIÓN Y OBJETIVOS...2 ACTIVIDAD DSI 1: DEFINICIÓN DE LA ARQUITECTURA DEL SISTEMA...7 Tarea DSI 1.1: Definición de Niveles de Arquitectura...9 Tarea DSI 1.2:

Más detalles

Aplicaciones de Estadística Descriptiva

Aplicaciones de Estadística Descriptiva Aplicaciones de Estadística Descriptiva Contenidos de la presentación Funciones estadísticas en Excel. Gráficos. El módulo de análisis de datos y las tablas dinámicas de Excel. Información Intentaremos

Más detalles

Estadística y Probabilidad

Estadística y Probabilidad 12 Estadística y Probabilidad Objetivos En esta quincena aprenderás a: Recoger datos para un estudio estadístico. Organizar los datos en tablas de frecuencia absoluta y relativa. Construir e interpretar

Más detalles

Planificación y control a corto plazo. Alberto Gómez Gómez

Planificación y control a corto plazo. Alberto Gómez Gómez Planificación y control a corto plazo Alberto Gómez Gómez BIBLIOGRAFÍA BÁSICA Chase, R.B.; Aquilano, N.J.; Jacobs, F.R. (2000): Administración de Producción y Operaciones (Santa Fe de Bogotá: McGraw- Hill).

Más detalles

L A P R O G R A M A C I O N

L A P R O G R A M A C I O N L A P R O G R A M A C I O N L I N E A L 1. INTRODUCCIÓN: la programación lineal como método de optimación La complejidad de nuestra sociedad en cuanto a organización general y económica exige disponer

Más detalles

I1.1 Estudios observacionales IISESIÓN DISEÑO O DE ESTUDIOS EN INVESTIGACIÓN N MÉDICA DESCRIPTIVA CURSO DE. 1.2 Estudios experimentales

I1.1 Estudios observacionales IISESIÓN DISEÑO O DE ESTUDIOS EN INVESTIGACIÓN N MÉDICA DESCRIPTIVA CURSO DE. 1.2 Estudios experimentales 1 2 3 4 5 6 ESQUEMA DEL CURSO ESTADÍSTICA BÁSICA DISEÑO DE EXPERIMENTOS CURSO DE ESTADÍSTICA STICA BÁSICAB ESTADÍSTICA DESCRIPTIVA TIPOS DE VARIABLES MEDIDAS DE POSICIÓN CENTRAL Y DE DISPERSIÓN TABLAS

Más detalles

ANÁLISIS DE DATOS MULTIVARIANTE

ANÁLISIS DE DATOS MULTIVARIANTE ANÁLISIS DE DATOS MULTIVARIANTE Verdaderamente no hay cultura más que cuando el espíritu se ensancha a la dimensión de lo universal J. Leclercq. Prof. Esperanza Ayuga Téllez NTRODUCCIÓN DEFINICIÓN: El

Más detalles

Métricas de complejidad para la transformación del problema de detección de cáncer basado en

Métricas de complejidad para la transformación del problema de detección de cáncer basado en Índice para la transformación del problema de detección de cáncer basado en mamografías Alumna: Núria Macià Antoĺınez Asesora: Ester Bernadó Mansilla Núria Macià Antoĺınez PFC: 1/49 Índice 1 Planteamiento

Más detalles

SISTEMAS INTELIGENTES

SISTEMAS INTELIGENTES SISTEMAS INTELIGENTES T11: Métodos Kernel: Máquinas de vectores soporte {jdiez, juanjo} @ aic.uniovi.es Índice Funciones y métodos kernel Concepto: representación de datos Características y ventajas Funciones

Más detalles

DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS

DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS DISTRIBUCIONES DISCRETAS CON EXCEL Y WINSTATS A) INTRODUCCIÓN Una distribución de probabilidad es una representación de todos los resultados posibles de algún experimento y de la probabilidad relacionada

