Instrumentos ópticos para la observación astronómica

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Instrumentos ópticos para la observación astronómica"

Transcripción

1 Instrumentos ópticos para la observación astronómica Prismáticos o binoculares. Hay dos grandes familias: con prisma de Porro y con prisma Amici, los primeros son los clásicos que tiene forma de zigzag y son preferibles para la observación de puntos brillantes. En los de prisma Amici, que son más pequeños, aparecen destellos en los puntos muy luminosos. Es el instrumento más adecuado para iniciarse en el estudio del cielo nocturno, después de la observación a simple vista. Los prismáticos cuentan con una serie de ventajas como: - Facilidad de manejo. - Precio asequible. - Portabilidad. - Amplio campo de visión. - Visión binocular. Pero también cuentan con algunos inconvenientes: - En el mejor de los casos aportan pocos aumentos - Cuando se mantienen a pulso es difícil estabilizarlos. - Las manos sujetándolos hacia arriba se cansan pronto. CARACTERISTICAS Lo que se puede ver: - Satélites galileanos de Júpiter - Terminador lunar. - Cúmulos estelares amplios (M45) - Nebulosas brillantes y grandes. - Galaxias grandes (M31) - Campos estelares extensos (inmediaciones del centro galáctico. Se identifican por un número del tipo 7x50. donde 7 es el número de aumentos y 50 los mm de abertura (el diámetro de la lente grande por la que entra la luz). En este sentido es aconsejable huir de grandes aumentos siendo lo más adecuado alrededor de 10x50. Aperturas mayores de 50 mm dan mas luminosidad pero el peso y el precio suben exponencialmente. Conviene evitar prismáticos con zoom ya que contienen un número elevado de lentes y proporcionan imágenes de baja calidad con objetos poco luminosos. También hay que tener en cuenta el relieve ocular, si es alto, del orden de 18 a 20 mm permiten observar con gafas. El campo de visión no debería ser inferior a 5º (es la separación que hay entre las dos estrellas de la osa mayor que apuntan a la polar, la Luna llena tiene ½º y las cuatro ruedas del carro mayor 7º). Campos amplios con fuertes aumentos son incompatibles con imágenes de calidad y/o con precios asequibles. La pupila de salida PS = Diámetro objetivo (mm) / aumentos (50 /12 = 4,16 mm) Para la observación astronómica y de fauna, es muy conveniente el uso de un sistema de fijación, el más común es el trípode fotográfico, que junto con un útil que veden en tiendas especializadas para acoplar prismáticos y trípode y formar así una sencilla montura altazimutal. 1

2 Telescopios. Refractores: Usan lentes con distintas distancias focales. Los telescopios refractores poseen como objetivo una lente (o serie de lentes, la cantidad varía según el diseño y calidad) que de forma análoga al funcionamiento de una lupa, concentran la luz en el plano focal. Reflectores Newton: La parte fundamental es un espejo primario parabólico, otro espejo secundario plano y las lentes del ocular. Catadióptricos: (Schmidt-Cassegrain o Maksutov-Cassegrain) Cuentan con espejo principal, espejo hiperbólico secundario, lente correctora de entrada y lente ocular, ambos modelos se diferencian en el tipo de lente correctora. CARACTERÍSTICAS COMUNES. Abertura es el diámetro efectivo de la lente o espejo se da en milímetros La distancia focal es distancia comprendida entre el objetivo del telescopio (sea un reflector o refractor) y el plano focal del mismo. Esta medida varía según el diámetro del objetivo y del diseño del mismo (la curvatura del espejo, por ejemplo) y es un dato fundamental para determinar muchas características adicionales del equipo. La medida se suele dar en milímetros y sirve para calcular cosas como el aumento, la razón focal, etc. 2

3 La razón focal (F/D) es el índice de luminosidad del telescopio. Esta relacionada con la focal y el diámetro del objetivo. Cuanto mas corta es la distancia focal y mayor el objetivo, mas luminoso será el telescopio. Esta característica es aplicable en astrofotografía y no en la observación visual. Visualmente, si trabajamos con el mismo diámetro y los mismos aumentos, la imagen será igual de luminosa sin importar la razón focal del sistema óptico. Para calcular el F/D de un sistema solo hay que dividir la distancia focal por el diámetro del objetivo, todo en las mismas unidades: F/D = F [mm] / D [mm] Así, un telescopio de 2000 mm de focal (F), con 200 mm de diámetro (D) posee una razón focal de 10. Este valor sin unidades representa la luminosidad del telescopio para astrofotografía, donde se pueden reducir sustancialmente los tiempos de exposición si se utilizan sistemas de F/D bajos. En telescopios de diseño Schmidt-Cassegrain se suele utilizar, tanto para la observación visual como para la astrofotografía, un reductor de focal, que reduce el F/D de un equipo F/D 10 a solo F/D 6.3, obteniéndose imágenes mas luminosas. Los aumentos o ampliación no son la cantidad de veces mas grande que se observa un objeto, como suele creerse, sino que se refiere a como será observado estuviesemos a una distancia "tantas veces" mas cercana al objeto. Por ejemplo: si observamos a la Luna con 36 aumentos y sabemos que esta se localiza a unos kilómetros, nos aparecerá como si la viésemos desde /36= kilómetros. Para saber cuantos aumentos estamos utilizando debe conocerse la distancia focal de nuestro telescopio y la distancia focal del ocular utilizado. A menor distancia focal del ocular, mayor será la ampliación utilizada. Para calcular los aumentos debe dividirse la distancia focal del telescopio por la distancia focal del ocular: A = Ft [mm] / Fo [mm] Donde A son los aumentos, Ft la focal del telescopio y Fo la focal del ocular. Por ejemplo: si utilizamos un telescopio de 2000 milímetros de focal, con un ocular típico de 25 mm, la ampliación es de 2000 / 25 = 80 x. Pero existe un límite para los aumentos en un telescopio, que esta determinado por el diámetro del objetivo, a mayor diámetro mayor será la posibilidad de utilizar grandes ampliaciones. Si se sobrepasa el límite recomendado se hace imposible obtener imágenes nítidas y aparece la llamada "mancha de difracción", una aberración óptica producto del exceso de aumentos. Recordemos que a la hora de observar cualquier objeto lo importante no es tener un "primer plano" del mismo sino poder observarlo de la manera más nítida que nos permita el instrumento y las condiciones de observación. Es posible calcular el límite de ampliación teórico (en condiciones óptimas) para cualquier telescopio conociendo simplemente el diámetro del objetivo. Hay varias versiones de la fórmula, una dice que la máxima ampliación corresponde a 60 veces el diámetro del objetivo en pulgadas: Amax = 60 x D [pulgadas] 3

