Medición del radio de la Tierra
|
|
- Ana Isabel Soriano Cruz
- hace 6 años
- Vistas:
Transcripción
1 Metodología del Álgebra y la Geometría en la Enseñanza Secundaria Metodología de los Recursos en la Enseñanza de las Matemáticas en Secundaria Medición del radio de la Tierra Facultad de Matemáticas 26 de marzo de
2 Figura 1: Eratóstenes Eratóstenes (Cirene, 276 a.c. - Alejandría, 194 a.c.) fue un célebre matemático, astrónomo y geógrafo griego que observó cómo en Siena (actual Assuan, situada sobre el Trópico de Cáncer) el día del solsticio de verano los rayos del Sol caían verticalmente iluminando el fondo de un pozo. Sin embargo, en Alejandría, ese mismo día, los rayos caían de forma oblicua (ver figura 2). Figura 2: Siena-Alejandría Siena y Alejandría están situadas en el mismo meridiano por lo que el ángulo de inclinación de los rayos en Alejandría coincidía en ese momento con la medida angular del arco de meridiano entre ambas ciudades, esto es, con la diferencia entre sus latitudes. Si conocemos la distancia, L, entre las dos ciudades, sólo falta hacer el siguiente razonamiento: y, de aquí, 360 2πr α L r = 360L 2πα Eratóstenes calculó la inclinación de los rayos midiendo la sombra de un palo vertical en el momento del paso del Sol por el meridiano (mínima longitud de la sombra) y resolviendo por Trigonometría 2
3 (ver figura 3). La distancia entre los dos puntos la obtuvo pagando a un hombre para que la midiese a pie 1. Figura 3: Ángulo de inclinación de los rayos solares tan α = sombra palo Pero si los puntos están situados por encima del trópico de Cáncer (o por debajo del trópico de Capricornio) en ningún momento los rayos del Sol caerán verticalmente como pasaba en Siena. Sin embargo, podemos reproducir el procedimiento de Eratóstenes con algunas modificaciones si los dos lugares están situados sobre el mismo meridiano. Coordenadas ecuatoriales Para fijar la posición de un astro, en nuestro caso el Sol, en la esfera celeste se pueden utilizar diferentes sistemas de referencia. Si consideramos el plano del ecuador y el eje de los polos se obtienen las coordenadas ecuatoriales, que se llaman ascensión recta (AR) y declinación (δ) (ver figura 4). Figura 4: Coordenadas ecuatoriales La ascensión recta y la declinación de un astro son las coordenadas equivalentes a la longitud y latitud de un lugar en la Tierra. La ascensión recta se mide sobre el ecuador, en sentido antihorario 1 Los resultados fueron 7 para el ángulo y 800 Km para la distancia, resultando una longitud del radio terrestre de 6540 Km. 3
4 y tomando como origen el punto Aries (γ) que es el punto en que la eclíptica corta al ecuador (equinoccio de Primavera). Ese día el Sol recorre el ecuador y su declinación es cero. Cada día el Sol recorre un paralelo 2 aumentando su declinación hasta llegar al trópico de Cáncer donde alcanza su valor máximo, N, (solsticio de Verano). A partir de ese momento el Sol describe paralelos disminuyendo su declinación hasta recorrer de nuevo el ecuador en el equinoccio de Otoño. La declinación ahora aumenta hacia el Sur hasta los S (solsticio de Invierno) para volver a subir de nuevo hasta el ecuador. Inclinación del Sol y latitud del lugar En la figura 5 se observa la relación que existe entre la inclinación de los rayos solares, la latitud del lugar y la declinación del Sol el día de la observación. Figura 5: Relación entre inclinación de los rayos y la latitud del lugar P Punto de la superficie terrestre (lugar de la observación) α Ángulo de los rayos del Sol con la vertical del lugar 90 α Altura del Sol sobre el horizonte φ Latitud del lugar δ Declinación del Sol en el momento de la observación Como puede verse, la relación que se verifica es: φ = δ + α La declinación del Sol en un determinado momento no depende de las latitudes de los lugares de observación. Si éstos están situados en el mismo meridiano, al paso del Sol, la declinación es la misma. Por lo tanto, se verifica: φ 1 = δ + α 1 y, entonces, φ 2 = δ + α 2 φ 1 φ 2 = α 1 α 2 2 En este sistema de referencia se considera el movimiento aparente del Sol, es decir, la Tierra está fija en el centro y el Sol gira alrededor de ella. 4
