LA ESFERA CELESTE. Atlas sosteniendo la esfera celeste

Tamaño: px
Comenzar la demostración a partir de la página:

Download "LA ESFERA CELESTE. Atlas sosteniendo la esfera celeste"

Transcripción

1 LA ESFERA CELESTE. Atlas sosteniendo la esfera celeste Introducción: A simple vista, el cielo parece una inmensa cúpula que nos cubre. Durante el día se presenta de color azul con el Sol y en ciertas ocasiones la Luna. Durante la noche vemos innumerables puntos de luz que denominamos genéricamente astros. Debido a las enormes distancias a las que se encuentran cada uno de estos astros perdemos la sensación de profundidad. Nuestros antepasados, guiados por esta percepción, imaginaron que todos los astros estaban situados sobre una inmensa esfera en cuyo centro se encontraba la tierra. De esta percepción nace el concepto de esfera celeste. Camille Flammarion, L'Atmosphere: Météorologie Populaire (Paris, 1888), p Representación de la esfera celeste y los mecanismos que la mueven 1 de 7

2 Definición. Definiremos la esfera celeste como una esfera con centro en el observador y de radio arbitrario sobre la cual se sitúan los astros. En los trabajos astronómicos sobre objetos cercanos (pertenecientes al sistema solar) se suele tomar como centro de la esfera el centro de la Tierra. Aunque esta definición de esfera celeste puede parecer desfasada, se sigue utilizando porque presenta algunas ventajas para la localización de objetos celestes. Coordenadas sobre una esfera. Círculos máximos. La sección de una esfera tiene como resultado un borde que dibuja un círculo. Cuando cortamos la esfera por la mitad, el círculo resultante tiene radio máximo. Así definiremos como círculo máximo a aquel círculo trazado sobre la superficie de la esfera cuyo radio es igual al radio de la esfera. Si suponemos a la Tierra como perfectamente esférica, el ecuador y cualquier meridiano son círculos máximos, mientras que los paralelos no lo son. Polos de un círculo máximo. Si tomamos un círculo máximo sobre una esfera y trazamos una recta perpendicular a dicho círculo que pase por su centro, la recta intersectará con la superficie de la esfera en dos puntos, que se denominan polos de la esfera con respecto al círculo máximo de referencia. Esta definición se hace por semejanza con la Tierra, donde los Polos geográficos (Norte y Sur) se corresponden con los polos del círculo máximo de referencia llamado Ecuador. Coordenadas polares sobre una esfera. Un sistema de coordenadas es una referencia numérica que nos permite situar rápidamente cualquier punto que deseemos localizar. En el espacio solemos utilizar tres coordenadas euclídeas ( lo que conocemos como largo, ancho y alto). Desde el centro de una esfera, eligiendo un sistema de coordenadas apropiadas solo 2 de 7

3 necesitaremos dos valores numéricos (normalmente ángulos). En primer lugar elegiremos un circulo máximo como referencia y un punto Q sobre él como origen. Dado un punto M sobre la esfera, trazamos el círculo máximo que pase por ambos polos y el punto en cuestión. El ángulo entre el origen y este círculo máximo medido sobre el círculo máximo de referencia nos da una primera, coordenada α. La segunda coordenada β será el ángulo entre el círculo máximo de referencia y el punto, medido sobre el círculo máximo que pasa por los polos y el punto. Este tipo de coordenadas angulares sobre una esfera se conocen como coordenadas polares. Los ángulos pueden venir dados en grados (una vuelta completa son 360, cada grado se divide en 60 minutos de arco y cada minuto en 60 segundos de arco) o en ángulos horarios (cada vuelta completa son 24 horas, cada hora contiene 60 minutos y cada minuto 60 segundos). Para pasar de grados a ángulos horarios se tiene que dividir por 15, y para pasar de ángulos horarios a grados multiplicar por 15. Coordenadas terrestres Como ejemplo de coordenadas polares podemos tomar las coordenadas que habitualmente utilizamos para localizar puntos sobre la Tierra. Como círculo máximo de referencia tomamos el ecuador y a todos los círculos máximos que pasan por los polos se les conoce como meridianos. Como origen se toma un punto elegido arbitrariamente sobre el ecuador, y que por un acuerdo internacional se corresponde con la intersección del ecuador con el meridiano que pasa por el observatorio de Greenwich y que se denomina como meridiano cero (pasa por las proximidades de Castellón). Dado un punto sobre la superficie terrestre, su longitud (l) es el ángulo entre el origen y el meridiano que pasa por el punto medido sobre el ecuador. Se suele medir en sentido positivo hacia el Oeste y su valor suele darse en grados ( entre,0 y 360 ). La latitud (ϕ) es el ángulo entre el ecuador y el punto medido sobre el meridiano del lugar. Se mide en grados (entre 0 y 90, 90 corresponde al polo) positivos hacia el Norte y negativos hacia el Sur. 3 de 7

4 Coordenadas astronómicas. Al igual que hacemos sobre la esfera terrestre podemos definir un sistema de coordenadas angulares sobre la esfera celeste, que nos permitirá localizar cualquier astro sin tener en cuenta la distancia a la que se encuentra. A las coordenadas sobre la esfera celeste se les llaman coordenadas astronómicas y se clasifican según donde situemos el centro de la esfera (coordenadas topocéntricas y geocéntricas) o el círculo máximo de referencia que utilicemos (coordenadas horizontales, ecuatoriales, eclípticas, galácticas...) Cuando observamos desde la superficie de la Tierra, podemos considerar que el centro de la esfera celeste esta situado en el punto donde nosotros nos encontramos. En este caso decimos que estamos utilizando coordenadas topocéntricas, ya que el centro de la esfera celeste se encuentra sobre la superficie terrestre. En ocasiones y en aras de la uniformidad de los datos (cuando en un proyecto de observación colaboran varios observadores situados en puntos distintos y el astro observado esta relativamente cerca) interesa que el centro de la esfera celeste coincida con el centro de la Tierra. En este caso hablaremos de coordenadas geocéntricas. Coordenadas horizontales Este tipo de coordenadas son topocéntricas, ya que el círculo máximo de referencia elegido se corresponde con la línea de horizonte del observador suponiendo que no existiesen accidentes geográficos que lo alterasen. Los polos de este círculo máximo reciben nombres especiales. El cenit se corresponde con el punto más alto de la esfera celeste sobre nuestras cabezas. El polo contrario, situado al otro lado de la Tierra se llama nadir Llamaremos meridiano del lugar al círculo máximo en dirección norte-sur que pasa por el cenit, se corresponde con la proyección sobre la esfera celeste del meridiano terrestre que pasa por el lugar. Como origen tomamos la intersección del horizonte con el meridiano del lugar en la dirección sur, esto es, empezaremos a medir ángulos sobre el horizonte desde, el punto cardinal Sur Dado un punto sobre la esfera celeste trazaremos el círculo máximo que pasa por el cenit, el punto y nadir y que se conoce como vertical. Al ángulo entre la dirección sur (meridiano del lugar) y el vertical medido en el sentido de las agujas del reloj se le llama acimut (a o A). Al ángulo entre el horizonte y el punto medido sobre el vertical se le llama altura (h). De forma intuitiva, si nos ponemos al 4 de 7