4 Donde Amax son los aumentos máximos teóricos, y D es el diámetro del objetivo en pulgadas. Por ejemplo: para un telescopio de 203 mm de diámetro [8 pulgadas] la máxima ampliación es de 60 x 8 = 480 x (correspondientes a un ocular de 4 mm) Otra formula propone multiplicar por 2.3 el diámetro del objetivo en milímetros: Amax = 2,3xD [mm] 2,3 x 203 = 466 x. Lo más importante para recordar es que los aumentos no son importantes, en la práctica es mucho mas apreciada la definición y la nitidez de la imagen. Y contando con margen de seguridad podemos resumir que Amax = 2 x D (mm) Resolución Se llama resolución (o poder separador) a la capacidad de un telescopio de mostrar de forma individual a dos objetos que se encuentran muy juntos, el usualmente llamado "límite de Dawes". Esta medida se da en segundos de arco y esta estrechamente ligada al diámetro del objetivo, dado que a mayor diámetro mayor es el poder separador del instrumento. Cuando se habla de que por ejemplo un telescopio tiene una resolución de 1 segundo de arco se esta refiriendo a que esa es la mínima separación que deben poseer dos objetos puntuales para ser observados de forma individual. Hay que destacar que no depende de la ampliación utilizada. Para calcular la resolución de un telescopio se utiliza la siguiente fórmula: R ["] = 4.56 / D [pulgadas] En donde R es la resolución en segundos de arco, D es la apertura (diámetro del objetivo) en pulgadas (1 pulgada = 2.54 cm), y 4.56 es una constante. Hay que notar que el resultado del cálculo es totalmente teórico, dado que el poder separador de cualquier instrumento instalado sobre la superficie terrestre está severamente influenciado por la atmósfera. Así, un telescopio de 203 mm de diámetro (8 pulgadas), posee una resolución teórica de 4,56 / 8 = 0,57 de arco, pero en la practica esta se ve disminuida muchas veces a mas de la mitad. Magnitud Límite La magnitud máxima a la cual aspiramos observar es uno de los factores a la hora de iniciar nuestras observaciones. Esta característica esta íntimamente ligada al diámetro del objetivo, a mayor diámetro mayor será el poder recolector de luz el cual permitirá observar objetos más débiles. Para calcularla se emplea la siguiente fórmula: MLIMITE = 7, Log D [cm] Donde MLIMITE es la magnitud límite, y D es el diámetro del objetivo en cm. Para seguir con el ejemplo: en un telescopio de 200 mm de objetivo la magnitud más baja observable será del orden de 7,5+5 x Log 20,3 = 14, en condiciones muy favorables, noche sin Luna y una atmósfera estable y transparente, o sea casi nunca. Hay que notar que el dato obtenido esta dado para magnitudes estelares (objetos puntuales) y no para objetos con superficie como galaxias, nebulosas, cúmulos globulares, etc., dado que en los catálogos el dato que aparece como magnitud está referido a la magnitud integrada del objeto, pero como posee superficie esta se distribuye en ella. Por eso, aunque una galaxia posea magnitud 10 probablemente no será observable porque su brillo se distribuye sobre su superficie. El cálculo es válido para estrellas, asteroides y ese tipo de objetos puntuales 4

5 (también con planetas lejanos como Urano y Neptuno). Las condiciones atmosféricas y de polución lumínica así como la agudeza visual del observador cambian sustancialmente la magnitud visual límite observable. Cielos oscuros y experiencia observacional llevan a alcanzar el verdadero límite del telescopio. Campo Visual Se denomina campo visual al tamaño de la porción de cielo observado a través del telescopio con cierto ocular y trabajando bajo cierta ampliación. Para calcularlo se deben conocer los aumentos provistos con el ocular utilizado (ver mas arriba) y el campo visual del ocular (un dato técnico que depende del tipo de ocular y es provisto por el fabricante) Por ejemplo: si utilizamos un ocular Plössl de 25 mm, el cual posee unos 50 grados de campo aparente en un telescopio de 2000 mm de focal la ampliación es de 2000 / 25 = 80x. Para calcular el campo visual se divide el campo aparente del ocular (50 grados en este caso) por la ampliación utilizada (80x), obteniéndose un campo real de 50 / 80 = 0,62º. Así podemos deducir que en esa configuración se podría observar perfectamente la Luna completa (que como promedio solo posee 0.5 grados de diámetro angular) Cr [grados] = Ca [grados] / A Donde Cr es el campo real en grados, Ca el campo aparente del ocular en grados y A es la ampliación que provee ese ocular. La formula es viable siempre y cuando no se estén utilizando multiplicadores de focal como los Barlows. La importancia de saber con cuanto campo cuenta nuestra observación radica más que nada en la hora de seleccionar el ocular adecuado. Para observar un cúmulo abierto laxo es conveniente utilizar oculares de campo amplio, con pocos aumentos. En observaciones planetarias o lunares sacrificar algo de campo visual para obtener mas ampliación es aceptable, sobre todo por que estos cuerpos son brillantes (recordar que al aumentar la ampliación se pierde algo de luz y algo de campo visual) Resumen de Fórmulas Razón Focal (f/d): f/d = F [mm] / D [mm] Aumentos: A = F [mm] / Foc [mm] Ampliación Máxima: Amax = 2,3 x D Campo Real: Cr [grados] = Ca [grados] / A Resolución: R ["] = 4,56 / D [pulgadas] Magnitud Límite: M = 7, Log D [cm] donde... f/d: Razón Focal, también se le suele llamar simplemente f D: Diámetro del objetivo A: Aumentos (Amax: Máximos Aumentos) F: Distancia Focal del telescopio Foc: Distancia Focal del ocular Cr: Campo Real Ca: Campo Aparente (ocular) 5

6 R: Resolución M: Magnitud MONTURAS Características. La montura de un telescopio es la parte mecánica que une el trípode o base al instrumento óptico. Existen varios tipos de monturas, algunas muy simples, otras más complejas, incluso con correctores electrónicos y dispositivos de localización y seguimiento muy sofisticados (sistemas GOTO) La montura tiene como objetivo proveer de movimiento controlado al telescopio. Es muy importante la firmeza y suavidad de los movimientos, para que la observación sea confortable y las astrofotografías perfectas. Las monturas se clasifican en dos grandes grupos, según los planos de referencia que utilicen (coordenadas). La más simple es la montura alt-acimutal, que realiza movimientos horizontales y verticales (acimut y altura, respectivamente). Este tipo de diseño lo traen incorporados los telescopios pequeños, por lo general telescopios refractores de uso terrestre, dado que su uso es simple, y también varios modelos de equipos automatizados (sistemas GOTO) Le sigue la montura ecuatorial, que utiliza como plano fundamental el ecuador celeste (proyección del ecuador terrestre). Este diseño usa las coordenadas ecuatoriales, ascensión recta (A.R. o R.A.) y declinación (Dec.), que son proyecciones de las coordenadas terrestres longitud y latitud, respectivamente, sobre la esfera celeste. Existen varios tipos de monturas basados en los dos diseños fundamentales anteriores. La montura Dobson por ejemplo (suelen llamarse telescopios dobsonianos a los que la poseen), es un modelo basado en la alt-acimutal, sin trípode y un telescopio de diseño newtoniano como instrumento de observación. Es muy utilizado por los que desean una gran apertura en reflectores, por ejemplo los que se construyen su propio espejo y no quieran tener grandes gastos en monturas sofisticadas. Monturas Alt-acimutales Las monturas alt-acimutales utilizan las coordenadas horizontales, las cuales son sistemas locales de posicionamiento. Se utilizan dos planos: el horizonte, dividido en grados (0º a 360º, desde el Norte hacia el Este) y la altura desde el horizonte hasta el cenit, también en grados (0º para el horizonte a 90º para el cenit). Para determinar estas posiciones los telescopios importantes con esta montura suelen traer incorporado círculos graduados, utilizados para ubicar objetos, o para saber la ubicación de estos. Cabe aclarar que en el hemisferio sur el acimut, en teoría, se mide desde el Sur, hacia el Oeste, en vez de medirse desde el Norte hacia el Este. Pero por cuestiones de uso es raro encontrar que así se haga, y todas las referencias y software muestran como 0º al Norte, sin importar en que hemisferio se esté observando. Un telescopio con montura alt-acimutal se mueve en estos planos, acimut para el plano horizontal y altura para el plano vertical. Al ser coordenadas locales, la altura y el acimut de un astro cambian continuamente (por el movimiento de rotación de la Tierra) y 6