5 es decir, la diferencia de latitud de los dos lugares coincide con la diferencia entre los ángulos de inclinación de los rayos solares, que se calculan en la experiencia. La distancia (sobre el meridiano) entre los dos puntos la obtenemos sobre un mapa a escala y, ahora, el cálculo ya es como antes: r = 360L 2π(φ 1 φ 2 ) = 360L 2π(α 1 α 2 ) Si los puntos no están situados en el mismo meridiano, las mediciones no se hacen en el mismo instante. Sin embargo, la declinación del Sol se mantiene prácticamente constante entre las dos observaciones. Por lo tanto se puede también aplicar la fórmula anterior 3. En la experiencia del día 26 se calculará la inclinación de los rayos del Sol en cada lugar y la distancia al paralelo de Madrid, lugar en el que se centralizarán todos los datos. Cálculo efectivo de la inclinación de los rayos solares Para calcular el ángulo α de la figura 3 situaremos un palo vertical (gnomon) de 1 m de altura en un lugar soleado (parking) y colocaremos en el plano horizontal (suelo) un papel grande de envolver en el que iremos marcando los extremos de la sombra del palo (ver figura 6). Figura 6: Sombra del gnomon El paso del Sol por el meridiano marca las 12:00 horas solares, pero como la hora oficial es una más, haremos los cálculos en un entorno de las 13:00 horas. Desde las 12:00 empezaremos a marcar la sombra del palo en el papel cada cinco o diez minutos. Dibujaremos semicírculos concéntricos de distintos radios con centro en la base del gnomon. Aproximadamente, hacia la una de la tarde, la sombra alcanzará su menor longitud; en ese momento el Sol está pasando por el meridiano y es cuando hay que dividir la longitud de la sombra por la longitud del palo: α = arctan sombra palo También puede aprovecharse el momento para trazar en el suelo la meridiana, intersección del plano del horizonte con el plano del meridiano del lugar, que marca la dirección Norte-Sur. Para ello basta trazar la mediatriz de un segmento que una dos marcas situadas en el mismo semicírculo. 3 La diferencia que pudiera existir entre las declinaciones es irrelevante si tenemos en cuenta el error que se comete en el uso de los aparatos de medida, una cinta métrica que aproxima al milímetro, como máximo. 5
LA ESFERA TERRESTRE. MEDIDAS
LA ESFERA TERRESTRE. MEDIDAS En este apartado vamos a realizar los siguientes cálculos, mediciones y definiciones sobre la esfera terrestre: Definiciones de: La Tierra Paralelos Paralelos más conocidos.
Cálculo del radio de la Tierra. Método de Eratóstenes ( Siglo III a.c.)
Cálculo del radio de la Tierra. Método de Eratóstenes ( Siglo III a.c.) Introducción histórica El griego Eratóstenes vivió en Alejandría entre los años 276 a. C. y 194 a. C. Era un conocido matemático,
Sistemas de coordenadas en la esfera celeste
astronomia.org Documentación Sistemas de coordenadas en la esfera celeste Carlos Amengual Barcelona, 1989 Revisado febrero 2010 Este documento se encuentra en la dirección http://astronomia.org/doc/esfcel.pdf
RELOJES DE SOL. 1. Movimiento diurno del Sol. 2. Variaciones anuales del movimiento del Sol
1. Movimiento diurno del Sol RELOJES DE SOL Sin necesidad de utilizar instrumento alguno, todo el mundo sabe que el Sol, por la mañana sale por algún lugar hacia el Este, que hacia el mediodía está en
Tema 1.1 La bóveda celeste. Fundamentos geométricos.
Módulo 1. La bóveda celeste. Astronomía observacional. Tema 1.1 La bóveda celeste. Fundamentos geométricos. Objetivos del tema: En este tema aprenderemos los fundamentos geométricos del movimiento de la
LA ESFERA CELESTE. Atlas sosteniendo la esfera celeste
LA ESFERA CELESTE. Atlas sosteniendo la esfera celeste Introducción: A simple vista, el cielo parece una inmensa cúpula que nos cubre. Durante el día se presenta de color azul con el Sol y en ciertas ocasiones
Astronomía de Posición. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 100
Astronomía de Posición. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 100 Índice. 1. Repaso de Trigonometría Esférica. 2. Coordenadas Horizontales: (A,a). 3. Coordenadas Ecuatoriales:
TANIA PLANA LÓPEZ (4º ESO C)
TANIA PLANA LÓPEZ (4º ESO C) EQUINOCCIO. INCLINACIÓN DE LOS RAYOS SOLARES INTRODUCCIÓN BLOQUE I A la hora de estudiar la Tierra te enseñamos este apartado para explicarte sus tipos de movimiento, la práctica
Dónde estoy? Pregúntale al Sol
Dónde estoy? Pregúntale al Sol Un experimento concebido por C. Morisset, J. Garcia-Rojas, L. Jamet, A. Farah Instituto de Astronomía UNAM 1. Introducción El propósito del experimento que hemos diseñado
Relaciones Sol- Tierra- Luna
Relaciones Sol- Tierra- Luna José Maza Sancho Astrónomo Departamento de Astronomía Facultad de Ciencias Físicas y MatemáBcas Universidad de Chile Cerro Calán, 18 de Enero 2011 El Radio Terrestre. El modelo
Cálculo de la Latitud de observación del lugar a partir de imágenes del Sol de Medianoche.