5 empezar mirando hacia el horizonte sur, las coordenadas horizontales se corresponderían con lo que tenemos que girar y levantar la cabeza para mirar hacia el punto en cuestión. Su ventaja nace de la facilidad para realizar mediciones. Sus inconvenientes se deben a la rotación de la Tierra. A causa de este movimiento, las coordenadas horizontales de los astros van variando durante la noche. Además, para cada lugar en un momento dado un mismo astro tiene coordenadas distintas, llegando el caso que un astro sea visible desde una posición determinada mientras que desde otro punto de la superficie terrestre no se pueda ver por estar por debajo del horizonte. Coordenadas ecuatoriales. Las coordenadas ecuatoriales toman como círculo máximo de referencia la proyección del ecuador terrestre sobre la esfera celeste. Dentro de este tipo de coordenadas distinguiremos las coordenadas horarias, que son locales, es decir, dependen del lugar de observación, de las coordenadas ecuatoriales absolutas, independientes del lugar de observación. Un meridiano celeste es el círculo máximo que pasa por ambos polos, proyecciones sobre la esfera celeste de los polos terrestres. Como ejemplo el polo norte celeste esta muy cerca de la estrella polar y si nos situamos en el polo Norte terrestre este punto quedaría justo en el cenit. La latitud astronómica es el ángulo entre el horizonte y el polo celeste medido sobre el meridiano del lugar. En las coordenadas horarias el origen se toma en el punto donde se cortan el ecuador y el meridiano del lugar en dirección Sur. Dado un punto E sobre la esfera celeste, se traza el meridiano celeste que pasa por dicho punto. El ángulo horario (H) se mide sobre el ecuador desde el origen hasta el meridiano trazado en el sentido de las agujas del reloj y se suele dar en horas, minutos y segundos. Se corresponde con el tiempo transcurrido desde que la estrella cruzó el meridiano (o el que le falta para cruzarlo). 5 de 7

6 La declinación (δ ) es el ángulo entre el punto y elecuador medido sobre el meridiano. Se suele dar en grados entre 0 y 90 positivos hacia el Norte y negativos hacia el Sur. Los esquemas anteriores se diferencian en el punto de vista. El primero está orientado pensando en un observador local y su horizonte, mientras que el segundo está orientado eligiendo como círculo principal el ecuador, que es el importante para estas coordenadas. Las coordenadas horarias siguen siendo locales, es decir, dependen del lugar de observación. Presentan la ventaja de que la declinación de una estrella no varía, mientras que el ángulo horario sí que lo hace debido a la rotación de la Tierra. Hasta este momento todas los sistemas de coordenadas celestes que hemos visto son locales, dependen del lugar y el momento de observación. Cuando se comparan los resultados obtenidos por varios observadores situados en puntos distintos se presentan dificultades, por lo que es conveniente elegir un sistema de coordenadas universal, que no dependan del lugar de observación. Con las coordenadas ecuatoriales absolutas el problema se reduce a elegir un origen que sea fijo sobre el ecuador. Como la Tierra orbita alrededor del Sol en un plano fijo conocido como eclíptica y durante una parte del año está por debajo del ecuador mientras que la otra esta por encima, se elige como origen el punto donde la Tierra cruza el ecuador para pasar al hemisferio norte. Esto sucede en primavera y a dicho punto se le conoce como Punto Aries (γ). Cuando se estableció este punto estaba situado sobre la constelación Aries y de ahí su nombre, pero debido a la precesión este punto se desplaza muy lentamente situándose actualmente sobre la constelación Piscis, aunque mantiene el nombre de Punto Aries. Debido a la traslación de la Tierra, una estrella tarda aparentemente unos cuatro minutos menos cada día en cruzar el meridiano. Esto da origen al Día Sidéreo, un poco más corto que el día que normalmente utilizamos y que al cabo del año supone que el año sidéreo contenga un día más que el año oficial. Como inicio del día sidéreo se considera el momento en el que el punto Aries cruza el meridiano del lugar y la hora sidérea es el ángulo horario del punto Aries (T.S. en el esquema anterior) Si tomamos como origen el Punto Aries podemos definir un sistema de coordenadas independiente del lugar de observación y común para todos los observadores. Dado un punto sobre la esfera celeste trazamos el meridiano que pase por dicho punto. El ángulo entre el punto Aries y el meridiano trazado medido sobre el ecuador en sentido contrario al de las agujas del reloj se conoce como ascensión recta (α,a o AR) y como el punto Aries no depende del lugar de observación, la ascensión recta de un punto es la misma para todos los observadores (siempre que el objeto observado no esté cerca). 6 de 7