7 también si se observa el mismo objeto desde otra localización: al cambiar el punto de observación, las coordenadas alt-acimutales de un objeto dado cambiarán. Existen algunos puntos del cielo que conservan siempre algunas de estas coordenadas en un sitio dado. El cenit (perpendicular al suelo) y el nadir (punto contrario al cenit), no poseen azimut y se localizan a 90º y -90º de altura respectivamente. Otros muy importantes son el polo elevado (sur o norte celeste, depende la ubicación del observador) y el ecuador celeste. Ambos son utilizados en las monturas ecuatoriales, con el sistema de coordenadas ecuatoriales celestes. Monturas Ecuatoriales La montura ecuatorial es la más utilizada por los aficionados, dado que su mayor ventaja es la posibilidad de seguir a los objetos celestes con sólo mover un eje. También puede ser motorizado, para que el seguimiento sea automático y los objetos se mantengan centrados en el campo visual. Es más compleja que la alt-acimutal porque es imprescindible que este correctamente alineada para que sea efectiva y porque en ocasiones los movimientos no son los mas naturales (como el vertical y el horizontal en el caso de las alt-acimutales). Los planos de movimiento en que se basa son el ecuador celeste (proyección del ecuador terrestre) y la declinación (distancia angular en grados desde el ecuador hasta el polo elevado) Aún así es la más recomendable para astronomía. Lo que hace una montura ecuatorial es compensar el movimiento de rotación de la Tierra con el eje de ascensión recta (plano paralelo al ecuador celeste, dividido en 24 horas, desde el punto del equinoccio de primavera hacia el este) Las monturas ecuatoriales utilizan el sistema ecuatorial de coordenadas. Este sistema es el presente en los catálogos de objetos y efemérides para representar la posición de ellos sobre la esfera celeste. Ya que el sistema ecuatorial no depende la ubicación geográfica del observador, las coordenadas son válidas en cualquier sitio de observación. De entre los modelos de monturas ecuatoriales se destaca la montura ecuatorial alemana, o de contrapesos. En este sistema el peso del telescopio es equilibrado por una pesa al final de una barra, perpendicular al eje de ascensión recta. Un proceso simple y necesario es equilibrar la montura, de tal forma que soltando los frenos el tubo del telescopio no se mueva demasiado en algún eje. Variando la distancia de la pesa sobre la barra se logra equilibrar el peso del telescopio en el eje de ascensión recta. Luego, variando la posición de agarre del telescopio a 7

8 la montura (moviendo el tuvo adelante y atrás aflojando las anillas) se logra equilibrar el eje de declinación. Este proceso es especialmente importante en los telescopios con motores en los ejes, para evitar que realicen esfuerzos innecesarios. Para comprobar el procedimiento pueden soltarse los frenos (agarrando el telescopio) y verificar que no se abalance hacia ningún lado. Diferentes pesos de diferentes accesorios pueden hacer variar ligeramente el equilibrio, pero por lo general no hay mayores efectos. En el caso de montar una cámara fotográfica o algún otro dispositivo mas pesado, es conveniente volver a equilibrar el sistema, sobre todo el eje de declinación, moviendo el tubo. Para mayor comodidad, también debe rotarse (de ser posible) el tuvo óptico sobre su eje, haciendo que el ocular y sistema de enfoque quede en una posición favorable para la observación. LOS OCULARES Conceptualmente, todo telescopio está compuesto sólo por dos partes ópticas: el objetivo y el ocular. La función del objetivo consiste en formar una imagen del astro observado tan detallada, luminosa y fiel como sea posible, mientras que el cometido del ocular consiste en conseguir que esta imagen resulte tan legible para la vista como sea posible, agrandándola convenientemente. En definitiva el ocular es una lente de aumento. Los oculares son la mitad del telescopio, su función es como la de una lupa. Características principales: - Según el diámetro del barril lo oculares pueden ser de: 0,96-1,25 y 2 - Según su diseño se distinguen estos tipos: Lente del ojo Lente de campo 35º 35º 40º 40º 52º 65º - Focal del ocular. Aumentos = Focal Telescopio / Focal Ocular - Recubrimientos ópticos. - Coated - Fully Coated - Multicoated - Fully multicoated El objetivo de estos recubrimientos es evitar imágenes fantasma y reflejos internos. 8

9 - Extracción pupilar o relieve ocular. Depende de la focal del ocular. - Pupila de salida. Depende del telecopio en el que se usa el ocular. PS = Focal del ocular / Razón focal del telescopio PS = Abertura del telescopio / aumentos - Campo aparente. Es el ángulo de visión que percibimos. El campo aparente viene dado por el diseño del ocular. - Campo real. Campo que realmente vemos. Campo real = Campo aparente / aumento - De qué depende el campo aparente? Del diafragma de campo. Tamaño del diafragma de campo = 2 x TAN (Campo aparente / 2) x focal ocular Campo real = (Diafragma de campo x 57,3º) / Focal del telescopio. 9

Instrumentos de observación astronómica

Instrumentos de observación astronómica Instrumentos de observación astronómica Prismáticos Instrumento ideal para iniciarse y completar nuestras observaciones a simple vista. Precio económico. Fáciles de usar, transportar y guardar. 1 A mayor

Más detalles

Información básica sobre el telescopio

Información básica sobre el telescopio Información básica sobre el telescopio ESPAÑOL Un telescopio es un instrumento que recoge y enfoca la luz. La naturaleza del diseño óptico determina cómo se enfoca la luz. Algunos telescopios, conocidos

Más detalles

La composición de una imagen, reglas

La composición de una imagen, reglas Componer una fotografía Saber mirar, algo que resulta difícil en fotografía pero a la vez indispensable para obtener buenas fotografías. Para ello se requiere sobre todo aprender a mirar. Para qué queremos

Más detalles

PRÁCTICA - I DETERMINACION DE LOS ELEMENTOS CARDINALES DE UN SISTEMA ÓPTICO

PRÁCTICA - I DETERMINACION DE LOS ELEMENTOS CARDINALES DE UN SISTEMA ÓPTICO PRÁCTICA - I DETERMINACION DE LOS ELEMENTOS CARDINALES DE UN SISTEMA ÓPTICO 1- OBJETIVO Y FUNDAMENTO TEORICO A efectos de cálculo, el comportamiento paraxial de un sistema óptico puede resumirse en el