Más detalles

MUESTREO TIPOS DE MUESTREO

MUESTREO TIPOS DE MUESTREO MUESTREO En ocasiones en que no es posible o conveniente realizar un censo (analizar a todos los elementos de una población), se selecciona una muestra, entendiendo por tal una parte representativa de

Más detalles

Análisis y cuantificación del Riesgo

Análisis y cuantificación del Riesgo Análisis y cuantificación del Riesgo 1 Qué es el análisis del Riesgo? 2. Métodos M de Análisis de riesgos 3. Método M de Montecarlo 4. Modelo de Análisis de Riesgos 5. Qué pasos de deben seguir para el

Más detalles

MÁQUINA DE VECTORES DE SOPORTE

MÁQUINA DE VECTORES DE SOPORTE MÁQUINA DE VECTORES DE SOPORTE La teoría de las (SVM por su nombre en inglés Support Vector Machine) fue desarrollada por Vapnik basado en la idea de minimización del riesgo estructural (SRM). Algunas

Más detalles

Nombre de la asignatura Carrera Clave de la signatura Créditos 3 2-5

Nombre de la asignatura Carrera Clave de la signatura Créditos 3 2-5 1. DATOS DE LA ASIGNATURA Nombre de la asignatura Carrera Clave de la signatura Créditos 3 2-5 2.- PRESENTACIÓN Caracterización de la asignatura. Probabilidad y estadística descriptiva Ingeniería en gestión

Más detalles

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS

DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS DISTRIBUCIÓN NORMAL CON EXCEL Y WINSTATS 1) Reseña histórica Abrahan De Moivre (1733) fue el primero en obtener la ecuación matemática de la curva normal. Kart Friedrich Gauss y Márquez De Laplece (principios

Más detalles

Aplicación de mapas autoorganizados (SOM) a la visualización de datos. Modelos Computacionales Fernando José Serrano García

Aplicación de mapas autoorganizados (SOM) a la visualización de datos. Modelos Computacionales Fernando José Serrano García Aplicación de mapas autoorganizados (SOM) a la visualización de datos Modelos Computacionales Fernando José Serrano García 2 Contenido Introducción... 3 Estructura... 3 Entrenamiento... 3 Aplicación de

Más detalles

5.1. Redes de aprendizaje supervisado basadas en la cuantificación vectorial. Curso de doctoramiento Técnicas de Computación Flexíbeis

5.1. Redes de aprendizaje supervisado basadas en la cuantificación vectorial. Curso de doctoramiento Técnicas de Computación Flexíbeis 5.1. Redes de aprendizaje supervisado basadas en la cuantificación vectorial Curso de doctoramiento Técnicas de Computación Flexíbeis Learning Vector Quantization (LVQ) Versión supervisada de SOM (SOM

Más detalles

Modelos de Ciclo de Vida de Desarrollo de Software en el Contexto de la Industria Colombiana de Software

Modelos de Ciclo de Vida de Desarrollo de Software en el Contexto de la Industria Colombiana de Software Modelos de Ciclo de Vida de Desarrollo de Software en el Contexto de la Industria Colombiana de Software Hugo F. Arboleda Jiménez. MSc. Docente-Investigador, Facultad de Ingenierías, Universidad de San

Más detalles

CÁLCULO DE CICLOS DE CONSUMO Y ROTACIÓN DE INVENTARIOS

CÁLCULO DE CICLOS DE CONSUMO Y ROTACIÓN DE INVENTARIOS 4 CÁLCULO DE CICLOS DE CONSUMO Y ROTACIÓN DE INVENTARIOS Al finalizar el capítulo, el alumno calculará los ciclos de consumo y rotación de inventarios de acuerdo con los métodos de valuación, para la determinación

Más detalles

Capítulo 1: Introducción 10 PARTE II METODOLOGÍA FINANCIERA Y ANÁLISIS MULTICRITERIO 16. Capítulo 6: Una Perspectiva Histórica 17

Capítulo 1: Introducción 10 PARTE II METODOLOGÍA FINANCIERA Y ANÁLISIS MULTICRITERIO 16. Capítulo 6: Una Perspectiva Histórica 17 CONTENIDOS PRINCIPALES Capítulo 1: Introducción 10 Propósito de la investigación 11 Fuentes de datos 11 Metodología 11 Estructura y contenidos principales 13 Aplicabilidad 14 PARTE II METODOLOGÍA FINANCIERA

Más detalles

OBJETIVOS MI IMOS 3º E.S.O.