ACTIVIDAD 2.- Cálculo de la Latitud de observación del lugar a partir de imágenes del Sol de Medianoche. Por Sr. Miguel Ángel Pío Jiménez. Astrónomo del Instituto de Astrofísica de Canarias, Tenerife.
1.- Introducción. En el patio del Instituto de Educación Secundaria "Mare Nostrum" en Alicante hay una farola.
1.- Introducción En el patio del Instituto de Educación Secundaria "Mare Nostrum" en Alicante hay una farola. Al colocar un G.P.S. junto a la base de la farola leemos lo siguiente. LATITUD GEOGRÁFICA:
Curso Básico de Astronomía 2011-1
Curso Básico de Astronomía 2011-1 Sistemas de Coordenadas Astronómicas Dr. Lorenzo Olguín Ruiz 1 Sistemas de Coordenadas 1. Sistema Horizontal 2. Sistema Ecuatorial 4. Coordenadas Galácticas 2 Coordenadas
SOBRE LA CONSTRUCCIÓN DE RELOJES DE SOL
SOBRE LA CONSTRUCCION DE RELOJES DE SOL 1. Construyamos un Reloj de Sol. 2. El reloj de Cuadrante Ecuatorial. 3. El reloj de Cuadrante Horizontal. 4. El reloj de Cuadrante Vertical. 5. Otros tipos de relojes
MEDICION DE LA DISTANCIA ANGULAR EN ESTRELLAS DOBLES VISUALES UN PROCEDIMIENTO TRIGONOMÉTRICO
MEDICION DE LA DISTANCIA ANGULAR EN ESTRELLAS DOBLES VISUALES UN SOBRE LA MEDIDA DEL ARCO DE SEPARACIÓN DE DOS ESTRELLAS BINARIAS Cuando se trata de medir el arco comprendido entre la posición en la bóveda
También se encuentran dibujos de zonas más grandes, como este: (aunque no debería de llamarse plano, es un esquema o dibujo)
TIPOS DE REPRESENTACIÓN DEL ESPACIO GEOGRÁFICO El espacio que conocemos, habitamos, usamos para desarrollarnos, puede ser representado con la ayuda de varios instrumentos. Los hay desde los más simples
TALLER DE CONSTRUCCIÓN DE RELOJES DE SOL
TALLER DE CONSTRUCCIÓN DE RELOJES DE SOL 1. Algunas consideraciones elementales a) Suponemos que la Tierra permanece fija y son los astros quienes se mueven en torno a ella. Es decir, en nuestro modelo
LA FORMA DE LA TIERRA
La Tierra Aprendemos también cosas sobre la Tierra mirando a la Luna y a las estrellas Por qué los griegos antiguos ya sabían que la Tierra era redonda? Qué movimientos presenta la Tierra? Por qué hay
Curso Energía Solar Fotovoltaica. Conceptos Generales
Curso Energía Solar Fotovoltaica Conceptos Generales Temario Introducción Coordenadas y Movimiento de la Tierra Coordenadas Solares Orientación de los módulos Introducción La energía solar fotovoltaica
Consejería de Fomento, Juventud y Deportes DIRECCIÓN GENERAL DE OBRAS PÚBLICAS
Consejería de Fomento, Juventud y Deportes DIRECCIÓN GENERAL DE OBRAS PÚBLICAS DESCRIPCIÓN GENERAL DE LOS RELOJES DE SOL DESCRIPCIÓN GENERAL DE LOS RELOJES DE SOL. El reloj de sol es un instrumento usado
PROYECTO ERATOSTHENES Año Internacional de la Astronomía 2009 Más de 800 centros de enseñanza, unidos para medir el radio de la Tierra
PROYECTO ERATOSTHENES Año Internacional de la Astronomía 2009 Más de 800 centros de enseñanza, unidos para medir el radio de la Tierra El día 26 de marzo de 2009 se emuló en el patio del IES Hispanidad;
RELOJ SOLAR HORIZONTAL Esteban Esteban Atrévete con el Universo
RELOJ SOLAR HORIZONTAL Esteban Esteban Atrévete con el Universo Características y ventajas de este tipo de reloj Está claro que si se va a trabajar en la escuela con relojes solares, el primer paso debe
AX A UNA REVISTA DE ARTE Y ARQUITECTURA
Valentina Siegfried Villar José Domínguez de Posada Rafael Magro Andrade Sobre la posición del Sol en la bóveda celeste y la dirección de sus rayos del texto: los autores. Noviembre de 2011 https://www.uax.es/publicaciones/axa.htm
ACTIVIDAD: RELOJES DE SOL (información sobre relojes de Sol).