Más detalles

Objetivos. 19 mm 24 mm Gran angular 28 mm 50 mm Lente normal 70 mm 105 mm 135 mm Teleobjetivo 200 mm 400 mm. Lente gran angular:

Objetivos. 19 mm 24 mm Gran angular 28 mm 50 mm Lente normal 70 mm 105 mm 135 mm Teleobjetivo 200 mm 400 mm. Lente gran angular: 26 27 Objetivos La cámara fotográfica básicamente está compuesta por dos partes: el cuerpo y la lente. La lente es mucho más importante que el cuerpo ya que definirá la calidad de la imagen. Los objetivos

Más detalles

Sistemas de coordenadas en la esfera celeste

Sistemas de coordenadas en la esfera celeste astronomia.org Documentación Sistemas de coordenadas en la esfera celeste Carlos Amengual Barcelona, 1989 Revisado febrero 2010 Este documento se encuentra en la dirección http://astronomia.org/doc/esfcel.pdf

Más detalles

LA ESFERA CELESTE. Atlas sosteniendo la esfera celeste

LA ESFERA CELESTE. Atlas sosteniendo la esfera celeste LA ESFERA CELESTE. Atlas sosteniendo la esfera celeste Introducción: A simple vista, el cielo parece una inmensa cúpula que nos cubre. Durante el día se presenta de color azul con el Sol y en ciertas ocasiones

Más detalles

TEMA 10: INSTRUMENTOS ÓPTICOS.

TEMA 10: INSTRUMENTOS ÓPTICOS. TEMA 10: INSTRUMENTOS ÓPTICOS. 10.1. El ojo humano. De forma muy simplificada, podemos considerar que el ojo humano está constituido por una lente (formada por la córnea y el cristalino) y una superficie

Más detalles

Cálculo de altura de formación de auroras.

Cálculo de altura de formación de auroras. Cálculo de altura de formación de auroras. Andrea Polo Padilla E X P E D I C I Ó N S H E L I O S C A R L A M E N D O Z A R U T A D E L A S E S T R E L L A S 2 0 1 5 I E S L u c a s M a r t í n E s p i

Más detalles

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica 1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:

Más detalles

LA TIERRA PARALELA DEL MEDIO MUNDO CERCA DE QUITO

LA TIERRA PARALELA DEL MEDIO MUNDO CERCA DE QUITO NETWORK FOR ASTRONOMY SCHOOL EDUCATION LA TIERRA PARALELA DEL MEDIO MUNDO CERCA DE QUITO Carme Alemany, Rosa M. Ros NASE Introducción Cerca de Quito esta la Mitad del Mundo cuya latitud es 0º 0 0. En este

Más detalles

Curso sobre el Sistema Solar: Lección nro. 1

Curso sobre el Sistema Solar: Lección nro. 1 Curso sobre el Sistema Solar: Lección nro. 1 Que es el Sistema Solar? a1) Aspecto del Firmamento: Idea General. Comenzaremos por considerar lo que es posible conocer del Sistema Solar sin la ayuda de ningún

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

Prácticas de Astronomía. 1 Descripción y características del Telescopio. 2 Localización de objetos.

Prácticas de Astronomía. 1 Descripción y características del Telescopio. 2 Localización de objetos. Prácticas de Astronomía. 1 Descripción y características del Telescopio. El telescopio de la Facultad de Ciencias tiene una apertura de D = 40cm, y una distancia focal de f = 180cm. El movimiento del telescopio

Más detalles

Que aditamentos tiene un telescopio?

Que aditamentos tiene un telescopio? Que aditamentos tiene un telescopio? Fuente: Claudio Martinez Astronomico@gmail.com Los telescopios tienen una serie de equipos a veces muy importantes para lograr explotar al máximo las capacidades que

Más detalles

MEDICION DE LA DISTANCIA ANGULAR EN ESTRELLAS DOBLES VISUALES UN PROCEDIMIENTO TRIGONOMÉTRICO

MEDICION DE LA DISTANCIA ANGULAR EN ESTRELLAS DOBLES VISUALES UN PROCEDIMIENTO TRIGONOMÉTRICO MEDICION DE LA DISTANCIA ANGULAR EN ESTRELLAS DOBLES VISUALES UN SOBRE LA MEDIDA DEL ARCO DE SEPARACIÓN DE DOS ESTRELLAS BINARIAS Cuando se trata de medir el arco comprendido entre la posición en la bóveda

Más detalles

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. XXII Jornada Universitaria de Desarrollo Científico. JUDC

Universidad Nacional Autónoma de Nicaragua UNAN-Managua. XXII Jornada Universitaria de Desarrollo Científico. JUDC Universidad Nacional Autónoma de Nicaragua UNAN-Managua XXII Jornada Universitaria de Desarrollo Científico. JUDC Observaciones Posibles con el Telescopio Reflector LX90 de 8 Realizado por: Tutor: Rosalba

Más detalles

LA FORMA DE LA TIERRA

LA FORMA DE LA TIERRA La Tierra Aprendemos también cosas sobre la Tierra mirando a la Luna y a las estrellas Por qué los griegos antiguos ya sabían que la Tierra era redonda? Qué movimientos presenta la Tierra? Por qué hay

Más detalles

UNIDAD 6 Fotogrametría

UNIDAD 6 Fotogrametría UNIDAD 6 Fotogrametría La fotogrametría es la técnica de obtener mediciones reales de un objeto por medio de la fotografía, tanto aérea como terrestre Las fotografías se las realiza con una cámara métrica

Más detalles

EL SISTEMA SOLAR. Los componentes del Sistema Solar

EL SISTEMA SOLAR. Los componentes del Sistema Solar Los componentes del Sistema Solar EL SISTEMA SOLAR El Sistema Solar está formado por el Sol y todos los astros que giran en tomo a él: planetas, satélites (que giran alrededor de los planetas), cometas

Más detalles

UNIDAD 6 PARA ENTENDER MEJOR LOS MAPAS

UNIDAD 6 PARA ENTENDER MEJOR LOS MAPAS UNIDAD 6 PARA ENTENDER MEJOR LOS MAPAS Interpretar y utilizar recursos y simbología utilizados en la asignatura de estudios sociales. Analizar con espíritu reflexivo y crítico las informaciones que se

Más detalles

EQAlign 1.0. Manual de usuario

EQAlign 1.0. Manual de usuario Manual de usuario 1 EQAlign versión 1.0 EQAlign es un programa que asiste en la puesta en estación de una montura ecuatorial por el método de J. Scheiner, haciendo los cálculos basándose en las mediciones

Más detalles

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO)

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) TEMA 1: REPRESENTACIÓN GRÁFICA 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) Son dos instrumentos de plástico transparente que se suelen usar de forma conjunta. La escuadra tiene forma de triángulo

Más detalles

Módulo II - PowerPoint

Módulo II - PowerPoint Módulo II - PowerPoint Índice Copiando diapositivas Menú Edición... 2 Copiando diapositivas utilizando la barra de herramientas... 3 Copiando diapositivas utilizando el menú contextual... 3 Copiando diapositivas