OBJETIVOS MI IMOS 3º E.S.O. OBJETIVOS MI IMOS 3º E.S.O. Cómo su nombre indica, los objetivos mínimos son lo MÍNIMO que un alumno debe saber al finalizar un curso. Éstos ejercicios únicamente significan eso, en ningún caso debe pensarse

Más detalles

Qué es DataMining? Agenda. Agenda 8/24/2007. Ing. Gustavo Markel gmarkel@gmail.com. Lic. Cecilia Ruz ruz.cecilia@gmail.com

Qué es DataMining? Agenda. Agenda 8/24/2007. Ing. Gustavo Markel gmarkel@gmail.com. Lic. Cecilia Ruz ruz.cecilia@gmail.com Qué es DataMining? Ing. Gustavo Markel gmarkel@gmail.com Lic. Cecilia Ruz ruz.cecilia@gmail.com Agenda Qué es Data Mining? Cómo se integra en el proceso de Descubrimiento del conocimiento? Funcionalidades

Más detalles

Tema 8: Análisis Discriminante. Clasificación. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. Análisis discriminante

Tema 8: Análisis Discriminante. Clasificación. Aurea Grané Departamento de Estadística Universidad Carlos III de Madrid. Análisis discriminante Aurea Grané. Máster en Estadística. Universidade Pedagógica. 1 Aurea Grané. Máster en Estadística. Universidade Pedagógica. 2 Análisis discriminante Tema 8: Análisis Discriminante y Clasificación Aurea

Más detalles

Inteligencia en Redes de Comunicaciones. Tema 7 Minería de Datos. Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda

Inteligencia en Redes de Comunicaciones. Tema 7 Minería de Datos. Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda Inteligencia en Redes de Comunicaciones Tema 7 Minería de Datos Julio Villena Román, Raquel M. Crespo García, José Jesús García Rueda {jvillena, rcrespo, rueda}@it.uc3m.es Índice Definición y conceptos

Más detalles

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos.

EJERCICIO 1. Sean las variables de decisión: x= n: de impresos diarios tipo A repartidos. y= n: de impresos diarios tipo B repartidos. EJERCICIO 1 Un estudiante dedica parte de su tiempo al reparto de propaganda publicitaria. La empresa A le paga 5 Bs.. por cada impreso repartido y la empresa B, con folletos más grandes, le paga 7 Bs.

Más detalles

Resumen General del Manual de Organización y Funciones

Resumen General del Manual de Organización y Funciones Gerencia de Tecnologías de Información Resumen General del Manual de Organización y Funciones (El Manual de Organización y Funciones fue aprobado por Resolución Administrativa SBS N 354-2011, del 17 de

Más detalles

Muestreo. Introducción

Muestreo. Introducción Muestreo Introducción En este documento ofrecemos un resumen sobre el concepto de muestreo, y los tipos de muestreo existentes. Además, adjuntamos una hoja para el cálculo de tamaños muestrales en auditorías

Más detalles

MINERÍA DE DATOS Y DESCUBRIMIENTO DE CONOCIMIENTO (DATA MINING AND KNOWLEDGE DISCOVERY)

MINERÍA DE DATOS Y DESCUBRIMIENTO DE CONOCIMIENTO (DATA MINING AND KNOWLEDGE DISCOVERY) MINERÍA DE DATOS Y DESCUBRIMIENTO DE CONOCIMIENTO (DATA MINING AND KNOWLEDGE DISCOVERY) Autor: Lic. Manuel Ernesto Acosta Aguilera Entidad: Facultad de Economía, Universidad de La Habana Dirección: Edificio