7 La declinación(δ) es la misma que para las coordenadas ecuatoriales horarias, es decir, el ángulo entre el ecuador y el punto medido sobre el meridiano trazado. La relación entre las coordenadas ecuatoriales absolutas y las coordenadas horarias es: T.S.=a+H Es necesario resaltar que los ángulos a (o α) y H se miden en sentido contrario (H en sentido de las agujas del reloj y a en sentido contrario a las agujas) Las coordenadas ecuatoriales absolutas tienen la ventaja que son las mismas para todos los observadores e independientes del lugar de observación. Sus inconvenientes nacen de la dificultad para determinarlas con precisión. No existe sobre la esfera celeste ninguna referencia valida que identifique al ecuador celeste y mucho menos al Punto Aries. Las coordenadas eclípticas Las coordenadas eclípticas son aquellas coordenadas que están referidas a la eclíptica. Son las más útiles para el estudio de las posiciones planetarias ya que se mueven dentro de la franja de la eclíptica. El eje fundamental es el denominado eje de la eclíptica que corta a la esfera celeste en dos puntos denominados polos de la eclíptica. El círculo fundamental es la eclíptica. Los semicírculos máximos que pasan por los polos se denominan máximos de longitud y entre ellos, aquél que pasa por el Punto Aries se denomina primer máximo de longitud. Los paralelos se llaman paralelos de latitud celeste. Las coordenadas eclípticas son la longitud celeste y la latitud celeste. Se llama longitud celeste al arco de la eclíptica medido en sentido directo, que va desde el Punto Aries hasta el máximo de longitud de un astro; se mide en grados, desde 0º hasta 360º, y se representa por λ. La latitud celeste es el arco máximo de longitud que pasa por el astro comprendido entre la eclíptica y el centro del astro, medido a partir de la eclíptica. Su valor oscila entre 0º y 90º y se representa por b. 7 de 7

Sistemas de coordenadas en la esfera celeste

Sistemas de coordenadas en la esfera celeste astronomia.org Documentación Sistemas de coordenadas en la esfera celeste Carlos Amengual Barcelona, 1989 Revisado febrero 2010 Este documento se encuentra en la dirección http://astronomia.org/doc/esfcel.pdf

Más detalles

Astronomía de Posición. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 100

Astronomía de Posición. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 100 Astronomía de Posición. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 100 Índice. 1. Repaso de Trigonometría Esférica. 2. Coordenadas Horizontales: (A,a). 3. Coordenadas Ecuatoriales:

Más detalles

Tema 1.1 La bóveda celeste. Fundamentos geométricos.

Tema 1.1 La bóveda celeste. Fundamentos geométricos. Módulo 1. La bóveda celeste. Astronomía observacional. Tema 1.1 La bóveda celeste. Fundamentos geométricos. Objetivos del tema: En este tema aprenderemos los fundamentos geométricos del movimiento de la

Más detalles

Curso Básico de Astronomía 2011-1

Curso Básico de Astronomía 2011-1 Curso Básico de Astronomía 2011-1 Sistemas de Coordenadas Astronómicas Dr. Lorenzo Olguín Ruiz 1 Sistemas de Coordenadas 1. Sistema Horizontal 2. Sistema Ecuatorial 4. Coordenadas Galácticas 2 Coordenadas

Más detalles

TIEMPO -DÍAS -HORAS CONCEPTO GENERAL DEL TIEMPO

TIEMPO -DÍAS -HORAS CONCEPTO GENERAL DEL TIEMPO TIEMPO -DÍAS -HORAS CONCEPTO GENERAL DEL TIEMPO Para medir el tiempo se necesita un fenómeno periódico, que se repita continuamente y con la misma fase, lo que sucede con fenómenos astronómicos basado

Más detalles

Medición del radio de la Tierra

Medición del radio de la Tierra Metodología del Álgebra y la Geometría en la Enseñanza Secundaria Metodología de los Recursos en la Enseñanza de las Matemáticas en Secundaria Medición del radio de la Tierra Facultad de Matemáticas 26

Más detalles

RELOJES DE SOL. 1. Movimiento diurno del Sol. 2. Variaciones anuales del movimiento del Sol

RELOJES DE SOL. 1. Movimiento diurno del Sol. 2. Variaciones anuales del movimiento del Sol 1. Movimiento diurno del Sol RELOJES DE SOL Sin necesidad de utilizar instrumento alguno, todo el mundo sabe que el Sol, por la mañana sale por algún lugar hacia el Este, que hacia el mediodía está en

Más detalles

Evaluación bimestral Al Rescate de los de Valores Perdidos para Vivir Dignamente y Convivir Pacíficamente

Evaluación bimestral Al Rescate de los de Valores Perdidos para Vivir Dignamente y Convivir Pacíficamente Evaluación bimestral Al Rescate de los de Valores Perdidos para Vivir Dignamente y Convivir Pacíficamente Asignatura: GEOGRAFIA Grado: 6 Docente: FARIDE Estudiante Fecha: Horas: Comencemos por el Ecuador,

Más detalles

SOBRE LA CONSTRUCCIÓN DE RELOJES DE SOL

SOBRE LA CONSTRUCCIÓN DE RELOJES DE SOL SOBRE LA CONSTRUCCION DE RELOJES DE SOL 1. Construyamos un Reloj de Sol. 2. El reloj de Cuadrante Ecuatorial. 3. El reloj de Cuadrante Horizontal. 4. El reloj de Cuadrante Vertical. 5. Otros tipos de relojes

Más detalles

Cálculo del radio de la Tierra. Método de Eratóstenes ( Siglo III a.c.)

Cálculo del radio de la Tierra. Método de Eratóstenes ( Siglo III a.c.) Cálculo del radio de la Tierra. Método de Eratóstenes ( Siglo III a.c.) Introducción histórica El griego Eratóstenes vivió en Alejandría entre los años 276 a. C. y 194 a. C. Era un conocido matemático,

Más detalles

MEDICION DE LA DISTANCIA ANGULAR EN ESTRELLAS DOBLES VISUALES UN PROCEDIMIENTO TRIGONOMÉTRICO

MEDICION DE LA DISTANCIA ANGULAR EN ESTRELLAS DOBLES VISUALES UN PROCEDIMIENTO TRIGONOMÉTRICO MEDICION DE LA DISTANCIA ANGULAR EN ESTRELLAS DOBLES VISUALES UN SOBRE LA MEDIDA DEL ARCO DE SEPARACIÓN DE DOS ESTRELLAS BINARIAS Cuando se trata de medir el arco comprendido entre la posición en la bóveda

Más detalles

El día más corto del año, la Ecuación del Tiempo, la Analema y otros animales

El día más corto del año, la Ecuación del Tiempo, la Analema y otros animales El día más corto del año, la Ecuación del Tiempo, la Analema y otros animales By Luis Mederos Como todos sabemos, alrededor del 21 de Diciembre se produce el solsticio de invierno (en el hemisferio norte).

Más detalles

ACTIVIDAD: RELOJES DE SOL (información sobre relojes de Sol).

