Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322"

Transcripción

1 Mineria de datos y su aplicación en web mining data Redes de computadores I ELO 322 Nicole García Gómez Diego Riquelme Adriasola

2 RESUMEN.- La minería de datos corresponde a la extracción de información no trivial de una base de datos, inicialmente desconocida, pero potencialmente útil, mediante herramientas estadísticas. Una de sus aplicaciones la Web Mining, donde se estudian distintos comportamientos y factores dentro de una página web. Un correcto uso de esta información, permite entre otras cosas, comprender el hábito de los usuarios, como también mejorar el diseño de la página.

3 INTRODUCCIÓN.- La minería de datos corresponde a la extracción de información en una base de datos, con el objetivo de encontrar patrones, tendencias o ciertos comportamientos que eran desconocidos en un principio, pero que son potencialmente útiles. Para ello, se cuenta con distintos algoritmos de búsqueda y procesamientos, ya que la extracción de la información no trivial de estos datos depende de muchos factores y variables. Las aplicaciones de la minería de datos son bastante amplias, ya que se puede ver su uso en distintas áreas, tales como Inteligencia Artificial, negocios, terrorismo, informática, y comportamiento en internet. Este último caso de estudio, también llamado Web Mining (minería de datos web), en el cual se estudia la actividad de una página web, como por ejemplo, su tráfico, contenidos más accedidos, tipos de usuario y su procedencia, navegadores, sistemas operativos, etc.

4 MINERÍA DE DATOS.- La minería de datos consiste en la extracción de información desconocida de una base de datos, para luego ser estudiada y analizada. Estas extracciones son inicialmente definidas por funciones estadísticas, las cuales definen las variables a buscar (objetivos), como también variables dependientes (que ayudan para realizar el cálculo). La recolección de dichos datos, se realiza a través de los siguientes pasos: Selección y pre-procesado de datos: inicialmente, los datos de la fuente o base de datos están en bruto, por lo que mediante el pre-procesado se filtran los datos (de forma que se eliminan valores incorrectos, no válidos, etc), y se puede obtener muestras de los mismos (volver a filtrar), o reducir el número de valores posibles (por ejemplo, redondeando). Selección de variables: aún después de haber sido pre-procesados, en la mayoría de los casos se tiene una gran cantidad de datos. Para ello, se escogen las variables más influyentes en el problema. Los métodos para la selección de características son básicamente dos: 1. Los basados en la elección de los mejores atributos del problema 2. Los que buscan variables independientes mediante tests de sensibilidad, algoritmos de dista ncia o heurísticos, Extracción de conocimiento: mediante una técnica de minería de datos, se obtiene un modelo de conocimiento, que representa patrones de comportamiento observados en los valores de las variables del problema o relaciones de asociación entre dichas variables. Interpretación y evaluación: una vez obtenido el modelo, se debe proceder a su validación comprobando que las conclusiones que arroja son válidas y suficientemente satisfactorias. En el caso de haber obtenido varios modelos mediante el uso de distintas

5 técnicas, se deben comparar los modelos en busca de aquel que se ajuste mejor al problema. WEB MINING.- Una aplicación de la minería de datos, es la Web Mining, la cual recupera información de las páginas webs, tanto como su contenido, estructura de enlaces y registro de navegación de los usuarios. Por tanto, existen tres divisiones de la Web Mining: minería de estructura, minería de contenido y minería de utilización. MINERÍA DE ESTRUCTURA.- Esta parte pretende revelar la estructura real de un sitio web, a través de la recolección de datos referentes a su estructura y, principalmente a su conectividad. Típicamente tiene en cuenta dos tipos de enlaces: estáticos y dinámicos. MINERÍA DE CONTENIDO.- Su objetivo es la recogida de datos e identificación de patrones relativos a los contenidos de la web y a las búsquedas que se realizan sobre los mismos. Hay dos estrategias principales: 1. Minería de páginas web, que extraen patrones directamente de los contenidos existentes en las páginas. Los datos que se utilizan en este caso son: texto libre, páginas escritas en HTML o XML, elementos multimedia y cualquier otro tipo de contenido. 2. Minería de resultados de búsqueda, que intenta identificar patrones en los resultados de los motores de búsqueda. MINERIA DE UTILIZACIÓN.- Su objetivo es la búsqueda de patrones de comportamientos en base a los registros de los servidores (logs). Existen dos tipos de patrones:

6 Patrones generales: se reestructura la el sitio web con el fin de mejorar el acceso a los usuarios. Patrones personalizados: se estudian los perfiles de cada usuario, con el objetivo de entregarle un servicio individualizado. TÉCNICAS EMPLEADAS EN LA MINERÍA DE USO WEB.- Entre las técnicas utilizadas para la minería en el uso de la Web se encuentran: Agrupamiento y clasificación: las técnicas de agrupamiento se basan en la separación de ciertos comportamientos similares en grupos homogéneos, existiendo así grupos con características diferentes entre sí. Dado que la información depende de los log, es posible detectar algunos los siguientes grupos de usuarios: 1. Aquellos que visitan gran cantidad de páginas con un intervalo de tiempo similar en todas ellas. 2. Los que visitan un número pequeño de páginas en intervalos cortos. 3. Aquellos que visitan un número pequeño-mediano de páginas con tiempo variable en cada una de ellas. Las técnicas de clasificación en la minera Web permite desarrollar un perfil cliente/servidor en función de los patrones de acceso al servidor. El agrupamiento de estos perfiles entrega facilidades en el desarrollo de estrategias para futuros mercados. Reglas de asociación: estas permiten determinar patrones en los datos mientras ocurren transacciones de más datos. Así, se encontraran ciertos patrones y relaciones que permitirán clasificar más fácilmente sin la necesidad de un operador. Las reglas de asociación se dividen en dos fases: 1. Extracción de los conjuntos de elementos que cumplen con la información requerida a partir de los datos. 2. Generación de las reglas a partir de estos documentos.