Más detalles

Programación Lineal Entera

Programación Lineal Entera Programación Lineal Entera P.M. Mateo y David Lahoz 2 de julio de 2009 En este tema se presenta un tipo de problemas formalmente similares a los problemas de programación lineal, ya que en su descripción

Más detalles

ÍNDICE. Introducción... Capítulo 1. El concepto de Data Mining... 1

ÍNDICE. Introducción... Capítulo 1. El concepto de Data Mining... 1 ÍNDICE Introducción... XV Capítulo 1. El concepto de Data Mining... 1 Introducción... 1 Una definición de Data Mining... 3 El proceso de Data Mining... 6 Selección de objetivos... 8 La preparación de los

Más detalles

TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS ALIMENTARIOS

TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS ALIMENTARIOS TÉCNICO SUPERIOR UNIVERSITARIO EN PROCESOS ALIMENTARIOS HOJA DE ASIGNATURA CON DESGLOSE DE UNIDADES TEMÁTICAS 1. Nombre de la asignatura Estadística para el control de procesos 2. Competencias a la que

Más detalles

6. SERVICE BLUEPRINTING PARA SERVICIOS NUEVOS... 4 7. SERVICE BLUEPRINTING PARA SERVICIOS EXISTENTES... 6 8. OTROS USOS DEL SERVICE BLUEPRINTING...

6. SERVICE BLUEPRINTING PARA SERVICIOS NUEVOS... 4 7. SERVICE BLUEPRINTING PARA SERVICIOS EXISTENTES... 6 8. OTROS USOS DEL SERVICE BLUEPRINTING... SERVICE BLUEPRINTING Service Blueprinting es un método para el análisis, visualización y optimización de procesos de prestación de servicios. En el service blueprinting se describe la evolución de la prestación

Más detalles

Covarianza y coeficiente de correlación

Covarianza y coeficiente de correlación Covarianza y coeficiente de correlación Cuando analizábamos las variables unidimensionales considerábamos, entre otras medidas importantes, la media y la varianza. Ahora hemos visto que estas medidas también

Más detalles

Los mapas mentales tienen de todos modos algunas características que en algunas situaciones pueden ser útiles:

Los mapas mentales tienen de todos modos algunas características que en algunas situaciones pueden ser útiles: Los mapas mentales tienen de todos modos algunas características que en algunas situaciones pueden ser útiles: Obligan a una jerarquía de las ideas. Al obligar la jerarquía, ayudan a la estricta diferenciación

Más detalles

LECCION 1ª Introducción a la Estadística Descriptiva

LECCION 1ª Introducción a la Estadística Descriptiva LECCION 1ª Introducción a la Estadística Descriptiva La estadística descriptiva es una ciencia que analiza series de datos (por ejemplo, edad de una población, altura de los estudiantes de una escuela,

Más detalles

REVISTA COLOMBIANA DE FÍSICA, VOL. 34, No. 1. 2002 CONTEO Y CARACTERIZACIÓN DE REGIONES COMPLETAS EN IMÁGENES 2D: APLICACIÓN A NÚCLEOS CELULARES

REVISTA COLOMBIANA DE FÍSICA, VOL. 34, No. 1. 2002 CONTEO Y CARACTERIZACIÓN DE REGIONES COMPLETAS EN IMÁGENES 2D: APLICACIÓN A NÚCLEOS CELULARES REVISTA COLOMBIANA DE FÍSICA, VOL. 34, No. 1. 2002 CONTEO Y CARACTERIZACIÓN DE REGIONES COMPLETAS EN IMÁGENES 2D: APLICACIÓN A NÚCLEOS CELULARES Y. Sossa, G. Osorio, F. Prieto, F. Angulo Grupo de Percepción

Más detalles