Relojes de Sol Los relojes de Sol nos han acompañado desde hace milenios (ya existía un tipo de reloj de Sol en el antiguo Egipto) y siguen con nosotros aunque pasen un poco desapercibidos. Continúan mostrándonos
PONTIFICIA UNIVERSIDAD JAVERIANA EDUCACION CONTINUA DIPLOMADO DE BIOCLIMATICA
PONTIFICIA UNIVERSIDAD JAVERIANA EDUCACION CONTINUA DIPLOMADO DE BIOCLIMATICA RADIACION SOLAR CONCEPTOS BÁSICOS Posición astronómica de la tierra con respecto al sol Solsticios y equinoccios Angulo de
TIEMPO -DÍAS -HORAS CONCEPTO GENERAL DEL TIEMPO
TIEMPO -DÍAS -HORAS CONCEPTO GENERAL DEL TIEMPO Para medir el tiempo se necesita un fenómeno periódico, que se repita continuamente y con la misma fase, lo que sucede con fenómenos astronómicos basado
El proyecto Eratóstenes. Guía para el estudiante.
El proyecto Eratóstenes. Guía para el estudiante. En esta actividad vas a trabajar en colaboración con estudiantes de otra escuela para medir el radio de la Tierra. Vas a usar los mismos métodos y principios
Cómo construir un reloj de Sol
Cómo construir un reloj de Sol Historia de los Relojes de Sol: Desde tiempos inmemoriales la humanidad ha sabido que la forma en la que cambia la sombra de un objeto indica la hora del día, que la sombra
LA TIERRA PARALELA DEL MEDIO MUNDO CERCA DE QUITO
NETWORK FOR ASTRONOMY SCHOOL EDUCATION LA TIERRA PARALELA DEL MEDIO MUNDO CERCA DE QUITO Carme Alemany, Rosa M. Ros NASE Introducción Cerca de Quito esta la Mitad del Mundo cuya latitud es 0º 0 0. En este
Evaluación bimestral Al Rescate de los de Valores Perdidos para Vivir Dignamente y Convivir Pacíficamente
Evaluación bimestral Al Rescate de los de Valores Perdidos para Vivir Dignamente y Convivir Pacíficamente Asignatura: GEOGRAFIA Grado: 6 Docente: FARIDE Estudiante Fecha: Horas: Comencemos por el Ecuador,
Recordando la experiencia
Recordando la experiencia En el Taller de Relojes de Sol aprendimos a construir uno de los instrumentos de medición del tiempo más antiguos del mundo. Se basa en la observación de la sombra que crea sobre
Reloj de Sol de Cuadrante Analemático
Extraído de.:. EIDiGn.:. Reloj de Sol de Cuadrante Analemático http://horasolar.perez.cmoi.cc/teoria/article/reloj-de-sol-de-cuadrante Reloj de Sol de Cuadrante Analemático - Teoría - Fecha de publicación
RELOJ SOLAR VERTICAL Esteban Esteban Atrévete con el Universo
RELOJ SOLAR VERTICAL Esteban Esteban Atrévete con el Universo Importancia de los relojes verticales y sus tipos Los relojes verticales son los más habituales que podemos encontrar en paredes de iglesias,
"Energías y combustibles para el futuro"
"Energías y combustibles para el futuro" CONVERSIÓN FOTOTÉRMICA César Bedoya Frutos. Dr. Arquitecto. Catedrático de Universidad cesar.bedoya@upm.es Soleamiento Metodología de diseño bioclimático Calentamiento
Transformación de coordenadas
Anexo A Transformación de coordenadas Para realizar las transformaciones entre sistemas de coordenadas astronómicos, se utilizarán giros en el espacio, ya que todos los sistemas se suponen con el mismo
INSTRUCCIONES. 1- Ajustar la latitud del lugar en el círculo graduado haciendo coincidir los grados con la raya marcada en la madera.