7 Secuencias frecuentes: esta técnica utiliza los datos de transacciones realizados en un período de tiempo. De esta forma, se pueden predecir futuras visitas y ordenar de mejor forma, los accesos y publicidades de determinados productos. HERRAMIENTAS PARA EL ANÁLISIS DE LOG Las herramientas utilizadas para el análisis de log, pueden dividirse en dos: Herramientas incorporadas al servidor: son los programas que procesan, en tiempo real, los datos almacenados en un servidor. Mediante una interfase en línea, se puede acceder a la estadística como también a gráficas. Herramientas incorporadas en máquinas personales: son softwares instalados en computadores personales, que permiten la descarga de log para su procesamiento. Su ventaja está en que no es necesario procesarlo en tiempo real ni con conexión a Internet, pero su desventaja está en que es necesario tener acceso a los registros.

8 CONCLUSIÓN.- La minería de datos entrega información útil, oculta en una base de datos. Estos procesos de extracción tienen una amplia gama de aplicaciones, siendo una de ellas la Web Mining. La Web Mining representa una útil herramienta para el estudio de páginas web. Con diversas técnicas y procedimientos, la cantidad de información es inmensa, pudiendo generarse una avalancha de datos. Es por ello que es importante establecer bien los parámetros de búsqueda, evitando así datos innecesarios. Por otro lado, ha de existir una ética sobre el uso de la información recolectada. Pueden existir problemas cuando una empresa busca datos con cierto fin y luego los utiliza para otro totalmente distinto. La venta de datos también es un tema de suma importancia, ya que este mercado ha crecido bastante en el último tiempo. La empresa que compre la información, han de hacerse responsables de mantener el anonimato de las personas, como también de posibles fugas. Otro aspecto importante del anonimato de los datos recolectados, es la posible creación de perfiles y asociación a grupos, por motivos raciales, sexuales o religiosos, ya que podrían llegar a generar polémica, al fomentar la discriminación. Sin embargo, la minería de datos y la Web Minig presentan muchísimas ventajas, ya que con la información recolectada, tanto el mercado como el gobierno pueden generar diversas situaciones benéficas para la sociedad. En el caso del mercado, existe mayor posibilidad de individualizar las necesidades de cada usuario. Esto permite que las empresas les entreguen un mejor servicio, como también predecir cuando un abonado decida retirarse y poder ofrecerle una nueva oferta, generando así competencia de mercado. Estas características en general, aumentarían el volumen de mercado. En cuanto al gobierno, podría predecir amenazas y ataques delictuales, lo que obviamente entregaría mayor seguridad a la ciudadanía.

9 BIBLIOGRAFÍA

Aplicación en Minería de Datos Web Mining

Aplicación en Minería de Datos Web Mining Aplicación en Minería de Datos Web Mining Sánchez Enriquez, Heider Ysaias 1 19 de marzo de 2008 1 Agradesco a nuestra destinguida Profesora por exigirme trabajar en L A TEX Resumen Web mining es una extensión

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Contenido Introducción: Inteligencia de negocios (Business Intelligence). Componentes Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica. Fases

Más detalles

Proceso del KDD (minería de datos o DataMining)

Proceso del KDD (minería de datos o DataMining) Qué es el KDD? Es un proceso no trivial que identifica patrones validos, previamente desconocidos, potencialmente utiles y fundamentalmente entendibles en los datos. es como se reconoce de manera teoria

Más detalles

MINERIA DE DATOS Y Descubrimiento del Conocimiento

MINERIA DE DATOS Y Descubrimiento del Conocimiento MINERIA DE DATOS Y Descubrimiento del Conocimiento UNA APLICACIÓN EN DATOS AGROPECUARIOS INTA EEA Corrientes Maximiliano Silva La información Herramienta estratégica para el desarrollo de: Sociedad de

Más detalles

Web mining y obtención de información para la generación de

Web mining y obtención de información para la generación de Web mining y obtención de información para la generación de inteligencia Miguel Ángel Esteban (Universidad de Zaragoza) mesteban@unizar.es Instituto Juan Velázquez de Velasco de Investigación en Inteligencia

Más detalles

Inteligencia Artificial y Seguridad Informática. en plataformas Open Source

Inteligencia Artificial y Seguridad Informática. en plataformas Open Source Inteligencia Artificial y Seguridad Informática en plataformas Open Source Jornadas de Software Libre y Seguridad Informática Santa Rosa La Pampa 4 y 5 de Diciembre de 2009 AGENDA Primera Parte Definiciones

Más detalles

Minería de Datos. Vallejos, Sofia

Minería de Datos. Vallejos, Sofia Minería de Datos Vallejos, Sofia Contenido Introducción: Inteligencia de negocios (Business Intelligence). Descubrimiento de conocimiento en bases de datos (KDD). Minería de Datos: Perspectiva histórica.

Más detalles

POSIBLE APLICACIÓN DE LA MINERÍA DE TEXTOS A LOS TRABAJOS DE LA COMISIÓN MINISTERIAL DE INFORMÁTICA

POSIBLE APLICACIÓN DE LA MINERÍA DE TEXTOS A LOS TRABAJOS DE LA COMISIÓN MINISTERIAL DE INFORMÁTICA POSIBLE APLICACIÓN DE LA MINERÍA DE TEXTOS A LOS TRABAJOS DE LA COMISIÓN MINISTERIAL DE INFORMÁTICA M.ª del Pilar Cantero Blanco Jefa de Servicio de Sistemas Informáticos. Subdirección General de Planificación

Más detalles

TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA

TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA TÉCNICAS DE MINERÍA DE DATOS Y TEXTO APLICADAS A LA SEGURIDAD AEROPORTUARIA MSC ZOILA RUIZ VERA Empresa Cubana de Aeropuertos y Servicios Aeronáuticos Abril 2010 ANTECEDENTES El proyecto Seguridad es una

Más detalles

Minería Web: un recurso insoslayable para el profesional de la información*

Minería Web: un recurso insoslayable para el profesional de la información* Acimed 2007; 16(4) Minería Web: un recurso insoslayable para el profesional de la información* Lic. Sady C. Fuentes Reyes 1 e Ing. Marina Ruiz Lobaina 2 RESUMEN Se estudian los principales conceptos relacionados

Más detalles

Introducción a la Minería de Datos

Introducción a la Minería de Datos Introducción a la Minería de Datos Abdelmalik Moujahid, Iñaki Inza y Pedro Larrañaga Departamento de Ciencias de la Computación e Inteligencia Artificial Universidad del País Vasco Índice 1 Minería de

Más detalles

Minería de datos (Introducción a la minería de datos)

Minería de datos (Introducción a la minería de datos) Minería de datos (Introducción a la minería de datos) M. en C. Sergio Luis Pérez Pérez UAM CUAJIMALPA, MÉXICO, D. F. Trimestre 14-I. Sergio Luis Pérez (UAM CUAJIMALPA) Curso de minería de datos 1 / 24

Más detalles

CONSIDERACIONES GENERALES DEL WEB MINING

CONSIDERACIONES GENERALES DEL WEB MINING CONSIDERACIONES GENERALES DEL WEB MINING Sandra Milena Leal Elizabeth Castiblanco Calderón* RESUMEN: el presente artículo describe los conceptos básicos para la utilización del Webmining, dentro de los

Más detalles

Base de datos II Facultad de Ingeniería. Escuela de computación.