Más detalles

TIEMPO -DÍAS -HORAS CONCEPTO GENERAL DEL TIEMPO

TIEMPO -DÍAS -HORAS CONCEPTO GENERAL DEL TIEMPO TIEMPO -DÍAS -HORAS CONCEPTO GENERAL DEL TIEMPO Para medir el tiempo se necesita un fenómeno periódico, que se repita continuamente y con la misma fase, lo que sucede con fenómenos astronómicos basado

Más detalles

El Miriam 1 Por Carlos Taboada Megías MTC Dúrcal, Granada, España Correo electrónico: MclarenF1teams@hotmail.com

El Miriam 1 Por Carlos Taboada Megías MTC Dúrcal, Granada, España Correo electrónico: MclarenF1teams@hotmail.com El Miriam 1 Por Carlos Taboada Megías MTC Dúrcal, Granada, España Correo electrónico: MclarenF1teams@hotmail.com Para Miriam, para que si se oscurece la Tierra, tú puedas buscar la Luz en el cielo Introducción

Más detalles

También se encuentran dibujos de zonas más grandes, como este: (aunque no debería de llamarse plano, es un esquema o dibujo)

También se encuentran dibujos de zonas más grandes, como este: (aunque no debería de llamarse plano, es un esquema o dibujo) TIPOS DE REPRESENTACIÓN DEL ESPACIO GEOGRÁFICO El espacio que conocemos, habitamos, usamos para desarrollarnos, puede ser representado con la ayuda de varios instrumentos. Los hay desde los más simples

Más detalles

Prácticas de Laboratorio MICROSCOPIO ÓPTICO

Prácticas de Laboratorio MICROSCOPIO ÓPTICO Prácticas de Laboratorio EL MICROSCOPIO ÓPTICO Objeto de la práctica El objeto de la práctica es el uso del microscopio y las observaciones que se pueden hacer con el mismo. Materiales utilizados El microscopio.

Más detalles

Líneas Equipotenciales

Líneas Equipotenciales Líneas Equipotenciales A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En esta experiencia se estudia

Más detalles

EL MAPA TOPOGRÁFICO curva de nivel

EL MAPA TOPOGRÁFICO curva de nivel EL MAPA TOPOGRÁFICO El mapa topográfico es una representación de la superficie terrestre mediante curvas de nivel que tiene como finalidad mostrar las variaciones del relieve de la Tierra. Además de las

Más detalles

Programa Tracker : Cómo generar Vectores y sumarlos

Programa Tracker : Cómo generar Vectores y sumarlos Programa Tracker : Cómo generar Vectores y sumarlos Esta guía explica cómo usar vectores, la posibilidad de sumarlos, presentar los resultados directamente en pantalla y compararlos de forma gráfica y

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

TEMA 18. Sistemas de Baja Visión para cerca: Microscopios y Lupas.

TEMA 18. Sistemas de Baja Visión para cerca: Microscopios y Lupas. TEMA 18. Sistemas de Baja Visión para cerca: Microscopios y Lupas. Microscopios Se denomina microscopio en rehabilitación visual a una lente muy positiva o combinación de lentes montadas en gafa, para

Más detalles

Movimiento de los Planetas

Movimiento de los Planetas Movimiento de los Planetas Cosmología Geocéntrica Copérnico: Cosmología Heliocéntrica Galileo Galilei Tycho Brahe y Johannes Kepler Leyes de Kepler Principios de la Mecánica L. Infante 1 Nicholas Copernicus

Más detalles

Consultas y Dudas frecuentes sobre ÓPTICA Y OFTALMOLOGÍA

Consultas y Dudas frecuentes sobre ÓPTICA Y OFTALMOLOGÍA Consultas y Dudas frecuentes sobre ÓPTICA Y OFTALMOLOGÍA Por qué se acerca tanto mi hijo cuando lee? Hasta que no realicemos un examen optométrico completo, no sabremos si se acerca al papel porque no

Más detalles

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa:

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa: Página 90 5 LA PARÁBOLA 5.1 DEFINICIONES La parábola es el lugar geométrico 4 de todos los puntos cuyas distancias a una recta fija, llamada, y a un punto fijo, llamado foco, son iguales entre sí. Hay

Más detalles

MANUAL DE USUARIO DuoScope Swivel / VX

MANUAL DE USUARIO DuoScope Swivel / VX MANUAL DE USUARIO DuoScope Swivel / VX BIENVENIDA Gracias por comprar el nuevo DuoScope! Estamos convencidos de que este nuevo accesorio le permitirá disfrutar mucho más del apasionante mundo de la Astronomía.

Más detalles

Guía 1: Sistemas de referencia y coordenadas ArcGIS 10 o ArcGis 10.1

Guía 1: Sistemas de referencia y coordenadas ArcGIS 10 o ArcGis 10.1 Guía 1: Sistemas de referencia y coordenadas ArcGIS 10 o ArcGis 10.1 La localización de los lugares en la superficie terrestre y su representación sobre un plano requieren de dos procesos distintos: en

Más detalles

MECANISMOS. Veamos los distintos tipos de mecanismos que vamos a estudiar uno a uno.

MECANISMOS. Veamos los distintos tipos de mecanismos que vamos a estudiar uno a uno. MECANISMOS En tecnología, cuando se diseña una máquina, lo más normal es que esté movida por un motor, que tiene un movimiento circular, pero a veces no es ese el tipo de movimiento que necesitamos. En

Más detalles

MICRÓFONOS. Conceptos básicos

MICRÓFONOS. Conceptos básicos MICRÓFONOS Conceptos básicos Un micrófono es un dispositivo capaz de convertir la energía acústica en energía eléctrica. El valor de la tensión de la energía eléctrica es proporcional a la presión ejercida

Más detalles

Taller de Astronomía Observacional 2014

Taller de Astronomía Observacional 2014 Taller de Astronomía Observacional 2014 Temas que se tratan en esta presentación: - Observación visual sin instrumentos. - Observación visual con instrumentos. - Observación con cámaras fotográficas. -

Más detalles

3.3.6 Introducción a los Instrumentos Ópticos

3.3.6 Introducción a los Instrumentos Ópticos GUÍA DE ESTUDIO Complemento a la Unidad 3.3 LUZ 3.3.6 Introducción a los Instrumentos Ópticos. Instrumentos de Lente.. Imágenes Reales... El Proyector Opera con el objeto (diapositiva) muy cerca de la

Más detalles

RELOJES DE SOL. 1. Movimiento diurno del Sol. 2. Variaciones anuales del movimiento del Sol

RELOJES DE SOL. 1. Movimiento diurno del Sol. 2. Variaciones anuales del movimiento del Sol 1. Movimiento diurno del Sol RELOJES DE SOL Sin necesidad de utilizar instrumento alguno, todo el mundo sabe que el Sol, por la mañana sale por algún lugar hacia el Este, que hacia el mediodía está en

Más detalles

Astronomía de Posición. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 100

Astronomía de Posición. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 100 Astronomía de Posición. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 100 Índice. 1. Repaso de Trigonometría Esférica. 2. Coordenadas Horizontales: (A,a). 3. Coordenadas Ecuatoriales:

Más detalles

Figura 5.1 a: Acimut de una dirección de mira

Figura 5.1 a: Acimut de una dirección de mira Tema N 5 Determinación del Acimut de una dirección 5.1- Acimut de una dirección El acimut de una línea cualquiera es el ángulo que forma el meridiano del lugar con el plano vertical que contiene dicha

Más detalles

Trabajo Práctico III Consigna:

Trabajo Práctico III Consigna: Trabajo Práctico III Consigna: Realizar fotografías con tema libre, teniendo en cuenta las siguientes pautas: 1. Fotografiar un sujeto en movimiento para que aparezca completamente nítido y ( congelado

Más detalles

MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO

MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO BOLILLA 5 MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO Sistemas de referencia Inerciales y No-inerciales En la bolilla anterior vimos que las leyes de Newton se cumplían en marcos de referencia inercial.