ACTIVIDAD: RELOJES DE SOL (información sobre relojes de Sol). Relojes de Sol Los relojes de Sol nos han acompañado desde hace milenios (ya existía un tipo de reloj de Sol en el antiguo Egipto) y siguen con nosotros aunque pasen un poco desapercibidos. Continúan mostrándonos

Más detalles

LA FORMA DE LA TIERRA

LA FORMA DE LA TIERRA La Tierra Aprendemos también cosas sobre la Tierra mirando a la Luna y a las estrellas Por qué los griegos antiguos ya sabían que la Tierra era redonda? Qué movimientos presenta la Tierra? Por qué hay

Más detalles

Transformación de coordenadas

Transformación de coordenadas Anexo A Transformación de coordenadas Para realizar las transformaciones entre sistemas de coordenadas astronómicos, se utilizarán giros en el espacio, ya que todos los sistemas se suponen con el mismo

Más detalles

Curso Energía Solar Fotovoltaica. Conceptos Generales

Curso Energía Solar Fotovoltaica. Conceptos Generales Curso Energía Solar Fotovoltaica Conceptos Generales Temario Introducción Coordenadas y Movimiento de la Tierra Coordenadas Solares Orientación de los módulos Introducción La energía solar fotovoltaica

Más detalles

AARÓN SOLER LOZANO 4º ESO C

AARÓN SOLER LOZANO 4º ESO C AARÓN SOLER LOZANO 4º ESO C INTRODUCCIÓN BLOQUE III En este bloque se explica la formación de los eclipses y las diferentes características de los astros implicados en su funcionamiento, es decir, el Sol,

Más detalles

1.- Introducción. En el patio del Instituto de Educación Secundaria "Mare Nostrum" en Alicante hay una farola.

1.- Introducción. En el patio del Instituto de Educación Secundaria Mare Nostrum en Alicante hay una farola. 1.- Introducción En el patio del Instituto de Educación Secundaria "Mare Nostrum" en Alicante hay una farola. Al colocar un G.P.S. junto a la base de la farola leemos lo siguiente. LATITUD GEOGRÁFICA:

Más detalles

Interpolación de Coordenadas Geográficas

Interpolación de Coordenadas Geográficas Interpolación de Coordenadas Geográficas Normativa 1 Dirección Nacional de Metodología Estadística, Tecnología y Coordinación del Sistema Estadístico Nacional Departamento de Cartografía y Sistemas de

Más detalles

Figura 5.1 a: Acimut de una dirección de mira

Figura 5.1 a: Acimut de una dirección de mira Tema N 5 Determinación del Acimut de una dirección 5.1- Acimut de una dirección El acimut de una línea cualquiera es el ángulo que forma el meridiano del lugar con el plano vertical que contiene dicha

Más detalles

LA ESFERA TERRESTRE. MEDIDAS

LA ESFERA TERRESTRE. MEDIDAS LA ESFERA TERRESTRE. MEDIDAS En este apartado vamos a realizar los siguientes cálculos, mediciones y definiciones sobre la esfera terrestre: Definiciones de: La Tierra Paralelos Paralelos más conocidos.

Más detalles

También se encuentran dibujos de zonas más grandes, como este: (aunque no debería de llamarse plano, es un esquema o dibujo)

También se encuentran dibujos de zonas más grandes, como este: (aunque no debería de llamarse plano, es un esquema o dibujo) TIPOS DE REPRESENTACIÓN DEL ESPACIO GEOGRÁFICO El espacio que conocemos, habitamos, usamos para desarrollarnos, puede ser representado con la ayuda de varios instrumentos. Los hay desde los más simples

Más detalles

Recordando la experiencia

Recordando la experiencia Recordando la experiencia En el Taller de Relojes de Sol aprendimos a construir uno de los instrumentos de medición del tiempo más antiguos del mundo. Se basa en la observación de la sombra que crea sobre

Más detalles

TALLER DE ASTRONOMIA

TALLER DE ASTRONOMIA TALLER DE ASTRONOMIA Es necesario levantar al cielo los ojos para poder ver la tierra Francisco José de Caldas Desde la antigüedad el hombre ha construido monumentos y observatorios astronómicos para seguir

Más detalles

Relaciones Sol- Tierra- Luna

Relaciones Sol- Tierra- Luna Relaciones Sol- Tierra- Luna José Maza Sancho Astrónomo Departamento de Astronomía Facultad de Ciencias Físicas y MatemáBcas Universidad de Chile Cerro Calán, 18 de Enero 2011 El Radio Terrestre. El modelo

Más detalles

EL SISTEMA SOLAR. Los componentes del Sistema Solar

EL SISTEMA SOLAR. Los componentes del Sistema Solar Los componentes del Sistema Solar EL SISTEMA SOLAR El Sistema Solar está formado por el Sol y todos los astros que giran en tomo a él: planetas, satélites (que giran alrededor de los planetas), cometas

Más detalles

BÚSQUEDA POR COORDENADAS CELESTE

BÚSQUEDA POR COORDENADAS CELESTE BÚSQUEDA POR COORDENADAS CELESTE El objetivo de este pequeño manual es que podamos encontrar cualquier objeto celeste partiendo de sus coordenadas ecuatoriales celestes. Para ello hay que hacer uso de

Más detalles

LA TIERRA PARALELA DEL MEDIO MUNDO CERCA DE QUITO

LA TIERRA PARALELA DEL MEDIO MUNDO CERCA DE QUITO NETWORK FOR ASTRONOMY SCHOOL EDUCATION LA TIERRA PARALELA DEL MEDIO MUNDO CERCA DE QUITO Carme Alemany, Rosa M. Ros NASE Introducción Cerca de Quito esta la Mitad del Mundo cuya latitud es 0º 0 0. En este

Más detalles

Construimos un CUADRANTE y aprendemos a utilizarlo.