Base de datos II Facultad de Ingeniería. Escuela de computación. Base de datos II Facultad de Ingeniería. Escuela de computación. Introducción Este manual ha sido elaborado para orientar al estudiante de Bases de datos II en el desarrollo de sus prácticas de laboratorios,

Más detalles

Trabajo final de Ingeniería

Trabajo final de Ingeniería UNIVERSIDAD ABIERTA INTERAMERICANA Trabajo final de Ingeniería Weka Data Mining Jofré Nicolás 12/10/2011 WEKA (Data Mining) Concepto de Data Mining La minería de datos (Data Mining) consiste en la extracción

Más detalles

MANUAL PARA MODULO ESTADISTICAS. Este es un resumen para la mejor interpretación y análisis de las estadísticas de su sitio.

MANUAL PARA MODULO ESTADISTICAS. Este es un resumen para la mejor interpretación y análisis de las estadísticas de su sitio. MANUAL PARA MODULO ESTADISTICAS Este es un resumen para la mejor interpretación y análisis de las estadísticas de su sitio. Nº de visitantes distintos: nº de servidores (direcciones IP) que entran a un

Más detalles

Tecnologías de Información y Comunicación II

Tecnologías de Información y Comunicación II Tecnologías de Información y Comunicación II WEB MINING WEB MINING Como Concepto Webmining es una metodología de recuperación de la información que usa herramientas de la minería de datos para extraer

Más detalles

Evaluación de modelos para la predicción de la Bolsa

Evaluación de modelos para la predicción de la Bolsa Evaluación de modelos para la predicción de la Bolsa Humberto Hernandez Ansorena Departamento de Ingeniería Telemática Universidad Carlos III de Madrid Madrid, España 10003975@alumnos.uc3m.es Rico Hario

Más detalles

activuspaper Text Mining and BI Abstract

activuspaper Text Mining and BI Abstract Text Mining and BI Abstract Los recientes avances en lingüística computacional, así como la tecnología de la información en general, permiten que la inserción de datos no estructurados en una infraestructura

Más detalles

APOYO PARA LA TOMA DE DECISIONES

APOYO PARA LA TOMA DE DECISIONES APOYO PARA LA TOMA DE DECISIONES Cátedra: Gestión de Datos Profesor: Santiago Pérez Año: 2006 Bibliografía: Introducción a las Bases de Datos. DATE - 1 - 1. INTRODUCCION APOYO PARA LA TOMA DE DECISIONES

Más detalles

SIOM-Interfaz AM Manual de Usuario

SIOM-Interfaz AM Manual de Usuario SIOM-Interfaz AM Manual de Usuario Alfonso XI, 6 28014 Madrid F(+34) 91 524 03 96 www.omie.es Ref. MU_InterfazAM.doc Versión 5.0 Fecha: 2014-09-10 ÍNDICE 1 INTRODUCCIÓN 3 2 REQUISITOS PREVIOS 4 2.1 COMPONENTES

Más detalles

Texto, imágenes, video Hiperenlaces Archivo log

Texto, imágenes, video Hiperenlaces Archivo log Web Mining Web Mining Aplicación técnicas data mining sobre datos que Web Descubrimiento automático información útil de documentos y servicios Web Texto, imágenes, video Hiperenlaces Archivo log Netcraft

Más detalles

Etapas del desarrollo

Etapas del desarrollo Capítulo 4 Etapas del desarrollo Este capítulo documenta la aplicación del modelo presentado anteriormente, para el caso de la detección y clasificación de eventos sísmicos sobre señales digitales. El

Más detalles

Proyecto de Taller V. Leticia Pérez. Fernández. INCO - Facultad de Ingeniería Universidad de la República

Proyecto de Taller V. Leticia Pérez. Fernández. INCO - Facultad de Ingeniería Universidad de la República Diseño e implementación de un generador de sitios web adaptativos automáticos: Descubrimiento de patrones de navegación Proyecto de Taller V Estudiantes: Tutor: Luis Do Rego Leticia Pérez Ing. Eduardo

Más detalles

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003

MINERÍA DE DATOS. Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE. Octubre - 2003 MINERÍA DE DATOS Teleprocesos y Sistemas Distribuidos Licenciatura en Sistemas de Información FACENA - UNNE Octubre - 2003 CONTENIDO Qué es Data Warehousing Data Warehouse Objetivos del Data Warehouse

Más detalles

Servicio de Difusión de la Creación Intelectual (SeDiCI)

Servicio de Difusión de la Creación Intelectual (SeDiCI) Servicio de Difusión de la Creación Intelectual (SeDiCI) SeDiCI es el repositorio institucional de la Universidad Nacional de La Plata (UNLP), creado con dos objetivos prioritarios: Para atender al rol

Más detalles

Aplicaciones prácticas de Minería de Datos con IBM SPSS Modeler

Aplicaciones prácticas de Minería de Datos con IBM SPSS Modeler Álvaro J. Méndez Services Engagement Manager IBM SPSS / Profesor Econometría UAM Jecas, 22 Oct 2010 Aplicaciones prácticas de Minería de Datos con IBM SPSS Modeler Business Analytics software Agenda Minería

Más detalles

CLUSTERING MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN)

CLUSTERING MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN) CLASIFICACIÓN NO SUPERVISADA CLUSTERING Y MAPAS AUTOORGANIZATIVOS (KOHONEN) (RECUPERACIÓN Y ORGANIZACIÓN DE LA INFORMACIÓN) info@clustering.50webs.com Indice INTRODUCCIÓN 3 RESUMEN DEL CONTENIDO 3 APRENDIZAJE

Más detalles

Visión global del KDD

Visión global del KDD Visión global del KDD Series Temporales Máster en Computación Universitat Politècnica de Catalunya Dra. Alicia Troncoso Lora 1 Introducción Desarrollo tecnológico Almacenamiento masivo de información Aprovechamiento

Más detalles

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net

Proyecto técnico MINERÍA DE DATOS. Febrero 2014. www.osona-respon.net info@osona-respon.net Proyecto técnico MINERÍA DE DATOS Febrero 2014 www.osona-respon.net info@osona-respon.net 0. Índice 0. ÍNDICE 1. INTRODUCCIÓN... 2 2. LOS DATOS OCULTOS... 3 2.1. Origen de la información... 3 2.2. Data

Más detalles

CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN.

CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN. SISTEMA EDUCATIVO inmoley.com DE FORMACIÓN CONTINUA PARA PROFESIONALES INMOBILIARIOS. CURSO/GUÍA PRÁCTICA GESTIÓN EMPRESARIAL DE LA INFORMACIÓN. Business Intelligence. Data Mining. PARTE PRIMERA Qué es

Más detalles

INTELIGENCIA EN REDES DE COMUNICACIONES

INTELIGENCIA EN REDES DE COMUNICACIONES INTELIGENCIA EN REDES DE COMUNICACIONES MINERÍA DE DATOS EN EL DEPORTE PROFESIONAL Jorge Carrasco Troitiño NIA 100029724 Grupo 91-5 Ingeniería Superior de Telecomunicación INTRODUCCIÓN: Las técnicas de

Más detalles

Introducción. Francisco J. Martín Mateos. Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla

Introducción. Francisco J. Martín Mateos. Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Francisco J. Martín Mateos Dpto. Ciencias de la Computación e Inteligencia Artificial Universidad de Sevilla Qué es la (KE)? Definición de Wikipedia: La es una disciplina cuyo objetivo es integrar conocimiento

Más detalles

SERVICIOS TELEMÁTICOS PARA GESTIÓN DEL TURISMO RURAL EN UNA COMARCA.

SERVICIOS TELEMÁTICOS PARA GESTIÓN DEL TURISMO RURAL EN UNA COMARCA. UNIVERSIDAD DE VALLADOLID ESCUELA UNIVERSITARIA POLITÉCNICA INGENIERO TÉCNICO INDUSTRIAL, ESPECIALIDAD EN ELECTRÓNICA INDUSTRIAL MEMORIA RESUMEN PROYECTO FIN DE CARRERA SERVICIOS TELEMÁTICOS PARA GESTIÓN

Más detalles

Ingeniería de Software I

Ingeniería de Software I Ingeniería de Software I Agenda Objetivo. Unidades de aprendizaje. Formas de evaluación. Bibliografía. 2 Datos del profesor Correo electrónico: egonzalez@upemor.edu.mx Asesorías Jueves de 11:00 a 13:00

Más detalles

Cómo interpretar las estadísticas?

Cómo interpretar las estadísticas? Cómo interpretar las estadísticas? AW Stats nos brinda la siguiente información: Número de visitas y número de visitantes únicos Duración de las visitas y últimas visitas Usuarios autenticados y últimos

Más detalles

Arquitectura para análisis de información. Zombi es una arquitectura que proporciona de manera integrada los componentes

Arquitectura para análisis de información. Zombi es una arquitectura que proporciona de manera integrada los componentes Capítulo 4 Arquitectura para análisis de información propuesta 4.1 Arquitectura Zombi es una arquitectura que proporciona de manera integrada los componentes necesarios para el análisis de información

Más detalles

Capítulo 3. Software para el Monitoreo de Redes

Capítulo 3. Software para el Monitoreo de Redes Capítulo 3 Software para el Monitoreo de Redes No basta saber, se debe también aplicar. No es suficiente querer, se debe también hacer. Johann Wolfgang Goethe Software para el Monitoreo de Redes El estilo

Más detalles

Introducción a la Minería de Datos (Data Mining)

Introducción a la Minería de Datos (Data Mining) a la Minería de Datos (Data Mining) IT-Nova Facultad de Ingeniería Informática y Telecomunicaciones Iván Amón Uribe, MSc Minería de Datos Diapositivas basadas parcialmente en material de Inteligencia Analítica

Más detalles

1. Instala servicios de configuración dinámica, describiendo sus características y aplicaciones.

1. Instala servicios de configuración dinámica, describiendo sus características y aplicaciones. Módulo Profesional: Servicios en Red. Código: 0227. Resultados de aprendizaje y criterios de evaluación. 1. Instala servicios de configuración dinámica, describiendo sus características y aplicaciones.

Más detalles

CONSTRUCCIÓN DE PORTALES

CONSTRUCCIÓN DE PORTALES Curso «Los portales de internet». Fac. Documentación. Universidad de Murcia. 29 CONSTRUCCIÓN DE PORTALES Juan Antonio Pastor Sánchez 1. Introducción La Gestión de los contenidos informativos de los portales

Más detalles

Crawlers - Arañas. UCR ECCI CI-2414 Recuperación de Información Prof. M.Sc. Kryscia Daviana Ramírez Benavides

Crawlers - Arañas. UCR ECCI CI-2414 Recuperación de Información Prof. M.Sc. Kryscia Daviana Ramírez Benavides Crawlers - Arañas UCR ECCI CI-2414 Recuperación de Información Prof. M.Sc. Kryscia Daviana Ramírez Benavides Qué es una Araña? También se le llama robot o araña (spider, crawler). Una araña (crawler) es

Más detalles

Minería de Datos JESÚS ANTONIO GONZÁLEZ BERNAL. Universidad UPP

Minería de Datos JESÚS ANTONIO GONZÁLEZ BERNAL. Universidad UPP Universidad Politécnica de Puebla UPP JESÚS ANTONIO GONZÁLEZ BERNAL 1 2 Evolución de la Tecnología BD 1960 s y antes Creación de las BD en archivos primitivos 1970 s hasta principios de los 1980 s BD Jerárquicas