Más detalles

INDICE INTRODUCCIÓN. CONCEPTOS FUNDAMENTALES. PALANCAS. POLEAS. RUEDA Y EJE. Transmisiones de Banda Simples. Engranajes

INDICE INTRODUCCIÓN. CONCEPTOS FUNDAMENTALES. PALANCAS. POLEAS. RUEDA Y EJE. Transmisiones de Banda Simples. Engranajes Departamento de Física Universidad de Jaén INTRODUCCIÓN A LAS MÁQUINAS SIMPLES Y COMPUESTAS Aplicación a la Ingeniería de los capítulos del temario de la asignatura FUNDAMENTOS FÍSICOS I (I.T.MINAS): Tema

Más detalles

catálogo de telescopios

catálogo de telescopios catálogo de telescopios catálogo de telescopios Navigator View Telescopios terrestres de gran calidad y presentación. Observación de aves, aficionados a la naturaleza, tiro olímpico, tiro con arco... 15456

Más detalles

El entrenamiento en Baja Visión II: Visión Lejana

El entrenamiento en Baja Visión II: Visión Lejana El entrenamiento en Baja Visión II: Visión Lejana INTRODUCCIÓN Las únicas ayudas ópticas que posibilitan la realización de tareas en distancia lejana son los telescopios. Existen diferentes tipos, que

Más detalles

CIENCIAS SOCIALES 5º EL UNIVERSO

CIENCIAS SOCIALES 5º EL UNIVERSO EL UNIVERSO Vas aprender a. Componentes y características del Universo. b. El sistema solar. Los planetas. c. El Planeta Tierra: representación y sus coordenadas. e. Las fases Lunares. Movimientos. INTRODUCCIÓN.

Más detalles

Juan Carlos Casado www.skylook.net

Juan Carlos Casado www.skylook.net Fotografiando el infinito Introducción a la Astrofotografía www.skylook.net En esta charla realizaremos una aproximación a la Astrofotografía sin recurrir a grandes medios instrumentales, pero fijando

Más detalles

10 Anexo A: Aspectos Básicos de la Radiación Solar

10 Anexo A: Aspectos Básicos de la Radiación Solar 10 Anexo A: Aspectos Básicos de la Radiación Solar 10.1 Relaciones astronómicas Tierra-Sol La literatura solar contiene una gran variedad de sistemas, métodos y ecuaciones para establecer las relaciones

Más detalles

CAPÍTULO 1 PRIMEROS PASOS

CAPÍTULO 1 PRIMEROS PASOS PRIMEROS PASOS INTRODUCCIÓN Seguro que alguna vez te has preguntado por qué los colores y la gama tonal de la imagen que estás viendo en el monitor no salen igual en las copias que te entrega el laboratorio.

Más detalles

EL SISTEMA SOLAR INTRODUCCION El Sistema Solar es el sistema planetario en el que se encuentra la Tierra. Consiste en un grupo de objetos astronómicos que giran en una órbita, por efectos de la gravedad,

Más detalles

Anexo I. La visión. El proceso de la visión. 1. Introducción. 2. La visión

Anexo I. La visión. El proceso de la visión. 1. Introducción. 2. La visión Anexo I. La visión El proceso de la visión 1. Introducción El ojo humano ha sufrido grandes modificaciones a través de los tiempos como consecuencia de las diferentes formas de vida, desde cuando se usaba

Más detalles

Capítulo 1 Introducción y análisis de sistemas CNC

Capítulo 1 Introducción y análisis de sistemas CNC Capítulo 1 Introducción y análisis de sistemas CNC INTRODUCCIÓN La evolución del control numérico ha producido la introducción del mismo en grandes, medianas, familiares y pequeñas empresas, lo que ha

Más detalles

TEMA: LA LUZ. - Concepto - Tipos - Leyes. - Concepto. - Espejos. - Concepto. - Índice de refracción. - Lentes. - Prisma óptico

TEMA: LA LUZ. - Concepto - Tipos - Leyes. - Concepto. - Espejos. - Concepto. - Índice de refracción. - Lentes. - Prisma óptico TEMA: LA LUZ LA LUZ - Concepto - Características - Propagación - La materia y la luz - Instrumentos ópticos -Reflexión - Refracción - Concepto - Tipos - Leyes - Espejos - Concepto - Índice de refracción

Más detalles

Tema 1.1 La bóveda celeste. Fundamentos geométricos.

Tema 1.1 La bóveda celeste. Fundamentos geométricos. Módulo 1. La bóveda celeste. Astronomía observacional. Tema 1.1 La bóveda celeste. Fundamentos geométricos. Objetivos del tema: En este tema aprenderemos los fundamentos geométricos del movimiento de la

Más detalles

1 Introducción Elementos de la fotografía Qué es una cámara de fotos Tipos de cámaras

1 Introducción Elementos de la fotografía Qué es una cámara de fotos Tipos de cámaras 1 Introducción Elementos de la fotografía Qué es una cámara de fotos Tipos de cámaras Compactas, Intermedias o bridge, Réflex o DSLR, Medio formato Visores, Pantalla LCD 2 - Hacer fotos Manejo de la cámara

Más detalles

Construimos un CUADRANTE y aprendemos a utilizarlo.

Construimos un CUADRANTE y aprendemos a utilizarlo. Construimos un CUADRANTE y aprendemos a utilizarlo. El cuadrante es un sencillo instrumento que sirve para medir, generalmente, ángulos de elevación. Fue utilizado, sobretodo, en los comienzos de la navegación

Más detalles

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION

CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION CAPITULO II CARACTERISTICAS DE LOS INSTRUMENTOS DE MEDICION Como hemos dicho anteriormente, los instrumentos de medición hacen posible la observación de los fenómenos eléctricos y su cuantificación. Ahora

Más detalles

Temas de electricidad II

Temas de electricidad II Temas de electricidad II CAMBIANDO MATERIALES Ahora volvemos al circuito patrón ya usado. Tal como se indica en la figura, conecte un hilo de cobre y luego uno de níquel-cromo. Qué ocurre con el brillo

Más detalles

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO

LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO LEYES DE CONSERVACIÓN: ENERGÍA Y MOMENTO 1. Trabajo mecánico y energía. El trabajo, tal y como se define físicamente, es una magnitud diferente de lo que se entiende sensorialmente por trabajo. Trabajo

Más detalles

Tutorial de Introducción a la Informática Tema 0 Windows. Windows. 1. Objetivos

Tutorial de Introducción a la Informática Tema 0 Windows. Windows. 1. Objetivos 1. Objetivos Este tema de introducción es el primero que debe seguir un alumno para asegurar que conoce los principios básicos de informática, como el manejo elemental del ratón y el teclado para gestionar

Más detalles

FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA. CAPÍTULO 1. Propiedades de la radiación electromagnética

FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA. CAPÍTULO 1. Propiedades de la radiación electromagnética Página principal El proyecto y sus objetivos Cómo participar Cursos de radioastronomía Material Novedades FUNDAMENTOS FÍSICOS DE LA RADIOASTRONOMÍA Índice Introducción Capítulo 1 Capítulo 2 Capítulo 3

Más detalles

Módulo II - Word. Eliminar caracteres... 2. Selección de texto... 2. Selección de una palabra... 4. Selección de varias palabras...

Módulo II - Word. Eliminar caracteres... 2. Selección de texto... 2. Selección de una palabra... 4. Selección de varias palabras... Módulo II - Word Índice Eliminar caracteres... 2 Selección de texto... 2 Selección de una palabra... 4 Selección de varias palabras... 4 Selección de una frase... 5 Selección de un párrafo... 6 Configuración

Más detalles

Nuestro Sistema Solar

Nuestro Sistema Solar 03 Lección Refuerzo Ciencias Nuestro Sistema Solar APRENDO JUGANDO Competencia Comprende con perspectiva científica el universo, algunos de sus componentes y el movimiento de rotación y traslación de los

Más detalles

El proyecto Eratóstenes. Guía para el estudiante.

El proyecto Eratóstenes. Guía para el estudiante. El proyecto Eratóstenes. Guía para el estudiante. En esta actividad vas a trabajar en colaboración con estudiantes de otra escuela para medir el radio de la Tierra. Vas a usar los mismos métodos y principios

Más detalles

Potencial eléctrico. du = - F dl

Potencial eléctrico. du = - F dl Introducción Como la fuerza gravitatoria, la fuerza eléctrica es conservativa. Existe una función energía potencial asociada con la fuerza eléctrica. Como veremos, la energía potencial asociada a una partícula

Más detalles

TEMA 4 INTRODUCCIÓN AL ANÁLISIS VOLUMÉTRICO

TEMA 4 INTRODUCCIÓN AL ANÁLISIS VOLUMÉTRICO TEMA 4 INTRODUCCIÓN AL ANÁLISIS VOLUMÉTRICO Las valoraciones se emplean extensivamente en Química Analítica para la cuantificación de diversas especies químicas. En este tema se describen los principios

Más detalles

Ventajas de iluminación natural

Ventajas de iluminación natural Deslumbramiento El deslumbramiento es una sensación molesta que se produce cuando la luminancia de un objeto es mucho mayor que la de su entorno. Es lo que ocurre cuando miramos directamente una bombilla

Más detalles

requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados.

requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados. 2.1 Vectores. 2.1.1 Introducción. Cuando queremos referirnos al tiempo que demanda un suceso determinado, nos basta con una magnitud (se demoró 3 segundos, saltó durante 1 minuto, volverá el próximo año,

Más detalles

ACTIVIDADES DE PROFUNDIZACIÓN

ACTIVIDADES DE PROFUNDIZACIÓN ACTIVIDADES DE PROFUNDIZACIÓN LEE CON ATENCIÓN Recordamos que el Sistema Solar está formado por el Sol, los planetas y sus satélites, asteroides y cometas, pero que hay más allá de nuestro Sistema Solar?

Más detalles

El Sistema Solar. El Sistema Solar

El Sistema Solar. El Sistema Solar A S T R O N O M Í A El Sistema Solar El Sistema Solar A S T R O N O M Í A Desde muy antiguo se conoce la distinción entre estrellas y planetas, dado que estos últimos tienen un movimiento propio distinto

Más detalles

TALLER DE ASTRONOMIA

TALLER DE ASTRONOMIA TALLER DE ASTRONOMIA Es necesario levantar al cielo los ojos para poder ver la tierra Francisco José de Caldas Desde la antigüedad el hombre ha construido monumentos y observatorios astronómicos para seguir

Más detalles

DISERTACION GUSTAVO BRAMBATI

DISERTACION GUSTAVO BRAMBATI DISERTACION GUSTAVO BRAMBATI Buenos días a todos, gracias Raúl por la participación. Voy a comentar, voy a tratar de darle un enfoque técnico a la problemática del alcohol, algo que obviamente tiene una

Más detalles

Conclusiones. Particionado Consciente de los Datos

Conclusiones. Particionado Consciente de los Datos Capítulo 6 Conclusiones Una de las principales conclusiones que se extraen de esta tesis es que para que un algoritmo de ordenación sea el más rápido para cualquier conjunto de datos a ordenar, debe ser

Más detalles

PROBLEMAS DE ÓPTICA RESUELTOS

PROBLEMAS DE ÓPTICA RESUELTOS PROBLEMAS DE ÓPTICA RESUELTOS PROBLEMAS DEL CURSO En el fondo de un recipiente con agua de 1 m de profundidad hay un foco que emite luz en todas las direcciones. Si en la vertical del foco y en la superficie

Más detalles

Funciones, x, y, gráficos

Funciones, x, y, gráficos Funciones, x, y, gráficos Vamos a ver los siguientes temas: funciones, definición, dominio, codominio, imágenes, gráficos, y algo más. Recordemos el concepto de función: Una función es una relación entre

Más detalles

CONOCE TU TELESCOPIO II EDICIÓN

CONOCE TU TELESCOPIO II EDICIÓN CONOCE TU TELESCOPIO II EDICIÓN?? OBSERVATORIO ASTRONÓMICO DE GUIRGUILLANO II CURSO TEÓRICO - PRÁCTICO DE MANEJO DE TELESCOPIOS Guirguillano 26 de Abril del 2014 OBJETIVO DEL CURSO JuanJo Salamero Cuando

Más detalles

CAPÍTULO 7 2. SUBEXPOSICIÓN, EXPOSICIÓN CORRECTA Y SOBREEXPOSICIÓN

CAPÍTULO 7 2. SUBEXPOSICIÓN, EXPOSICIÓN CORRECTA Y SOBREEXPOSICIÓN CAPÍTULO 7 EL TRIÁNGULO DE LA EXPOSICIÓN 1. QUÉ ES LA EXPOSICIÓN? La exposición es la acción de someter un elemento fotosensible (en cámaras digitales el sensor) a la acción de la luz, que, como ya vimos,

Más detalles

RENDIMIENTO DE: CARGADOR FRONTAL Y RETROEXCAVADORA

RENDIMIENTO DE: CARGADOR FRONTAL Y RETROEXCAVADORA RENDIMIENTO DE: CARGADOR FRONTAL Y RETROEXCAVADORA Algunos equipos de carga son el cargador frontal, retroexcavadora, pala hidráulica, pala mecánica, draga y otras, que en ocasiones, también se utilizan

Más detalles

LA FOTOGRAFÍA CLÍNICA EN ODONTOLOGIA

LA FOTOGRAFÍA CLÍNICA EN ODONTOLOGIA LA FOTOGRAFÍA CLÍNICA EN ODONTOLOGIA Manuel Saura Pérez Doctor en Medicina y Cirugía Especialista en Estomatología Dentista de Área de Atención Primaria. Servicio Murciano de Salud Profesor Asociado de

Más detalles

TEMA 3: EN QUÉ CONSISTE?

TEMA 3: EN QUÉ CONSISTE? Módulo 7 Sesión 3 5/16 TEMA 3: EN QUÉ CONSISTE? La metodología seguida para aplicar correctamente la técnica de RGT se basa en cuatro fases (Figura 1). En la primera de ellas, se seleccionan los elementos

Más detalles

Cómo funciona un control proporcional derivativo (PD)?

Cómo funciona un control proporcional derivativo (PD)? Cómo funciona un control proporcional derivativo (PD)? Adaptación del artículo: http://iesseveroochoa.edu.gva.es/severobot/2011/01/29/como-funciona-un-controlador-pd/ para el El tren de tracción diferencial

Más detalles

GEOMETRÍA DESCRIPTIVA SISTEMAS DE PROYECCIÓN

GEOMETRÍA DESCRIPTIVA SISTEMAS DE PROYECCIÓN GEOMETRÍA DESCRIPTIVA La Geometría Descriptiva es la ciencia de representación gráfica, sobre superficies bidimensionales, de los problemas del espacio donde intervengan, puntos, líneas y planos. La Geometría

Más detalles

Adaptación al NPGC. Introducción. NPGC.doc. Qué cambios hay en el NPGC? Telf.: 93.410.92.92 Fax.: 93.419.86.49 e-mail:atcliente@websie.

Adaptación al NPGC. Introducción. NPGC.doc. Qué cambios hay en el NPGC? Telf.: 93.410.92.92 Fax.: 93.419.86.49 e-mail:atcliente@websie. Adaptación al NPGC Introducción Nexus 620, ya recoge el Nuevo Plan General Contable, que entrará en vigor el 1 de Enero de 2008. Este documento mostrará que debemos hacer a partir de esa fecha, según nuestra

Más detalles

Medias Móviles: Señales para invertir en la Bolsa

Medias Móviles: Señales para invertir en la Bolsa www.gacetafinanciera.com Medias Móviles: Señales para invertir en la Bolsa Juan P López..www.futuros.com Las medias móviles continúan siendo una herramienta básica en lo que se refiere a determinar tendencias

Más detalles

5.1. Organizar los roles

5.1. Organizar los roles Marco de intervención con personas en grave situación de exclusión social 5 Organización de la acción 5.1. Organizar los roles Parece que el modelo que vamos perfilando hace emerger un rol central de acompañamiento

Más detalles

**NOTA** las partes tachadas todavía no están escritas, se ira actualizando poco a poco el documento

**NOTA** las partes tachadas todavía no están escritas, se ira actualizando poco a poco el documento Simple tutorial we riseup Pequeña introducción a We Riseup #Qué es we.riseup o Crabgrass? #Como esta estructurado We.riseup? Lo Esencial Unirse a un grupo Metodo 1 Metodo 2 Crear contenido #1 ) Crear la

Más detalles

PRÁCTICAS DE GESTIÓN GANADERA:

PRÁCTICAS DE GESTIÓN GANADERA: PRÁCTICAS DE GESTIÓN GANADERA: MANEJO DE HOJA DE CÁCULO (EXCEL) 1. INTRODUCCIÓN AL MANEJO DE EXCEL La pantalla del programa consta de una barra de herramientas principal y de una amplia cuadrícula compuesta

Más detalles

A S T R O N O M Í A T e l u u rr ii oo

A S T R O N O M Í A T e l u u rr ii oo A S T R O N O M Í A Telurio Telurio A S T R O N O M Í A Se trata de un módulo de gran utilidad para estudiar los movimientos relativos de los tres astros que protagonizan nuestra vida diaria: el Sol, la

Más detalles

Hemianopsia homónima

Hemianopsia homónima Hemianopsia homónima Su médico cree que Ud tiene una hemianopsia homónima (HH), la cual se define como la ausencia de la visión hacia un lado del campo visual en ambos ojos. El daño que causó este problema

Más detalles

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales.

Información importante. 1. El potencial eléctrico. Preuniversitario Solidario. 1.1. Superficies equipotenciales. 1.1 Superficies equipotenciales. Preuniversitario Solidario Información importante. Aprendizajes esperados: Es guía constituye una herramienta que usted debe manejar para poder comprender los conceptos

Más detalles

DESAFÍOS DE LA INGENIERIA PRIMER TRABAJO BIOMÍMESIS. El Camaleón. Nombre: Gonzalo Barros Mora Desafíos de la Ingenieria Grupo 67 N de alumno: 14636182

DESAFÍOS DE LA INGENIERIA PRIMER TRABAJO BIOMÍMESIS. El Camaleón. Nombre: Gonzalo Barros Mora Desafíos de la Ingenieria Grupo 67 N de alumno: 14636182 DESAFÍOS DE LA INGENIERIA PRIMER TRABAJO BIOMÍMESIS El Camaleón Nombre: Gonzalo Barros Mora Desafíos de la Ingenieria Grupo 67 N de alumno: 14636182 Contexto del ser vivo El camaleón es un animal fascinante

Más detalles

El día más corto del año, la Ecuación del Tiempo, la Analema y otros animales

El día más corto del año, la Ecuación del Tiempo, la Analema y otros animales El día más corto del año, la Ecuación del Tiempo, la Analema y otros animales By Luis Mederos Como todos sabemos, alrededor del 21 de Diciembre se produce el solsticio de invierno (en el hemisferio norte).

Más detalles

FUNCIONES DE PROPORCIONALIDAD

FUNCIONES DE PROPORCIONALIDAD UNIDAD 2 PROPORCIONALIDAD. FUNCIONES DE PROPORCIONALIDAD 1.- INTRODUCCIÓN Continuamente hacemos uso de las magnitudes físicas cuando nos referimos a diversas situaciones como medida de distancias (longitud),

Más detalles

2. ABRIR UN NUEVO DOCUMENTO DE TRABAJO

2. ABRIR UN NUEVO DOCUMENTO DE TRABAJO 2. ABRIR UN NUEVO DOCUMENTO DE TRABAJO 18 Introducción Hasta ahora hemos visto como abrir una imagen para tratarla en Photoshop CS3, y a guardarla en cualquiera de los estados en los que se encuentre en

Más detalles

Sistemas de Calidad Empresarial

Sistemas de Calidad Empresarial Portal Empresarial Aljaraque Empresarial Sistemas de Calidad Empresarial 1 ÍNDICE 1. INTRODUCCIÓN. 2. CONCEPTO DE CALIDAD Y SU SISTEMA. 3. MÉTODO PARA IMPLANTAR UN SISTEMA DE GESTIÓN DE LA CALIDAD. 4.

Más detalles