Construimos un CUADRANTE y aprendemos a utilizarlo. Construimos un CUADRANTE y aprendemos a utilizarlo. El cuadrante es un sencillo instrumento que sirve para medir, generalmente, ángulos de elevación. Fue utilizado, sobretodo, en los comienzos de la navegación

Más detalles

Definición de vectores

Definición de vectores Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre

Más detalles

INDICADOR DE DESMPEÑO Identifica la red geográfica, utilizando las coordenadas y convenciones, para ubicar a Colombia y otros lugares del mundo

INDICADOR DE DESMPEÑO Identifica la red geográfica, utilizando las coordenadas y convenciones, para ubicar a Colombia y otros lugares del mundo INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : CIENCIAS SOCIALES ASIGNATURA: CIENCIAS SOCIALES DOCENTE: CLAUDIA PATRICIA RIVERA GUERRA TIPO DE GUIA: CONCEPTUAL Y EJERCITACION PERIODO GRADO

Más detalles

TALLER DE CONSTRUCCIÓN DE RELOJES DE SOL

TALLER DE CONSTRUCCIÓN DE RELOJES DE SOL TALLER DE CONSTRUCCIÓN DE RELOJES DE SOL 1. Algunas consideraciones elementales a) Suponemos que la Tierra permanece fija y son los astros quienes se mueven en torno a ella. Es decir, en nuestro modelo

Más detalles

Instrumentos de observación astronómica

Instrumentos de observación astronómica Instrumentos de observación astronómica Prismáticos Instrumento ideal para iniciarse y completar nuestras observaciones a simple vista. Precio económico. Fáciles de usar, transportar y guardar. 1 A mayor

Más detalles

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO)

TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) TEMA 1: REPRESENTACIÓN GRÁFICA 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) Son dos instrumentos de plástico transparente que se suelen usar de forma conjunta. La escuadra tiene forma de triángulo

Más detalles

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL

SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,

Más detalles

COORDENADAS CURVILINEAS

COORDENADAS CURVILINEAS CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un

Más detalles

GEOMETRÍA DESCRIPTIVA SISTEMAS DE PROYECCIÓN

GEOMETRÍA DESCRIPTIVA SISTEMAS DE PROYECCIÓN GEOMETRÍA DESCRIPTIVA La Geometría Descriptiva es la ciencia de representación gráfica, sobre superficies bidimensionales, de los problemas del espacio donde intervengan, puntos, líneas y planos. La Geometría

Más detalles

1.1 Construcción de un reloj de sol de cuadrante ecuatorial

1.1 Construcción de un reloj de sol de cuadrante ecuatorial Tarea 2. Plan de mejora de las competencias lectoras en la ESO. TEXTO. 1.1 Construcción de un reloj de sol de cuadrante ecuatorial Los relojes de sol de "cuadrante solar" están formados por un estilete,

Más detalles

UNIDAD 1. EL PLANETA TIERRA.

UNIDAD 1. EL PLANETA TIERRA. UNIDAD 1. EL PLANETA TIERRA. Vivimos en un planeta llamado Tierra. Nuestro planeta está constituido por una parte sólida (tierra), formada por los continentes; por una parte líquida (agua), formada por

Más detalles

MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO

MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO BOLILLA 5 MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO Sistemas de referencia Inerciales y No-inerciales En la bolilla anterior vimos que las leyes de Newton se cumplían en marcos de referencia inercial.

Más detalles

Cómo construir un reloj de Sol

Cómo construir un reloj de Sol Cómo construir un reloj de Sol Historia de los Relojes de Sol: Desde tiempos inmemoriales la humanidad ha sabido que la forma en la que cambia la sombra de un objeto indica la hora del día, que la sombra

Más detalles

Cálculo de altura de formación de auroras.

Cálculo de altura de formación de auroras. Cálculo de altura de formación de auroras. Andrea Polo Padilla E X P E D I C I Ó N S H E L I O S C A R L A M E N D O Z A R U T A D E L A S E S T R E L L A S 2 0 1 5 I E S L u c a s M a r t í n E s p i

Más detalles

10 Anexo A: Aspectos Básicos de la Radiación Solar

10 Anexo A: Aspectos Básicos de la Radiación Solar 10 Anexo A: Aspectos Básicos de la Radiación Solar 10.1 Relaciones astronómicas Tierra-Sol La literatura solar contiene una gran variedad de sistemas, métodos y ecuaciones para establecer las relaciones

Más detalles

A S T R O N O M Í A T e l u u rr ii oo

A S T R O N O M Í A T e l u u rr ii oo A S T R O N O M Í A Telurio Telurio A S T R O N O M Í A Se trata de un módulo de gran utilidad para estudiar los movimientos relativos de los tres astros que protagonizan nuestra vida diaria: el Sol, la

Más detalles

INSTRUCCIONES. 1- Ajustar la latitud del lugar en el círculo graduado haciendo coincidir los grados con la raya marcada en la madera.

INSTRUCCIONES. 1- Ajustar la latitud del lugar en el círculo graduado haciendo coincidir los grados con la raya marcada en la madera. El simusol es un instrumento artesano de precisión, está construido en madera de haya y se ha tenido en cuenta que todos los materiales sean duraderos y reciclables. Es imprescindible para los instaladores

Más detalles

Curso de iniciación a la Astronomía. http://www.elcielodelmes.com/ (por cortesía de Mario Gaitano Játiva) ÍNDICE

Curso de iniciación a la Astronomía. http://www.elcielodelmes.com/ (por cortesía de Mario Gaitano Játiva) ÍNDICE ÍNDICE 1. Astronomía de Posición 1.1 Los movimientos de la tierra - La rotación 1.2 Los movimientos de la tierra - La precesión 1.3 La esfera terrestre 1.4 Coordenadas geográficas 1.5 Las coordenadas geográficas

Más detalles

1. LA REPRESENTACIÓN DE LA TIERRA

1. LA REPRESENTACIÓN DE LA TIERRA 1. LA REPRESENTACIÓN DE LA TIERRA 1.1. La forma de la Tierra La Tierra tiene forma esférica, aunque no es una esfera perfecta, ya que se encuentra achatada en dos puntos geográficos, llamados polos. El

Más detalles

La hora de la Tierra y la hora solar

La hora de la Tierra y la hora solar La hora de la Tierra y la hora solar 1 José Alberto Villalobos www.geocities.com/astrovilla2000 Resumen El tiempo solar es una medida del tiempo fundamentada en el movimiento aparente del Sol sobre el

Más detalles

UNIDAD 6 PARA ENTENDER MEJOR LOS MAPAS

UNIDAD 6 PARA ENTENDER MEJOR LOS MAPAS UNIDAD 6 PARA ENTENDER MEJOR LOS MAPAS Interpretar y utilizar recursos y simbología utilizados en la asignatura de estudios sociales. Analizar con espíritu reflexivo y crítico las informaciones que se