Más detalles

Motores de Búsqueda Web Tarea Tema 2

Motores de Búsqueda Web Tarea Tema 2 Motores de Búsqueda Web Tarea Tema 2 71454586A Motores de Búsqueda Web Máster en Lenguajes y Sistemas Informáticos - Tecnologías del Lenguaje en la Web UNED 30/01/2011 Tarea Tema 2 Enunciado del ejercicio

Más detalles

MINERÍA DE DATOS Y DESCUBRIMIENTO DE CONOCIMIENTO (DATA MINING AND KNOWLEDGE DISCOVERY)

MINERÍA DE DATOS Y DESCUBRIMIENTO DE CONOCIMIENTO (DATA MINING AND KNOWLEDGE DISCOVERY) MINERÍA DE DATOS Y DESCUBRIMIENTO DE CONOCIMIENTO (DATA MINING AND KNOWLEDGE DISCOVERY) Autor: Lic. Manuel Ernesto Acosta Aguilera Entidad: Facultad de Economía, Universidad de La Habana Dirección: Edificio

Más detalles

LogICA en la UCM Luis Padilla

LogICA en la UCM Luis Padilla Luis Padilla UCM 14-junio 2010 Contenido de la presentación Software LogICA v3 Hardware Fuentes Tiempo real Reglas de correlación Forense Puntos fuertes Puntos débiles Mejoras Conclusiones 2 Software LogICA

Más detalles

Capítulo 1. Introducción. 1.1. Antecedentes

Capítulo 1. Introducción. 1.1. Antecedentes Capítulo 1. Introducción En este capítulo se presenta una descripción general del problema a investigar y el enfoque con el que se aborda. Se establece la necesidad de incorporar técnicas de análisis novedosas

Más detalles

Sistemas de Sensación Segmentación, Reconocimiento y Clasificación de Objetos. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides

Sistemas de Sensación Segmentación, Reconocimiento y Clasificación de Objetos. CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides Sistemas de Sensación Segmentación, Reconocimiento y Clasificación de Objetos CI-2657 Robótica M.Sc. Kryscia Ramírez Benavides Introducción La visión artificial, también conocida como visión por computador

Más detalles

Clasificación de Música por Genero Utilizando Redes Neuronales Artificiales. Elkin García, Germán Mancera, Jorge Pacheco

Clasificación de Música por Genero Utilizando Redes Neuronales Artificiales. Elkin García, Germán Mancera, Jorge Pacheco Clasificación de Música por Genero Utilizando Redes Neuronales Artificiales Elkin García, Germán Mancera, Jorge Pacheco Presentación Los autores han desarrollado un método de clasificación de música a

Más detalles

Trabajo Practico N 12

Trabajo Practico N 12 Trabajo Practico N 12 Minería de Datos CATEDRA: Actualidad Informática Ingeniería del Software III Titular: Mgter. Horacio Kuna JTP: Lic. Sergio Caballero Auxiliar: Yachesen Facundo CARRERAS: Analista

Más detalles

Aplicateca. Guía Rápida Pack Seguridad PYMES de McAfee

Aplicateca. Guía Rápida Pack Seguridad PYMES de McAfee Aplicateca Guía Rápida Pack Seguridad PYMES de McAfee Índice 1 Qué es Pack Seguridad PYMES?...2 1.1 Más detalles... 2 1.2 Qué ventajas ofrece Pack Seguridad PYMES?... 4 1.3 Cuáles son las principales funcionalidades

Más detalles

51 Int. CI.: G06F 17/30 (2006.01) TRADUCCIÓN DE PATENTE EUROPEA

51 Int. CI.: G06F 17/30 (2006.01) TRADUCCIÓN DE PATENTE EUROPEA 19 OFICINA ESPAÑOLA DE PATENTES Y MARCAS ESPAÑA 11 Número de publicación: 2 460 021 1 Int. CI.: G06F 17/ (06.01) 12 TRADUCCIÓN DE PATENTE EUROPEA T3 96 Fecha de presentación y número de la solicitud europea:

Más detalles

Monitor de Estadísticas de IDECanarias

Monitor de Estadísticas de IDECanarias Monitor de Estadísticas de IDECanarias Deepak P. Daswani 1, J. J. Rodrigo 1 y J. Rosales 2 1 Depto. de Ingeniería GRAFCAN. Cartográfica de Canarias, S.A C/ Panamá 34, Naves 8 y 9 Santa Cruz de Tenerife

Más detalles

SINDICACIÓN DE CONTENIDOS EN EL AYUNTAMIENTO DE MADRID

SINDICACIÓN DE CONTENIDOS EN EL AYUNTAMIENTO DE MADRID SINDICACIÓN DE CONTENIDOS EN EL AYUNTAMIENTO DE MADRID José Luis Cano Giner Mercedes Lozano Quirce Dirección General de Desarrollo de TI. Informática del Ayuntamiento de Madrid 1 / 10 1 INTRODUCCIÓN En

Más detalles

CUALIFICACIÓN SISTEMAS DE GESTIÓN DE INFORMACIÓN PROFESIONAL. Nivel 3. Versión 5 Situación RD 1201/2007 Actualización

CUALIFICACIÓN SISTEMAS DE GESTIÓN DE INFORMACIÓN PROFESIONAL. Nivel 3. Versión 5 Situación RD 1201/2007 Actualización Página 1 de 16 CUALIFICACIÓN SISTEMAS DE GESTIÓN DE INFORMACIÓN PROFESIONAL Familia Profesional Informática y Comunicaciones Nivel 3 Código IFC304_3 Versión 5 Situación RD 1201/2007 Actualización Competencia

Más detalles

Especificación de la secuencia de mensajes que se han de intercambiar. Especificación del formato de los datos en los mensajes.

Especificación de la secuencia de mensajes que se han de intercambiar. Especificación del formato de los datos en los mensajes. SISTEMAS DISTRIBUIDOS DE REDES 2.- MODELOS ORIENTADOS A OBJETOS DISTRIBUIDOS 2.1. Tecnologías de sistemas distribuidos Para la implementación de sistemas distribuidos se requiere de tener bien identificados

Más detalles

Ingeniería del conocimiento. Sesión 1 Por qué estudiar aprendizaje automático?