El simusol es un instrumento artesano de precisión, está construido en madera de haya y se ha tenido en cuenta que todos los materiales sean duraderos y reciclables. Es imprescindible para los instaladores
El día más corto del año, la Ecuación del Tiempo, la Analema y otros animales
El día más corto del año, la Ecuación del Tiempo, la Analema y otros animales By Luis Mederos Como todos sabemos, alrededor del 21 de Diciembre se produce el solsticio de invierno (en el hemisferio norte).
GEORAMA ROTACIÓN DE LA TIERRA EN TORNO AL SOL. ROTACIÓN EN TORNO A SÍ MISMA
GEORAMA INTRODUCCIÓN La presente práctica ha sido concebida para acompañar el aparato denominado Georama (del griego geos = Tierra, orama = vista o representación). Es una práctica suficientemente completa
AARÓN SOLER LOZANO 4º ESO C
AARÓN SOLER LOZANO 4º ESO C INTRODUCCIÓN BLOQUE III En este bloque se explica la formación de los eclipses y las diferentes características de los astros implicados en su funcionamiento, es decir, el Sol,
Construcción de relojes de Sol. Teoría y práctica CONSTRUCCIÓN DE RELOJES DE SOL. TEORÍA Y PRÁCTICA. PRIMERA JORNADA
CONSTRUCCIÓN DE RELOJES DE SOL. TEORÍA Y PRÁCTICA. PRIMERA JORNADA 1. Introducción Un fenómeno físico inmediato, primario, es la alternancia entre el día y la noche pasando por el amanecer y el crepúsculo.
Posición y Movimiento del Sol
Posición y Movimiento del Sol Eva Roldán Saso Grupo de Energía y Edificación CURSO 2: Urbanismo Sostenible y diseño bioclimático 2009/10 1 ÍNCIDE 1. Trayectorias Solares 1.1 Movimientos de la Tierra 1.2
Reloj de Sol analemático.
Reloj de Sol analemático. IES de Llerena Curso 20122013 Juan Guerra Bermejo Un reloj de sol analemático es un reloj de sol horizontal dibujado en el suelo en el que el gnomon es perpendicular a éste. El
Carpe Diem Nº 26 Edición trimestral Revista de gnomónica Junio 2008 La primera revista digital de gnomónica en español Joan Serra Busquets
Carpe Diem Nº 26 Edición trimestral Revista de gnomónica Junio 2008 La primera revista digital de gnomónica en español Joan Serra Busquets TALLER DE BRICOLAJE Relojes Proyectivos (1) Por Francesc Clarà
Construimos un CUADRANTE y aprendemos a utilizarlo.
Construimos un CUADRANTE y aprendemos a utilizarlo. El cuadrante es un sencillo instrumento que sirve para medir, generalmente, ángulos de elevación. Fue utilizado, sobretodo, en los comienzos de la navegación
GEOMETRÍA DESCRIPTIVA SISTEMAS DE PROYECCIÓN
GEOMETRÍA DESCRIPTIVA La Geometría Descriptiva es la ciencia de representación gráfica, sobre superficies bidimensionales, de los problemas del espacio donde intervengan, puntos, líneas y planos. La Geometría
1.1 Construcción de un reloj de sol de cuadrante ecuatorial
Tarea 2. Plan de mejora de las competencias lectoras en la ESO. TEXTO. 1.1 Construcción de un reloj de sol de cuadrante ecuatorial Los relojes de sol de "cuadrante solar" están formados por un estilete,
SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL
SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,
El proyecto Eratóstenes en América
El proyecto Eratóstenes en América 21 de Septiembre de 2011 www.cida.gob.ve Por Venezuela: Referente por Venezuela: Sr. Enrique Torres, CIDA Programa UNAWE-GTTP-Venezuela ejtt1010@gmail.com, 0426-5720275
Introducción pedagógica al módulo "Siguiendo los pasos de Eratóstenes"
Proyecto Introducción pedagógica al módulo "Siguiendo los pasos de Eratóstenes" Lanzado en septiembre de 2000 en nuestro sitio web, el proyecto que presentamos ya ha posibilitado que miles de alumnos del
INDICADOR DE DESMPEÑO Identifica la red geográfica, utilizando las coordenadas y convenciones, para ubicar a Colombia y otros lugares del mundo
INSTITUCION EDUCATIVA LA PRESENTACION NOMBRE ALUMNA: AREA : CIENCIAS SOCIALES ASIGNATURA: CIENCIAS SOCIALES DOCENTE: CLAUDIA PATRICIA RIVERA GUERRA TIPO DE GUIA: CONCEPTUAL Y EJERCITACION PERIODO GRADO
la causa de las estaciones es la inclinación del eje de rotación terrestre con respecto al plano de la eclíptica
estaciones el pasaje del sol por los solsticios y los equinoccios determina el comienzo de las estaciones 20-21 de marzo comienza el otoño en el hemisferio sur y la primavera en el hemisferio norte 20-21
Interpolación de Coordenadas Geográficas
Interpolación de Coordenadas Geográficas Normativa 1 Dirección Nacional de Metodología Estadística, Tecnología y Coordinación del Sistema Estadístico Nacional Departamento de Cartografía y Sistemas de
Cuán errante en torno a la Tierra se desplaza el Sol?
Alejandro Gangui Instituto de Astronomía y Física del Espacio, UBA-Conicet Cuán errante en torno a la Tierra se desplaza el ol? ale el ol por el este? i les preguntara a varios amigos por dónde esperan
Dra.Julia Bilbao Universidad de Valladolid, Departamento Física Aplicada Laboratorio de Física de la Atmósfera juliab@fa1.uva.es
CURSO de FÍSICA DE LA ATMÓSFERA RADIACIÓN SOLAR Dra.Julia Bilbao Universidad de Valladolid, Departamento Física Aplicada Laboratorio de Física de la Atmósfera juliab@fa1.uva.es ÍNDICE SOL Y LA CONSTANTE
1. LA REPRESENTACIÓN DE LA TIERRA
1. LA REPRESENTACIÓN DE LA TIERRA 1.1. La forma de la Tierra La Tierra tiene forma esférica, aunque no es una esfera perfecta, ya que se encuentra achatada en dos puntos geográficos, llamados polos. El
Estaciones en la educación básica. charles-henri.eyraud@ens-lyon.fr
Estaciones en la educación básica charles-henri.eyraud@ens-lyon.fr Curicular Educación Básica y Media Segundo año básico Habilidades de pensamiento científico: 1. Observación directa y descripción oral
El diagrama solar. Benoit Beckers
El diagrama solar Benoit Beckers 1. Nociones fundamentales Para entender bien el movimiento aparente del sol sobre la bóveda celeste, conviene recordar el movimiento real de la tierra en el espacio del
CONSTRUYENDO RELOJES DE SOL EN EL AULA
CONSTRUYENDO RELOJES DE SOL EN EL AULA INDICE 1. DIDACTICA DE LOS RELOJES DE SOL 2. CÓMO EMPEZAR 3. RELOJ SOLAR PARA EL POLO 4. RELOJ ECUATORIAL PARA CUALQUIER LATITUD 5. SIGUIENTES MODELOS: CUADRANTE
La hora de la Tierra y la hora solar
La hora de la Tierra y la hora solar 1 José Alberto Villalobos www.geocities.com/astrovilla2000 Resumen El tiempo solar es una medida del tiempo fundamentada en el movimiento aparente del Sol sobre el
10 Anexo A: Aspectos Básicos de la Radiación Solar
10 Anexo A: Aspectos Básicos de la Radiación Solar 10.1 Relaciones astronómicas Tierra-Sol La literatura solar contiene una gran variedad de sistemas, métodos y ecuaciones para establecer las relaciones
Actividades con GeoGebra
Conectar Igualdad - "Netbooks Uno a Uno" Actividades con GeoGebra Nociones básicas, rectas Silvina Ponce Dawson Introducción. El GeoGeobra es un programa que permite explorar nociones matemáticas desde
SOLSTICIO EL COMIENZO DEL VERANO
SOLSTICIO EL COMIENZO DEL VERANO Agrupación Astronómica de Huesca Este martes 21 de junio de 2016, a las cero horas y treinta cuatro minutos de la noche, comienza el verano. Es el solsticio. En este breve
Líneas Equipotenciales
Líneas Equipotenciales A.M. Velasco (133384) J.P. Soler (133380) O.A. Botina (133268) Departamento de física, facultad de ciencias, Universidad Nacional de Colombia Resumen. En esta experiencia se estudia
EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo
EJERCICIOS RESUELTOS 1º DE BACHILLERATO (Hnos. Machado): EJERCICIOS DE REFUERZO 1º EVALUACIÓN (Cinemática) Por Álvaro Téllez Róbalo 1. El vector posición de un punto, en función del tiempo, viene dado
Movimientos en el plano
7 Movimientos en el plano Objetivos En esta quincena aprenderás a: Manejar el concepto de vector como elemento direccional del plano. Reconocer los movimientos principales en el plano: traslaciones, giros
A S T R O N O M Í A T e l u u rr ii oo
A S T R O N O M Í A Telurio Telurio A S T R O N O M Í A Se trata de un módulo de gran utilidad para estudiar los movimientos relativos de los tres astros que protagonizan nuestra vida diaria: el Sol, la
3.1 DEFINICIÓN. Figura Nº 1. Vector
3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado
Caracterización geométrica
Caracterización geométrica Ahora vamos a centrar nuestra atención en la elipe. Esta figura geométrica tiene la misma esencia que la circunferencia, pero ésta está dilatada en uno de sus ejes. Recuerda
Definición de vectores
Definición de vectores Un vector es todo segmento de recta dirigido en el espacio. Cada vector posee unas características que son: Origen: O también denominado Punto de aplicación. Es el punto exacto sobre
UNIDAD 1: ASTRONOMÍA DE POSICIÓN. MOVIMIENTOS DE LA TIERRA
1 UNIDAD 1: ASTRONOMÍA DE POSICIÓN. MOVIMIENTOS DE LA TIERRA ESQUEMA: a) Dónde estamos: localizándonos Importancia de conocer nuestra situación, o la un objeto en el cielo. 1.- Coordenadas: Qué son? Para
4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS
4 4.1 EL SISTEMA POLAR 4. ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS POLARES: RECTAS, CIRCUNFERENCIAS, PARÁBOLAS, ELIPSES, HIPÉRBOLAS, LIMACONS, ROSAS, LEMNISCATAS, ESPIRALES.
Unidad didáctica: Metrología e instrumentos de medida. CURSO 3º ESO versión 1.0
Unidad didáctica: Metrología e instrumentos de medida CURSO 3º ESO versión 1.0 1 Unidad didáctica: Metrología e instrumentos de medida ÍNDICE 1.- Introducción. 2.- Antecedentes históricos. 3.- Medición
Vectores no colineales.
Vectores no colineales. Por definición son aquellos vectores que no tienen igual dirección. La resultante de los mismos no surge de la suma algebraica de los módulos de dichos vectores, sino que deben
Ejercicios de Trigonometría
Ejercicios de Trigonometría 1) Indica la medida de estos ángulos en radianes: a) 0º b) 45º c) 60º d) 120º Recuerda que 360º son 2π radianes, con lo que para hacer la conversión realizaremos una simple
XIII Concurso Intercentros de Matemáticas de la Comunidad de Madrid
PRU POR QUIPOS 1º y 2º de.s.o. (45 minutos) 1. n el triángulo dibujamos tres paralelas a la base que dividen a la altura sobre dicho lado en cuatro partes iguales. Si el área del trapecio rayado es 35
Actividades con Geoplano
Descripción General Actividades con Geoplano El Geoplano es un arreglo rectángular de puntos (clavos) de tal manera que entre puntos adyacentes horizontal o verticalmente hay una distancia constante. En
FUNCIONES CUADRÁTICAS Y RACIONALES
www.matesronda.net José A. Jiménez Nieto FUNCIONES CUADRÁTICAS Y RACIONALES 1. FUNCIONES CUADRÁTICAS. Representemos, en función de la longitud de la base (), el área (y) de todos los rectángulos de perímetro
PARÁBOLA. 1) para la parte positiva: 2) para la parte negativa: 3) para la parte positiva: 4) para la parte negativa:
Página 90 5 LA PARÁBOLA 5.1 DEFINICIONES La parábola es el lugar geométrico 4 de todos los puntos cuyas distancias a una recta fija, llamada, y a un punto fijo, llamado foco, son iguales entre sí. Hay
Taller: Modelo para representar la trayectoria del sol sobre el globo terrestre
Taller: Modelo para representar la trayectoria del sol sobre el globo terrestre Ilce Tlanezi Lara Montiel y Julieta Fierro Resumen En este artículo presentaremos la manera de construir un modelo que nos
Seminario Universitario Material para estudiantes. Física. Unidad 2. Vectores en el plano. Lic. Fabiana Prodanoff
Seminario Universitario Material para estudiantes Física Unidad 2. Vectores en el plano Lic. Fabiana Prodanoff CONTENIDOS Vectores en el plano. Operaciones con vectores. Suma y producto por un número escalar.
Guía del estudiante. Clase 4 Tema: Coordenadas geográficas y husos horarios. Actividad 1
SOCIALES Grado Séptimo Bimestre I Semana 2 Número de clases 4-6 Clase 4 Tema: Coordenadas geográficas husos horarios Actividad 1 En el planisferio que enuentra a continuación, dibuje en rojo los paralelos
CIENCIAS SOCIALES 5º EL UNIVERSO
EL UNIVERSO Vas aprender a. Componentes y características del Universo. b. El sistema solar. Los planetas. c. El Planeta Tierra: representación y sus coordenadas. e. Las fases Lunares. Movimientos. INTRODUCCIÓN.
En la siguiente gráfica se muestra una función lineal y lo que representa m y b.