Más detalles

Guía 1: Sistemas de referencia y coordenadas ArcGIS 10 o ArcGis 10.1

Guía 1: Sistemas de referencia y coordenadas ArcGIS 10 o ArcGis 10.1 Guía 1: Sistemas de referencia y coordenadas ArcGIS 10 o ArcGis 10.1 La localización de los lugares en la superficie terrestre y su representación sobre un plano requieren de dos procesos distintos: en

Más detalles

Taller: Modelo para representar la trayectoria del sol sobre el globo terrestre

Taller: Modelo para representar la trayectoria del sol sobre el globo terrestre Taller: Modelo para representar la trayectoria del sol sobre el globo terrestre Ilce Tlanezi Lara Montiel y Julieta Fierro Resumen En este artículo presentaremos la manera de construir un modelo que nos

Más detalles

Consejería de Fomento, Juventud y Deportes DIRECCIÓN GENERAL DE OBRAS PÚBLICAS

Consejería de Fomento, Juventud y Deportes DIRECCIÓN GENERAL DE OBRAS PÚBLICAS Consejería de Fomento, Juventud y Deportes DIRECCIÓN GENERAL DE OBRAS PÚBLICAS DESCRIPCIÓN GENERAL DE LOS RELOJES DE SOL DESCRIPCIÓN GENERAL DE LOS RELOJES DE SOL. El reloj de sol es un instrumento usado

Más detalles

Potencial eléctrico. du = - F dl

Potencial eléctrico. du = - F dl Introducción Como la fuerza gravitatoria, la fuerza eléctrica es conservativa. Existe una función energía potencial asociada con la fuerza eléctrica. Como veremos, la energía potencial asociada a una partícula

Más detalles

Guía del estudiante. Clase 4 Tema: Coordenadas geográficas y husos horarios. Actividad 1

Guía del estudiante. Clase 4 Tema: Coordenadas geográficas y husos horarios. Actividad 1 SOCIALES Grado Séptimo Bimestre I Semana 2 Número de clases 4-6 Clase 4 Tema: Coordenadas geográficas husos horarios Actividad 1 En el planisferio que enuentra a continuación, dibuje en rojo los paralelos

Más detalles

El proyecto Eratóstenes. Guía para el estudiante.

El proyecto Eratóstenes. Guía para el estudiante. El proyecto Eratóstenes. Guía para el estudiante. En esta actividad vas a trabajar en colaboración con estudiantes de otra escuela para medir el radio de la Tierra. Vas a usar los mismos métodos y principios

Más detalles

Cádiz y las expediciones científicas del siglo XVIII

Cádiz y las expediciones científicas del siglo XVIII Cádiz y las expediciones científicas del siglo XVIII Nuevos métodos y nuevos instrumentos: la navegación astronómica en la edad moderna 62 Edición de los Cursos de Verano de Cádiz 7 de julio de 2011 Es

Más detalles

CIENCIAS SOCIALES 5º EL UNIVERSO

CIENCIAS SOCIALES 5º EL UNIVERSO EL UNIVERSO Vas aprender a. Componentes y características del Universo. b. El sistema solar. Los planetas. c. El Planeta Tierra: representación y sus coordenadas. e. Las fases Lunares. Movimientos. INTRODUCCIÓN.

Más detalles

EJERCICIOS SOBRE : NÚMEROS ENTEROS

EJERCICIOS SOBRE : NÚMEROS ENTEROS 1.- Magnitudes Absolutas y Relativas: Se denomina magnitud a todo lo que se puede medir cuantitativamente. Ejemplo: peso de un cuerpo, longitud de una cuerda, capacidad de un recipiente, el tiempo que

Más detalles

Resolución de problemas. Temas: VOR e ILS

Resolución de problemas. Temas: VOR e ILS Resolución de problemas. Temas: VOR e ILS Autor: Mario E. Casado García 3er Curso ITT ST Índice 1. Problema tema 5: VOR......3 2. Problema tema 7: ILS.....7 3. Referencias..12 2 1. Problema tema 5: VOR

Más detalles

ACTIVIDAD 2.- 1.- Definiciones.

ACTIVIDAD 2.- 1.- Definiciones. ACTIVIDAD 2.- Localización de astros mediante coordenadas (Altura y Acimut) Por Sr. Federico Fernández Porredón. Catedrático de secundaria. IES San Hermenegildo, Tenerife. Dr. Miquel Serra-Ricart. Astrónomo

Más detalles

Capítulo 10. Gráficos y diagramas

Capítulo 10. Gráficos y diagramas Capítulo 10. Gráficos y diagramas 1. Introducción Los gráficos y diagramas que se acostumbran a ver en libros e informes para visualizar datos estadísticos también se utilizan con propósitos cartográficos,

Más detalles

Educación Física Las carreras de Orientación IES Lauretum 1

Educación Física Las carreras de Orientación IES Lauretum 1 IES Lauretum 1 LAS CARRERAS DE ORIENTACIÓN 1. INTRODUCCIÓN. UN POCO DE HISTORIA. Las competiciones de orientación tienen cerca de cien años de historia. Sus orígenes se centran en los países nórdicos y

Más detalles

SOLSTICIO EL COMIENZO DEL VERANO

SOLSTICIO EL COMIENZO DEL VERANO SOLSTICIO EL COMIENZO DEL VERANO Agrupación Astronómica de Huesca Este martes 21 de junio de 2016, a las cero horas y treinta cuatro minutos de la noche, comienza el verano. Es el solsticio. En este breve

Más detalles

DESIGUALDADES E INECUACIONES

DESIGUALDADES E INECUACIONES DESIGUALDAD DESIGUALDADES E INECUACIONES Para hablar de la NO IGUALDAD podemos utilizar varios términos o palabras. Como son: distinto y desigual. El término "DISTINTO" (signo ), no tiene apenas importancia

Más detalles

Carpe Diem Nº 26 Edición trimestral Revista de gnomónica Junio 2008 La primera revista digital de gnomónica en español Joan Serra Busquets

Carpe Diem Nº 26 Edición trimestral Revista de gnomónica Junio 2008 La primera revista digital de gnomónica en español Joan Serra Busquets Carpe Diem Nº 26 Edición trimestral Revista de gnomónica Junio 2008 La primera revista digital de gnomónica en español Joan Serra Busquets TALLER DE BRICOLAJE Relojes Proyectivos (1) Por Francesc Clarà