Ingeniería del conocimiento. Sesión 1 Por qué estudiar aprendizaje automático? Ingeniería del conocimiento Sesión 1 Por qué estudiar aprendizaje automático? 1 Agenda Qué vamos a ver en la asignatura? Para qué sirve todo esto? Cómo aprobar la asignatura? 2 Extracción del conocimiento

Más detalles

Minería de Datos. Universidad Politécnica de Victoria

Minería de Datos. Universidad Politécnica de Victoria Minería de Datos Universidad Politécnica de Victoria 1 Motivación Nuevas Necesidades del Análisis de Grandes Volúmenes de Datos El aumento del volumen y variedad de información que se encuentra informatizada

Más detalles

CAPÍTULO VI. RESULTADOS, PRUEBAS Y CONCLUSIONES DE LA APLICACIÓN.

CAPÍTULO VI. RESULTADOS, PRUEBAS Y CONCLUSIONES DE LA APLICACIÓN. CAPÍTULO VI. RESULTADOS, PRUEBAS Y CONCLUSIONES DE LA APLICACIÓN. Finalmente en este último capítulo se conocen los resultados, las pruebas y las conclusiones finales de la aplicación Web para el monitoreo

Más detalles

ARQUITECTURA ESCALABLE PARA LA DETECCIÓN DE PATRONES SECUENCIALES DIFUSOS EN MINERÍA DE DATOS CUANTITATIVA

ARQUITECTURA ESCALABLE PARA LA DETECCIÓN DE PATRONES SECUENCIALES DIFUSOS EN MINERÍA DE DATOS CUANTITATIVA ARQUITECTURA ESCALABLE PARA LA DETECCIÓN DE PATRONES SECUENCIALES DIFUSOS EN MINERÍA DE DATOS CUANTITATIVA Pablo F. Provasi 1 Lucio J. Kleisinger 1 Francisco R. Villatoro 2 1 Dpto. de Informática, Universidad

Más detalles

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING

Aprendizaje Automático y Data Mining. Bloque IV DATA MINING Aprendizaje Automático y Data Mining Bloque IV DATA MINING 1 Índice Definición y aplicaciones. Grupos de técnicas: Visualización. Verificación. Descubrimiento. Eficiencia computacional. Búsqueda de patrones

Más detalles

Análisis de Incidentes Informáticos usando Modelos de Asociación y Métodos del Análisis de Datos Multivariante.

Análisis de Incidentes Informáticos usando Modelos de Asociación y Métodos del Análisis de Datos Multivariante. Análisis de Incidentes Informáticos usando Modelos de Asociación y Métodos del Análisis de Datos Multivariante. García, Alejandro (1), Corso, Cynthia Lorena (2), Gibellini, Fabián (3), Rapallini, Marcos

Más detalles

Los servicios más comunes son como por ejemplo; el correo electrónico, la conexión remota, la transferencia de ficheros, noticias, etc.

Los servicios más comunes son como por ejemplo; el correo electrónico, la conexión remota, la transferencia de ficheros, noticias, etc. Página 1 BUSCADORES EN INTERNET Internet es una red de redes informáticas distribuidas por todo el mundo que intercambian información entre sí mediante protocolos 1 TCP/IP. Puede imaginarse Internet como

Más detalles

Aplicaciones e implicaciones de las bases de datos. Introducción a la Informática 2010-2011

Aplicaciones e implicaciones de las bases de datos. Introducción a la Informática 2010-2011 Aplicaciones e implicaciones de las bases de datos Introducción a la Informática 2010-2011 Objetivos Explicar qué es una base de datos y describir su estructura Identificar el tipo de problemas que pueden

Más detalles

ADMINISTRACIÓN Y PROGRAMACIÓN EN SIS- TEMAS DE PLANIFICACIÓN DE RECURSOS EMPRESARIALES Y DE GESTIÓN DE RELA- CIONES CON CLIENTES

ADMINISTRACIÓN Y PROGRAMACIÓN EN SIS- TEMAS DE PLANIFICACIÓN DE RECURSOS EMPRESARIALES Y DE GESTIÓN DE RELA- CIONES CON CLIENTES IFCT0610: ADMINISTRACIÓN Y PROGRAMACIÓN EN SIS- TEMAS DE PLANIFICACIÓN DE RECURSOS EMPRESARIALES Y DE GESTIÓN DE RELA- CIONES CON CLIENTES CÓDIGO ESPECIALIDAD C.P. PRESEN- CIALES TELEFORMA- CIÓN TOTALES

Más detalles

MANUAL DE USO DE LAS ESTADÍSTICAS GENERADAS POR WEBALIZER

MANUAL DE USO DE LAS ESTADÍSTICAS GENERADAS POR WEBALIZER MANUAL DE USO DE LAS ESTADÍSTICAS GENERADAS POR WEBALIZER Conceptos preliminares Acceso Archivos Páginas Visitas KBytes (de datos) Páginas de entrada y de salida Código de respuesta (HTML) Página Principal

Más detalles

Servicios en Red Duración: 147 horas

Servicios en Red Duración: 147 horas Servicios en Red Duración: 147 horas ORDEN de 7 de julio de 2009, por la que se desarrolla el currículo correspondiente al título de Técnico en Sistemas Microinformáticos y Redes. 1. Objetivos del Módulo

Más detalles

SISTEMA DE CONTROL DE PRESENCIA

SISTEMA DE CONTROL DE PRESENCIA SISTEMA DE CONTROL DE PRESENCIA 1 SISTEMA DE CONTROL DE PRESENCIA 1 1 GENERALIDADES DE LA APLICACIÓN 3 2 SEGURIDAD Y ACCESO AL PROGRAMA 7 2.1 Mantenimiento de usuarios 7 2.2 Perfiles 9 3 GESTIÓN DE EMPRESAS

Más detalles

APLICACIONES DE WEB MINING AL ANÁLISIS DEL COMPORTAMIENTO DE LOS USUARIOS EN SITIOS WEB CULTURALES

APLICACIONES DE WEB MINING AL ANÁLISIS DEL COMPORTAMIENTO DE LOS USUARIOS EN SITIOS WEB CULTURALES APLICACIONES DE WEB MINING AL ANÁLISIS DEL COMPORTAMIENTO DE LOS USUARIOS EN SITIOS WEB CULTURALES * Esther Hochsztain Raúl Ramírez Andrómaca Tasistro Carolina Asuaga Facultad de Ciencias Económicas y