FUNCIÓN LINEAL. La función lineal o de primer grado es aquella que se representa gráficamente por medio de una línea recta. Dicha función tiene una ecuación lineal de la forma f()= =m+b, en donde m b son
Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.
Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).
TIPOS DE RESTRICCIONES
RESTRICCIONES: Las restricciones son reglas que determinan la posición relativa de las distintas geometrías existentes en el archivo de trabajo. Para poder aplicarlas con rigor es preciso entender el grado
EL SISTEMA SOLAR A ESCALA
Cómo motivar a los estudiantes mediante actividades científicas atractivas EL SISTEMA SOLAR A ESCALA Introducción: Mª Teresa de la Calle García COLEGIO PÍO XII Valencia En la mayoría de los libros de texto
COORDENADAS CURVILINEAS
CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un
TEMA 10: PROYECCIONES CARTOGRÁFICAS. OBJETIVOS DEL TEMA:
TEMA 10: PROYECCIONES CARTOGRÁFICAS. OBJETIVOS DEL TEMA: Conocer el concepto de sistema de proyección cartográfica. Conocer los principales sistemas de proyección en cartografía. Conocer los principios
Curso de iniciación a la Astronomía. http://www.elcielodelmes.com/ (por cortesía de Mario Gaitano Játiva) ÍNDICE
ÍNDICE 1. Astronomía de Posición 1.1 Los movimientos de la tierra - La rotación 1.2 Los movimientos de la tierra - La precesión 1.3 La esfera terrestre 1.4 Coordenadas geográficas 1.5 Las coordenadas geográficas
La forma algebraica de la ecuación producto cruz es más complicada que la del producto escalar. Para dos vectores 3D y,
Materia: Matemática de 5to Tema: Producto Cruz Marco Teórico Mientras que un producto escalar de dos vectores produce un valor escalar; el producto cruz de los mismos dos vectores produce una cantidad
A RG. Giro de un punto A respecto del eje vertical, e. Giro de un punto A respecto del eje de punta, e.
Giro de un punto A respecto del eje vertical, e. A''' A''' 2 e A'' 60 El giro es otro de los procedimietos utilizados en diédrico para resolver construcciones. Aquí vamos a ver solo uno de sus aspectos:
Las Estaciones Ficha didáctica del profesorado 3er ciclo de Primaria
Las Estaciones Ficha didáctica del profesorado 3er ciclo de Primaria www.eurekamuseoa.es Introducción: MONITOR: Antes de empezar es conveniente recordar a los estudiantes cuando empieza cada estación.
TEMA 6 SEMEJANZA DE TRIÁNGULOS
Tema 6 Semejanza de triángulos Matemáticas - 4º ESO 1 TEMA 6 SEMEJANZA DE TRIÁNGULOS ESCALAS EJERCICIO 1 : En una fotografía, María y Fernando miden,5 cm y,7 cm, respectivamente; en la realidad, María
MOVIMIENTOS DE LA TIERRA 1
MOVIMIENTOS DE LA TIERRA 1 Ficha 1 (Actividad 1) La hora Los círculos son relojes. Antes de empezar, puedes añadir marcas en cada una de las esferas para indicar la posición del número doce, el tres, el
Unidad V: Integración
Unidad V: Integración 5.1 Introducción La integración es un concepto fundamental de las matemáticas avanzadas, especialmente en los campos del cálculo y del análisis matemático. Básicamente, una integral
2. Vector tangente y gráficas en coordenadas polares.
GRADO DE INGENIERÍA AEROESPACIAL CURSO 0 Vector tangente y gráficas en coordenadas polares De la misma forma que la ecuación cartesiana y = yx ( ) define una curva en el plano, aquella formada por los
Muchas veces hemos visto un juego de billar y no nos percatamos de los movimientos de las bolas (ver gráfico 8). Gráfico 8
Esta semana estudiaremos la definición de vectores y su aplicabilidad a muchas situaciones, particularmente a las relacionadas con el movimiento. Por otro lado, se podrán establecer las características
PRISMA OBLICUO > REPRESENTACIÓN Y DESARROLLO POR EL MÉTODO DE LA SECCIÓN NORMAL
1. CARACTERÍSTICAS GENERALES DEL PRISMA OBLICUO Desde el punto de vista de la representación en SISTEMA DIÉDRICO, el prisma oblicuo presenta dos características importantes que lo diferencian del prisma
a < b y se lee "a es menor que b" (desigualdad estricta) a > b y se lee "a es mayor que b" (desigualdad estricta)
Desigualdades Dadas dos rectas que se cortan, llamadas ejes (rectangulares si son perpendiculares, y oblicuos en caso contrario), un punto puede situarse conociendo las distancias del mismo a los ejes,