Más detalles

RELOJ SOLAR VERTICAL Esteban Esteban Atrévete con el Universo

RELOJ SOLAR VERTICAL Esteban Esteban Atrévete con el Universo RELOJ SOLAR VERTICAL Esteban Esteban Atrévete con el Universo Importancia de los relojes verticales y sus tipos Los relojes verticales son los más habituales que podemos encontrar en paredes de iglesias,

Más detalles

ASTRONOMÍA DE POSICIÓN

ASTRONOMÍA DE POSICIÓN ASTRONOMÍA DE POSICIÓN 1) DATOS GENERALES: Titulación: Ingeniero técnico en topografía Curso: Segundo Semestre: Segundo Asignatura: ASTRONOMÍA DE POSICIÓN Tipo (Troncal, Obligatoria, Optativa):Troncal

Más detalles

Ejercicios de Trigonometría

Ejercicios de Trigonometría Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple

Más detalles

GRUPOS PUNTUALES. 4.- Si un plano de simetría contiene un eje de orden n, existen n planos que contienen el eje. formando entre ellos ángulos de

GRUPOS PUNTUALES. 4.- Si un plano de simetría contiene un eje de orden n, existen n planos que contienen el eje. formando entre ellos ángulos de GRUPOS PUNTUALES Existen algunas relaciones entre elementos de simetría que pueden ser útiles a la hora de deducir cuales son los conjuntos de estos que forman grupo. 1.- Todos los elementos de simetría

Más detalles

LÍMITES Y CONTINUIDAD DE FUNCIONES

LÍMITES Y CONTINUIDAD DE FUNCIONES Capítulo 9 LÍMITES Y CONTINUIDAD DE FUNCIONES 9.. Introducción El concepto de ite en Matemáticas tiene el sentido de lugar hacia el que se dirige una función en un determinado punto o en el infinito. Veamos

Más detalles

Actividades con GeoGebra

Actividades con GeoGebra Conectar Igualdad - "Netbooks Uno a Uno" Actividades con GeoGebra Nociones básicas, rectas Silvina Ponce Dawson Introducción. El GeoGeobra es un programa que permite explorar nociones matemáticas desde

Más detalles

RELOJ SOLAR HORIZONTAL Esteban Esteban Atrévete con el Universo

RELOJ SOLAR HORIZONTAL Esteban Esteban Atrévete con el Universo RELOJ SOLAR HORIZONTAL Esteban Esteban Atrévete con el Universo Características y ventajas de este tipo de reloj Está claro que si se va a trabajar en la escuela con relojes solares, el primer paso debe

Más detalles

Curso sobre el Sistema Solar: Lección nro. 1

Curso sobre el Sistema Solar: Lección nro. 1 Curso sobre el Sistema Solar: Lección nro. 1 Que es el Sistema Solar? a1) Aspecto del Firmamento: Idea General. Comenzaremos por considerar lo que es posible conocer del Sistema Solar sin la ayuda de ningún

Más detalles

requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados.

requerido). vectoriales, y operan según el Álgebra a continuación. 2.1.2 Vector. dirección. representados. 2.1 Vectores. 2.1.1 Introducción. Cuando queremos referirnos al tiempo que demanda un suceso determinado, nos basta con una magnitud (se demoró 3 segundos, saltó durante 1 minuto, volverá el próximo año,

Más detalles

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido

Tema 3. Medidas de tendencia central. 3.1. Introducción. Contenido Tema 3 Medidas de tendencia central Contenido 31 Introducción 1 32 Media aritmética 2 33 Media ponderada 3 34 Media geométrica 4 35 Mediana 5 351 Cálculo de la mediana para datos agrupados 5 36 Moda 6

Más detalles

Unidad: Representación gráfica del movimiento

Unidad: Representación gráfica del movimiento Unidad: Representación gráfica del movimiento Aplicando y repasando el concepto de rapidez Esta primera actividad repasa el concepto de rapidez definido anteriormente. Posición Esta actividad introduce

Más detalles

AX A UNA REVISTA DE ARTE Y ARQUITECTURA

AX A UNA REVISTA DE ARTE Y ARQUITECTURA Valentina Siegfried Villar José Domínguez de Posada Rafael Magro Andrade Sobre la posición del Sol en la bóveda celeste y la dirección de sus rayos del texto: los autores. Noviembre de 2011 https://www.uax.es/publicaciones/axa.htm

Más detalles

a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)

a < b y se lee a es menor que b (desigualdad estricta) a > b y se lee a es mayor que b (desigualdad estricta) Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,

Más detalles

Caracterización geométrica

Caracterización geométrica Caracterización geométrica Ahora vamos a centrar nuestra atención en la elipe. Esta figura geométrica tiene la misma esencia que la circunferencia, pero ésta está dilatada en uno de sus ejes. Recuerda

Más detalles

Reloj de Sol de Cuadrante Analemático

Reloj de Sol de Cuadrante Analemático Extraído de.:. EIDiGn.:. Reloj de Sol de Cuadrante Analemático http://horasolar.perez.cmoi.cc/teoria/article/reloj-de-sol-de-cuadrante Reloj de Sol de Cuadrante Analemático - Teoría - Fecha de publicación

Más detalles

PONTIFICIA UNIVERSIDAD JAVERIANA EDUCACION CONTINUA DIPLOMADO DE BIOCLIMATICA

PONTIFICIA UNIVERSIDAD JAVERIANA EDUCACION CONTINUA DIPLOMADO DE BIOCLIMATICA PONTIFICIA UNIVERSIDAD JAVERIANA EDUCACION CONTINUA DIPLOMADO DE BIOCLIMATICA RADIACION SOLAR CONCEPTOS BÁSICOS Posición astronómica de la tierra con respecto al sol Solsticios y equinoccios Angulo de

Más detalles

VECTORES. Abel Moreno Lorente. February 3, 2015

VECTORES. Abel Moreno Lorente. February 3, 2015 VECTORES Abel Moreno Lorente February 3, 015 1 Aspectos grácos. 1.1 Deniciones. Un vector entre dos puntos A y B es el segmento de recta orientado que tiene su origen en A y su extremo en B. A este vector

Más detalles

Ciencias Sociales 3º / Unidad 1 / Viajamos al espacio

Ciencias Sociales 3º / Unidad 1 / Viajamos al espacio Ciencias Sociales 3º / Unidad 1 / Viajamos al espacio Actividad 1 Enunciado: Une con flechas. Estrella Se formó a partir del Big Bang. Planeta Gira alrededor de un planeta. Universo Conjunto de estrellas.