Más detalles

Actualidad de la tecnología de detección de intrusos en las redes

Actualidad de la tecnología de detección de intrusos en las redes VIII Evento Internacional de Redes y Telecomunicaciones CITMATEL 2003 Actualidad de la tecnología de detección de intrusos en las redes MSc. Walter Baluja García walter@tesla.cujae.edu.cu Dpto. Telemática

Más detalles

1º SISTEMAS MICROINFORMÁTICOS Y REDES 1. CONTENIDOS MÍNIMOS PARA LA EVALUACIÓN POSITIVA

1º SISTEMAS MICROINFORMÁTICOS Y REDES 1. CONTENIDOS MÍNIMOS PARA LA EVALUACIÓN POSITIVA 2ª evaluación 1ª evaluación De toda la materia DEPARTAMENTO MATERIA CURSO INFORMÁTICA REDES LOCALES 1º SISTEMAS MICROINFORMÁTICOS Y REDES 1. CONTENIDOS MÍNIMOS PARA LA EVALUACIÓN POSITIVA - Se ha trabajado

Más detalles

forma de entrenar a la nuerona en su aprendizaje.

forma de entrenar a la nuerona en su aprendizaje. Sistemas expertos e Inteligencia Artificial,Guía5 1 Facultad : Ingeniería Escuela : Computación Asignatura: Sistemas expertos e Inteligencia Artificial Tema: SISTEMAS BASADOS EN CONOCIMIENTO. Objetivo

Más detalles

Mantenimiento de bases de datos alimentadas con páginas web

Mantenimiento de bases de datos alimentadas con páginas web Maestría en Informática PEDECIBA Mantenimiento de bases de datos alimentadas con páginas web Autor: Miriam Steiner Tutor: Dr. Alejandro Gutiérrez Facultad de Ingeniería, Universidad de la República Montevideo,

Más detalles

Guía rápida de instalación

Guía rápida de instalación Guía rápida de instalación Microsoft Windows Vista / XP / 2000 / 2003 / 2008 Protegemos su Mundo Digital ESET Smart Security le provee a su computadora protección de última generación contra códigos maliciosos.

Más detalles

Poder Judicial de Tucumán Año 2013

Poder Judicial de Tucumán Año 2013 Internet y Correo electrónico El presente instructivo corresponde a una guía básica para el manejo de los programas y para la adquisición de conceptos en relación a estos utilitarios. No obstante ello,

Más detalles

SAQQARA. Correlación avanzada y seguridad colaborativa_

SAQQARA. Correlación avanzada y seguridad colaborativa_ SAQQARA Correlación avanzada y seguridad colaborativa_ Tiene su seguridad 100% garantizada con su SIEM?_ Los SIEMs nos ayudan, pero su dependencia de los eventos y tecnologías, su reducida flexibilidad

Más detalles

ETL: Extractor de datos georreferenciados

ETL: Extractor de datos georreferenciados ETL: Extractor de datos georreferenciados Dr. Juan Pablo Díaz Ezcurdia Doctor Honoris Causa Suma Cum Laude Master en Telecomunicaciones Master en Gestión Educativa Coordinador de la comisión de CSIRT de

Más detalles

Manual de Webalizer. Sync-Intertainment

Manual de Webalizer. Sync-Intertainment Manual de Webalizer Sync-Intertainment ESTADISTICAS WEBALIZER Manual Webalizer Webalizer es un potente programa de estadísticas para su sito web, permite el análisis de los datos obtenidos del log de apache,

Más detalles

GUÍA Nro. 1 TECNOLOGÍA DE INTERNET. TIII PIII

GUÍA Nro. 1 TECNOLOGÍA DE INTERNET. TIII PIII GUÍA Nro. 1 TECNOLOGÍA DE INTERNET. TIII PIII GUIA DISPONIBLE EN: http://preparadorivan.blogspot.com/ - http://preparadormssi.50webs.com/inicio.html La World Wide Web o la Web, es una de las múltiples

Más detalles

Capitulo 3. Desarrollo del Software

Capitulo 3. Desarrollo del Software Capitulo 3 Desarrollo del Software 3.1 Análisis del sistema 3.1.1 Organización de la autopista virtual Para el presente proyecto se requiere de simular una autopista para que sirva de prueba. Dicha autopista

Más detalles

Tema 3: Bases de datos en Entorno Web

Tema 3: Bases de datos en Entorno Web Tema 3: Bases de datos en Entorno Web 1. Introducción. Un sistema de bases de datos proporciona un control centralizado de los datos. Esto contrasta con la situación que prevalece actualmente, donde a

Más detalles

Documentación científica

Documentación científica Documentación científica Unidad 4: Tecnologías de la información y la comunicación en la recuperación de la documentación científica Tema 11. Gestión de la información: las bases de datos bibliográficas

Más detalles

Servicio de estadísticas de Alojamiento Fecha de revisión: 19/09/2005

Servicio de estadísticas de Alojamiento Fecha de revisión: 19/09/2005 Servicio de estadísticas de Alojamiento Fecha de revisión: 19/09/2005 1. Acerca de este documento Este documento describe el servicio de estadísticas del que actualmente disfrutan algunas de las páginas

Más detalles

Sistemas Multimedia Distribuidos. Juan A. Sigüenza Departamento de Ingeniería Informática UAM

Sistemas Multimedia Distribuidos. Juan A. Sigüenza Departamento de Ingeniería Informática UAM Sistemas Multimedia Distribuidos Juan A. Sigüenza Departamento de Ingeniería Informática UAM Componentes de un Sistema Multimedia Distribuido Software de aplicación Almacenamiento de Documentos Almacenamiento

Más detalles

SUPLEMENTO EUROPASS AL DIPLOMA DE TÉCNICO SUPERIOR DE FORMACIÓN PROFESIONAL

SUPLEMENTO EUROPASS AL DIPLOMA DE TÉCNICO SUPERIOR DE FORMACIÓN PROFESIONAL SUPLEMENTO EUROPASS AL DIPLOMA DE TÉCNICO SUPERIOR DE FORMACIÓN PROFESIONAL DENOMINACIÓN DEL TÍTULO (ES) Técnico Superior en Administración de Sistemas Informáticos en Red TRADUCCIÓN DE LA DENOMINACION

Más detalles

Grupo de investigación en Minería de Datos http://mida.usal.es

Grupo de investigación en Minería de Datos http://mida.usal.es Departamento de Informática y Automática Postgrado en Informática y Automática MÁSTER EN SISTEMAS INTELIGENTES ASIGNATURAS Introducción a la Minería de Datos Minería Web María N. Moreno García http://avellano.usal.es/~mmoreno

Más detalles

PREPROCESADO DE DATOS PARA MINERIA DE DATOS

PREPROCESADO DE DATOS PARA MINERIA DE DATOS Ó 10.1007/978-3-319-02738-8-2. PREPROCESADO DE DATOS PARA MINERIA DE DATOS Miguel Cárdenas-Montes Frecuentemente las actividades de minería de datos suelen prestar poca atención a las actividades de procesado

Más detalles

4) Asegurar la cadena de abastecimiento, provisión just in time Usando soluciones de SCM basadas en e-business, las empresas pueden lograr:

4) Asegurar la cadena de abastecimiento, provisión just in time Usando soluciones de SCM basadas en e-business, las empresas pueden lograr: Pasos para crear una empresa. com 1) Definir el target de mercado hacia el cual habrá de apuntar la estrategia de venta, tipo de clientes a que quiere llegar y con qué productos. Investigación de mercado.

Más detalles

SIOM-Interfaz AM Manual de Usuario

SIOM-Interfaz AM Manual de Usuario SIOM-Interfaz AM Manual de Usuario Alfonso XI, 6 28014 Madrid F(+34) 91 524 03 96 www.omie.es Ref. MU_InterfazAM.docx Versión 4.0 Fecha: 2012-11-26 ÍNDICE 1 INTRODUCCIÓN 3 2 REQUISITOS PREVIOS 4 2.1 COMPONENTES

Más detalles

Apéndice A Herramientas utilizadas

Apéndice A Herramientas utilizadas Apéndice A Herramientas utilizadas A.1 Java Media Framework El Java Media Framework (JMF) es una interfaz para el desarrollo de aplicaciones (API) e incorpora el manejo de audio y video en el lenguaje

Más detalles

Por: Luis M. Jaramillo Efecternet. Que son los motores de búsqueda

Por: Luis M. Jaramillo Efecternet. Que son los motores de búsqueda Por: Luis M. Jaramillo Efecternet Que son los motores de búsqueda Los motores de búsqueda como Google, Yahoo, Bing, Altavista y otros, son grandes bases de datos que acopian información sobre una gran

Más detalles

Inteligencia aplicada a la protección de infraestructuras

Inteligencia aplicada a la protección de infraestructuras Inteligencia aplicada a la protección de infraestructuras En la última década, la mayor conciencia sobre las amenazas potenciales hacia la seguridad sobre las personas y las infraestructuras han hecho

Más detalles

Manual Intranet Área de Sistemas

Manual Intranet Área de Sistemas Manual Intranet Área de Sistemas ManualIntranet.doc Fecha de modificación 15/01/2007 9:59:00 Página 1 de 6 1. QUE ES Y COMO FUNCIONA UNA INTRANET El centro de una Intranet es la World Wide Web. En muchos

Más detalles

Los distintos navegadores para movernos por Internet

Los distintos navegadores para movernos por Internet www.solucionesenlaweb.com Los distintos navegadores para movernos por Internet Para que los usuarios puedan navegar por Internet y ver la información que más les interesa en cada momento, utilizamos los

Más detalles

Servidores web. Qué es un servidor web? Tipos de servidores. Lic. Lorena Bernis

Servidores web. Qué es un servidor web? Tipos de servidores. Lic. Lorena Bernis Servidores web Qué es un servidor web? Tipos de servidores. Lic. Lorena Bernis Servidores web 2 SERVIDOR En informática, un servidor es un tipo de software que realiza ciertas tareas en nombre de los usuarios.

Más detalles

Informe de trabajo de campo

Informe de trabajo de campo 3s_investigación Informe de trabajo de campo PROYECTO DE INVESTIGACIÓN: LIBRO BLANCO DEL TERCER SECTOR SOCIAL DE LA CAPV observatorio del tercer sector de bizkaia 24-11- 2014 1 Informe de trabajo de campo

Más detalles

HelpDesk Ficha de producto

HelpDesk Ficha de producto HelpDesk Ficha de producto Artologik HelpDesk es un programa de soporte y gestión de incidencias efectivo y fácil de usar. Artologik HelpDesk le permite gestionar eficazmente el soporte interno y externo

Más detalles

SIOM-Interfaz AM. Manual de Usuario. Operador del Mercado Ibérico de Energía - Polo Español Alfonso XI, 6 28014 Madrid. Versión 3.10 Fecha: 2010-09-17

SIOM-Interfaz AM. Manual de Usuario. Operador del Mercado Ibérico de Energía - Polo Español Alfonso XI, 6 28014 Madrid. Versión 3.10 Fecha: 2010-09-17 SIOM-Interfaz AM Manual de Usuario Operador del Mercado Ibérico de Energía - Polo Español Alfonso XI, 6 28014 Madrid Versión 3.10 Fecha: 2010-09-17 Ref : MU_InterfazAM_310.doc ÍNDICE 1 INTRODUCCIÓN...

Más detalles

Integración de Magento & Dynamics NAV

Integración de Magento & Dynamics NAV Integración de Magento & Dynamics NAV Integración de Magento & Dynamics NAV Integración de Magento & Dynamics NAV Presentamos una nueva solución que comunica la plataforma de Tiendas virtuales de Magento

Más detalles

Kaspersky Fraud Prevention for Endpoints

Kaspersky Fraud Prevention for Endpoints Kaspersky Fraud Prevention for Endpoints www.kaspersky.es KASPERSKY FRAUD PREVENTION 1. Formas de atacar a la banca online El primer motivo del cibercrimen es hacer dinero y las sofisticadas bandas criminales

Más detalles