Más detalles

DETERMINACIÓN DE LAS COORDENADAS DE UN PUNTO EN LA CARTA TOPOGRÁFICA.

DETERMINACIÓN DE LAS COORDENADAS DE UN PUNTO EN LA CARTA TOPOGRÁFICA. DETERMINACIÓN DE LAS COORDENADAS DE UN PUNTO EN LA CARTA TOPOGRÁFICA. 1. ANTECEDENTES. La carta topográfica, dentro de la información marginal presenta además de lo señalado en la estructura de la carta

Más detalles

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano

_ Antología de Física I. Unidad II Vectores. Elaboró: Ing. Víctor H. Alcalá-Octaviano 24 Unidad II Vectores 2.1 Magnitudes escalares y vectoriales Unidad II. VECTORES Para muchas magnitudes físicas basta con indicar su valor para que estén perfectamente definidas y estas son las denominadas

Más detalles

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica

1 Estática Básica Prohibida su reproducción sin autorización. CONCEPTOS DE FISICA MECANICA. Conceptos de Física Mecánica 1 CONCEPTOS DE FISICA MECANICA Introducción La parte de la física mecánica se puede dividir en tres grandes ramas de acuerdo a lo que estudia cada una de ellas. Así, podemos clasificarlas según lo siguiente:

Más detalles

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o.

ESTÁTICA 2. VECTORES. Figura tomada de http://www.juntadeandalucia.es/averroes/~04001205/fisiqui/imagenes/vectores/473396841_e1de1dd225_o. ESTÁTICA Sesión 2 2 VECTORES 2.1. Escalares y vectores 2.2. Cómo operar con vectores 2.2.1. Suma vectorial 2.2.2. Producto de un escalar y un vector 2.2.3. Resta vectorial 2.2.4. Vectores unitarios 2.2.5.

Más detalles

PRISMA OBLICUO > REPRESENTACIÓN Y DESARROLLO POR EL MÉTODO DE LA SECCIÓN NORMAL

PRISMA OBLICUO > REPRESENTACIÓN Y DESARROLLO POR EL MÉTODO DE LA SECCIÓN NORMAL 1. CARACTERÍSTICAS GENERALES DEL PRISMA OBLICUO Desde el punto de vista de la representación en SISTEMA DIÉDRICO, el prisma oblicuo presenta dos características importantes que lo diferencian del prisma

Más detalles

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define.

VECTORES. Módulo, dirección y sentido de un vector fijo En un vector fijo se llama módulo del mismo a la longitud del segmento que lo define. VECTORES El estudio de los vectores es uno de tantos conocimientos de las matemáticas que provienen de la física. En esta ciencia se distingue entre magnitudes escalares y magnitudes vectoriales. Se llaman

Más detalles

1.4.- D E S I G U A L D A D E S

1.4.- D E S I G U A L D A D E S 1.4.- D E S I G U A L D A D E S OBJETIVO: Que el alumno conozca y maneje las reglas empleadas en la resolución de desigualdades y las use para determinar el conjunto solución de una desigualdad dada y

Más detalles

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa:

PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa: Página 90 5 LA PARÁBOLA 5.1 DEFINICIONES La parábola es el lugar geométrico 4 de todos los puntos cuyas distancias a una recta fija, llamada, y a un punto fijo, llamado foco, son iguales entre sí. Hay

Más detalles

TIPOS DE RESTRICCIONES

TIPOS DE RESTRICCIONES RESTRICCIONES: Las restricciones son reglas que determinan la posición relativa de las distintas geometrías existentes en el archivo de trabajo. Para poder aplicarlas con rigor es preciso entender el grado

Más detalles

OBJETIVO Reconocer los movimientos de la Tierra dentro del Sistema Solar.

OBJETIVO Reconocer los movimientos de la Tierra dentro del Sistema Solar. Nombre: Fecha: Hoy estoy: Grado: Grupo: EL SISTEMA SOLAR PLANTEAMIENTO DEL PROBLEMA Por qué no vemos las estrellas siempre en la misma posición? OBJETIVO Reconocer los movimientos de la Tierra dentro del

Más detalles

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos.

ESTATICA: TIPOS DE MAGNITUDES: CARACTERÍSTICAS DE UN VECTOR. Rama de la física que estudia el equilibrio de los cuerpos. ESTATICA: Rama de la física que estudia el equilibrio de los cuerpos. TIPOS DE MAGNITUDES: MAGNITUD ESCALAR: Es una cantidad física que se especifica por un número y una unidad. Ejemplos: La temperatura

Más detalles

PROYECTO ERATOSTHENES Año Internacional de la Astronomía 2009 Más de 800 centros de enseñanza, unidos para medir el radio de la Tierra

PROYECTO ERATOSTHENES Año Internacional de la Astronomía 2009 Más de 800 centros de enseñanza, unidos para medir el radio de la Tierra PROYECTO ERATOSTHENES Año Internacional de la Astronomía 2009 Más de 800 centros de enseñanza, unidos para medir el radio de la Tierra El día 26 de marzo de 2009 se emuló en el patio del IES Hispanidad;

Más detalles

El movimiento del Sol y la bóveda celeste

El movimiento del Sol y la bóveda celeste El movimiento del Sol y la Bóveda celeste El movimiento del Sol y la bóveda celeste Para leer en el Metro El Sol y la vida Uno de los pocos puntos sobre el cual los científicos actuales están de acuerdo

Más detalles

1. Introducción. Planteamiento del problema de la medida del tiempo

1. Introducción. Planteamiento del problema de la medida del tiempo 1. Introducción. Planteamiento del problema de la medida del tiempo El concepto físico de tiempo como intervalo entre dos sucesos y prescindiendo de los efectos relativistas es un fenómeno simultáneo para

Más detalles

1. Introducción. Planteamiento del problema de la medida del tiempo

1. Introducción. Planteamiento del problema de la medida del tiempo 1. Introducción. Planteamiento del problema de la medida del tiempo El concepto físico de tiempo como intervalo entre dos sucesos y prescindiendo de los efectos relativistas es un fenómeno simultáneo para

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles