Reloj de Sol analemático.
|
|
- María del Carmen Caballero Mendoza
- hace 2 años
- Vistas:
Transcripción
1 Reloj de Sol analemático. IES de Llerena Curso Juan Guerra Bermejo
2 Un reloj de sol analemático es un reloj de sol horizontal dibujado en el suelo en el que el gnomon es perpendicular a éste. El reloj tiene forma elíptica. El eje mayor de la elipse tiene que estar orientado en la dirección ESTEOESTE y el eje menor en la dirección NORTESUR. El gnomon va a ser el propio observador y adoptará distintas posiciones, sobre el eje menor de la elipse, según la época del año en la que estemos, proyectando una sombra sobre la elipse que nos indicará la hora solar. Para la elaboración de este tipo de relojes tenemos que seguir estos pasos: Primero tenemos que determinar la Meridiana local, o sea, la línea NS geográfica con toda precisión, siguiendo el método: Con centro en X, trazamos una circunferencia que tenga a su sombra por radio, marcamos también el radio (XA); con el paso del día, la sombra volverá a ser el radio de la circunferencia. En ese momento marcamos la sombra (XB). La bisectriz del segmento AB es la meridiana local. Una vez marcada la meridiana, y conociendo la Latitud y la Longitud del lugar (en nuestro caso, Llerena: 38º14 Norte y 6º1 Oeste), trazamos en el suelo una elipse con las siguientes proporciones: semieje menor= semieje mayor x sen (Latitud) Los dos ejes de la elipse perpendiculares, uno en dirección de la meridiana y el otro perpendicular a él (EO). Marcamos el semieje mayor y el semieje menor, formando un triángulo rectángulo, determinando así los focos, según el dibujo: a: semieje mayor; b: semieje menor; c: distancia focal.
3 Sobre esta elipse marcaremos las líneas horarias haciendo coincidir la de las doce con la meridiana. Si queremos que marque la hora oficial, debemos desplazar la señal de las doce un ángulo igual a la Longitud del lugar. Las demás formarán con las de los doce ángulos que vendrán dados por la expresión: Cotgβ= cotg Ω x sen (Latitud) Donde β es el ángulo que forma la línea horaria con la de las doce, Ω varía de 15º en 15º (la Latitud, en nuestro caso, es 38º 14 N.). El reloj se orientará según indica la figura siguiente. Desplazando la señal de las 12 un ángulo igual a la Longitud de Llerena (6º 1 Oeste).
4 A continuación marcaremos el analema. Tomando como origen de coordenadas la intersección de los dos ejes (O), la coordenada X estaría sobre el eje mayor (línea EO), y la Y sobre el eje menor (línea NS). La coordenada Y viene dada por la expresión: y= a. tg D. cos (Latitud) Donde a es el semieje mayor y D es la declinación correspondiente a los días que se quieran marcar en el analema (1, 10 y 20 de cada mes), y que tomaremos del Anuario. La coordenada x, sin embargo, depende de la ecuación del tiempo y viene dada por la expresión: x=a.sen T Donde T es el atraso o adelanto que proporciona la ecuación del tiempo para ese día expresado en minutos de arco (como ya sabemos, 1 minuto de tiempo es igual a 15 minutos de arco). Este dato también puede obtenerse del Anuario. Marcando estos puntos, se tendría una figura en forma de ocho tal y como se puede ver en la figura siguiente. Se pueden marcar dos o tres días para cada mes a la hora de hallar la ecuación del tiempo y la declinación, dependiendo de las dimensiones de la elipse horaria. Nota: En las figuras anteriores aparecen las líneas horarias desplazadas a la derecha de la meridiana que, como ya sabemos, correspondería a un reloj analemático ubicado en un lugar de longitud Este. Para Llerena, a 6º01 de longitud Oeste, las líneas horarias estarían desplazadas 6º01 a la izquierda de la Meridiana. En nuestro caso, para Llerena nos quedaría:
5 Por último, debe tenerse en cuenta que la hora oficial en Otoño e Invierno es una hora más que la solar, y dos más en Primavera y Verano.
6 CÁLCULOS PARA LA ANALEMA FECHA EC. TIEMPO DECLINACIÓN MIN SEG T GRA MIN SEG T ENERO, 1 3,46 3,46 23,01 23,01 ENERO, 10 7,43 7,43 21,97 21,97 ENERO, 20 10,96 10,96 20,13 20,13 FEBRERO,1 13,58 13,58 17,12 17,12 FEBRERO, 10 14,26 14,26 14,37 14,37 FEBRERO, 20 13,78 13,78 10,94 10,94 MARZO,1 12,41 12,41 7,61 7,61 MARZO, 10 10,35 10,35 4,13 4,13 MARZO, 20 7,55 7,55 0,18 0,18 ABRIL, 1 3,94 3,94 4,52 4,52 ABRIL, 10 1,38 1,38 7,93 7,93 ABRIL, 20 1,03 1,03 11,5 11,5 MAYO,1 2,87 2,87 15,06 15,06 MAYO, 10 3,59 3,59 17,61 17,61 MAYO, 20 3,49 3,49 19,97 19,97 JUNIO, 1 2,21 2,21 22,93 22,93 JUNIO, 10 0,62 0, JUNIO, 20 1,5 1,5 23,43 23,43 JULIO, 1 3,8 3,8 23,1 23,1 JULIO, 10 5,33 5,33 22,23 22,23 JULIO, 20 6,35 6,35 20,66 20,66 AGOSTO, 1 6,35 6,35 18,02 18,02 AGOSTO, 10 5,41 5,41 15,57 15,57 AGOSTO, 20 3,46 3,46 12,45 12,45 SEPTIEMBRE, 1 0,11 0,11 8,29 8,29 SEPTIEMBRE, 10 2,89 2,89 4,95 4,95 SEPTIEMBRE, 20 6,44 6,44 1,1 1,1 OCTUBRE,1 10,22 10,22 3,18 3,18 OCTUBRE, 10 12,92 12,92 6,63 6,63 OCTUBRE, 20 15,17 15,17 10,33 10,33 NOVIEMBRE, 1 16,44 16,44 14,42 14,42 NOVIEMBRE, 10 16,14 16,14 17,13 17,13 NOVIEMBRE, 20 14,46 14,46 19,98 19,98 DICIEMBRE, 1 11,06 11,06 21,8 21,8 DICIEMBRE, 10 7,32 7,32 22,91 22,91 DICIEMBRE, 20 2,54 2,54 23,43 23,43 LATITUD: , SEMIEJE MAYOR 300 SEMIEJE MENOR 185,659645
7 COORDENADAS DE LA ANALEMA FECHA X Y ENERO, 1 4,53 100,08 ENERO, 10 9,72 95,06 ENERO, 20 14,34 86,38 FEBRERO,1 17,77 72,59 FEBRERO, 10 18,65 60,37 FEBRERO, 20 18,03 45,55 MARZO,1 16,24 31,48 MARZO, 10 13,54 17,02 MARZO, 20 9,88 0,74 ABRIL, 1 5,16 18,63 ABRIL, 10 1,81 32,82 ABRIL, 20 1,35 47,94 MAYO,1 3,76 63,41 MAYO, 10 4,70 74,80 MAYO, 20 4,57 85,63 JUNIO, 1 2,89 99,69 JUNIO, 10 0,81 100,03 JUNIO, 20 1,96 102,12 JULIO, 1 4,97 100,51 JULIO, 10 6,98 96,31 JULIO, 20 8,31 88,86 AGOSTO, 1 8,31 76,66 AGOSTO, 10 7,08 65,66 AGOSTO, 20 4,53 52,03 SEPTIEMBRE, 1 0,14 34,34 SEPTIEMBRE, 10 3,78 20,41 SEPTIEMBRE, 20 8,43 4,52 OCTUBRE,1 13,37 13,09 OCTUBRE, 10 16,90 27,39 OCTUBRE, 20 19,84 42,95 NOVIEMBRE, 1 21,50 60,59 NOVIEMBRE, 10 21,11 72,63 NOVIEMBRE, 20 18,92 85,68 DICIEMBRE, 1 14,47 94,25 DICIEMBRE, 10 9,58 99,59 DICIEMBRE, 20 3,32 102,
8 a= 3 m b= 1,86 m c= 2,35 m a= 2 m b= 1,24 m c= 1,57 m Ángulo de las líneas horarias β Ω Ω radianes cotg Ω Latitud sen(latitud) cot β tg β β radianes 23, ,26 3,73 0,67 0,62 2,31 0,43 0,41 43, ,52 1,73 0,67 0,62 1,07 0,93 0,75 58, ,79 1,00 0,67 0,62 0,62 1,62 1,02 70, ,05 0,58 0,67 0,62 0,36 2,80 1,23 80, ,31 0,27 0,67 0,62 0,17 6,03 1,41 90, ,57 0,00 0,67 0,62 0, ,11 1,57 80, ,83 0,27 0,67 0,62 0,17 6,03 1,41 70, ,09 0,58 0,67 0,62 0,36 2,80 1,23 58, ,36 1,00 0,67 0,62 0,62 1,62 1,02 43, ,62 1,73 0,67 0,62 1,07 0,93 0,75 23, ,88 3,73 0,67 0,62 2,31 0,43 0,41 0, , ,89 0,67 0, ,87 0,00 0,00 23, ,40 3,73 0,67 0,62 2,31 0,43 0,41 43, ,67 1,73 0,67 0,62 1,07 0,93 0,75 58, ,93 1,00 0,67 0,62 0,62 1,62 1,02 70, ,19 0,58 0,67 0,62 0,36 2,80 1,23 80, ,45 0,27 0,67 0,62 0,17 6,03 1,41 89, ,71 0,00 0,67 0,62 0, ,37 1,57 80, ,97 0,27 0,67 0,62 0,17 6,03 1,41 70, ,24 0,58 0,67 0,62 0,36 2,80 1,23 58, ,50 1,00 0,67 0,62 0,62 1,62 1,02 43, ,76 1,73 0,67 0,62 1,07 0,93 0,75 23, ,02 3,73 0,67 0,62 2,31 0,43 0,41 0, , ,44 0,67 0, ,43 0,00 0,00
Reloj de Sol de Cuadrante Analemático
Extraído de.:. EIDiGn.:. Reloj de Sol de Cuadrante Analemático http://horasolar.perez.cmoi.cc/teoria/article/reloj-de-sol-de-cuadrante Reloj de Sol de Cuadrante Analemático - Teoría - Fecha de publicación
RELOJES DE SOL. 1. Movimiento diurno del Sol. 2. Variaciones anuales del movimiento del Sol
1. Movimiento diurno del Sol RELOJES DE SOL Sin necesidad de utilizar instrumento alguno, todo el mundo sabe que el Sol, por la mañana sale por algún lugar hacia el Este, que hacia el mediodía está en
Consejería de Fomento, Juventud y Deportes DIRECCIÓN GENERAL DE OBRAS PÚBLICAS
Consejería de Fomento, Juventud y Deportes DIRECCIÓN GENERAL DE OBRAS PÚBLICAS DESCRIPCIÓN GENERAL DE LOS RELOJES DE SOL DESCRIPCIÓN GENERAL DE LOS RELOJES DE SOL. El reloj de sol es un instrumento usado
TALLER DE CONSTRUCCIÓN DE RELOJES DE SOL
TALLER DE CONSTRUCCIÓN DE RELOJES DE SOL 1. Algunas consideraciones elementales a) Suponemos que la Tierra permanece fija y son los astros quienes se mueven en torno a ella. Es decir, en nuestro modelo
Reloj de sol analemático
Reloj analemático dibujado por el autor y sus alumnos en el patio del IES Aljada. MURCIA Reloj de sol analemático Para el proyecto: Ni una escuela sin reloj de sol! Simón García RELOJ DE SOL ANALEMÁTICO
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA
UNIVERSIDAD NACIONAL DE ASUNCIÓN FACULTAD DE INGENIERÍA CURSO PREPARATORIO DE INGENIERÍA (CPI) EJERCITARIO TEÓRICO DE GEOMETRÍA ANALÍTICA AÑO 2014 RECTAS - EJERCICIOS TEÓRICOS 1- Demostrar que la ecuación
CONSTRUYENDO RELOJES DE SOL EN EL AULA
CONSTRUYENDO RELOJES DE SOL EN EL AULA INDICE 1. DIDACTICA DE LOS RELOJES DE SOL 2. CÓMO EMPEZAR 3. RELOJ SOLAR PARA EL POLO 4. RELOJ ECUATORIAL PARA CUALQUIER LATITUD 5. SIGUIENTES MODELOS: CUADRANTE
RELOJ SOLAR VERTICAL Esteban Esteban Atrévete con el Universo
RELOJ SOLAR VERTICAL Esteban Esteban Atrévete con el Universo Importancia de los relojes verticales y sus tipos Los relojes verticales son los más habituales que podemos encontrar en paredes de iglesias,
TANIA PLANA LÓPEZ (4º ESO C)
TANIA PLANA LÓPEZ (4º ESO C) EQUINOCCIO. INCLINACIÓN DE LOS RAYOS SOLARES INTRODUCCIÓN BLOQUE I A la hora de estudiar la Tierra te enseñamos este apartado para explicarte sus tipos de movimiento, la práctica
SOBRE LA CONSTRUCCIÓN DE RELOJES DE SOL
SOBRE LA CONSTRUCCION DE RELOJES DE SOL 1. Construyamos un Reloj de Sol. 2. El reloj de Cuadrante Ecuatorial. 3. El reloj de Cuadrante Horizontal. 4. El reloj de Cuadrante Vertical. 5. Otros tipos de relojes
DIBUJO TÉCNICO. UNIDAD DIDÁCTICA 9: Geometría 2D (V)
UNIDAD DIDÁCTICA 9: Geometría 2D (V) ÍNDICE Página: 1 CURVAS CÓNICAS. ELEMENTOS CARACTERÍSTICOS.. 2 2 TRAZADO MEDIANTE RADIOS VECTORES 4 3 RECTAS TANGENTES A CÓNICAS 5 3.1 CIRCUNFERENCIAS FOCALES 6 3.2
INSTRUCCIONES. 1- Ajustar la latitud del lugar en el círculo graduado haciendo coincidir los grados con la raya marcada en la madera.
El simusol es un instrumento artesano de precisión, está construido en madera de haya y se ha tenido en cuenta que todos los materiales sean duraderos y reciclables. Es imprescindible para los instaladores
Medición del radio de la Tierra
Metodología del Álgebra y la Geometría en la Enseñanza Secundaria Metodología de los Recursos en la Enseñanza de las Matemáticas en Secundaria Medición del radio de la Tierra Facultad de Matemáticas 26
RELOJ SOLAR HORIZONTAL Esteban Esteban Atrévete con el Universo
RELOJ SOLAR HORIZONTAL Esteban Esteban Atrévete con el Universo Características y ventajas de este tipo de reloj Está claro que si se va a trabajar en la escuela con relojes solares, el primer paso debe
Geometria Analítica Laboratorio #1 Sistemas de Coordenadas
1. Verificar las identidades siguientes: 1) P (3, 3), Q( 1, 3), R(4, 0) Laboratorio #1 Sistemas de Coordenadas 2) O( 10, 2), P ( 6, 3), Q( 5, 1) 2. Demuestre que los puntos dados forman un triángulo isósceles.
Cómo construir un reloj de Sol
Cómo construir un reloj de Sol Historia de los Relojes de Sol: Desde tiempos inmemoriales la humanidad ha sabido que la forma en la que cambia la sombra de un objeto indica la hora del día, que la sombra
CONSTRUCCIÓN DE RELOJES DE SOL. MODELAJE DE RELOJES. CUARTA JORNADA
CONSTRUCCIÓN DE RELOJES DE SOL. MODELAJE DE RELOJES. CUARTA JORNADA 1. La primera aproximación a un reloj de sol El intervalo elemental para la medida del tiempo es el día, período entre dos puestas sucesivas
AX A UNA REVISTA DE ARTE Y ARQUITECTURA
Valentina Siegfried Villar José Domínguez de Posada Rafael Magro Andrade Sobre la posición del Sol en la bóveda celeste y la dirección de sus rayos del texto: los autores. Noviembre de 2011 https://www.uax.es/publicaciones/axa.htm
TEMA 7 GEOMETRÍA ANALÍTICA
Nueva del Carmen, 35. 470 Valladolid. Tel: 983 9 63 9 Fax: 983 89 96 TEMA 7 GEOMETRÍA ANALÍTICA. Objetivos / Criterios de evaluación O.7. Concepto y propiedades de los vectores O.7. Operaciones con vectores:
Dra.Julia Bilbao Universidad de Valladolid, Departamento Física Aplicada Laboratorio de Física de la Atmósfera juliab@fa1.uva.es
CURSO de FÍSICA DE LA ATMÓSFERA RADIACIÓN SOLAR Dra.Julia Bilbao Universidad de Valladolid, Departamento Física Aplicada Laboratorio de Física de la Atmósfera juliab@fa1.uva.es ÍNDICE SOL Y LA CONSTANTE
Carpe Diem Nº 26 Edición trimestral Revista de gnomónica Junio 2008 La primera revista digital de gnomónica en español Joan Serra Busquets
Carpe Diem Nº 26 Edición trimestral Revista de gnomónica Junio 2008 La primera revista digital de gnomónica en español Joan Serra Busquets TALLER DE BRICOLAJE Relojes Proyectivos (1) Por Francesc Clarà
Dónde estoy? Pregúntale al Sol
Dónde estoy? Pregúntale al Sol Un experimento concebido por C. Morisset, J. Garcia-Rojas, L. Jamet, A. Farah Instituto de Astronomía UNAM 1. Introducción El propósito del experimento que hemos diseñado
SOLUCIONES CIRCUNFERENCIA. 1. Ecuación de la circunferencia cuyo centro es el punto (1, 2) y que pasa por el punto (2,3).
SOLUCIONES CIRCUNFERENCIA 1. Ecuación de la circunferencia cuyo centro es el punto (1,) y que pasa por el punto (,). Para determinar la ecuación de la circunferencia es necesario conocer el centro y el
Recordando la experiencia
Recordando la experiencia En el Taller de Relojes de Sol aprendimos a construir uno de los instrumentos de medición del tiempo más antiguos del mundo. Se basa en la observación de la sombra que crea sobre
4.1 EL SISTEMA POLAR 4.2 ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS
4 4.1 EL SISTEMA POLAR 4. ECUACIONES EN COORDENADAS POLARES 4.3 GRÁFICAS DE ECUACIONES EN COORDENADAS POLARES: RECTAS, CIRCUNFERENCIAS, PARÁBOLAS, ELIPSES, HIPÉRBOLAS, LIMACONS, ROSAS, LEMNISCATAS, ESPIRALES.
9 Geometría. analítica. 1. Vectores
9 Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C
Universidad de la Frontera. Geometría Anaĺıtica: Departamento de Matemática y Estadística. Cĺınica de Matemática. J. Labrin - G.
Universidad de la Frontera Departamento de Matemática y Estadística Cĺınica de Matemática 1 Geometría Anaĺıtica: J. Labrin - G.Riquelme 1. Los puntos extremos de un segmento son P 1 (2,4) y P 2 (8, 4).
GEOMETRIA ANALITICA PROBLEMARIO. M. en C. JOSÉ CORREA BUCIO ELABORADO POR:
GEOMETRIA ANALITICA PROBLEMARIO ELABORADO POR: SEMESTRE AGOSTO 13 - ENERO 1 GEOMETRIA ANALITICA CBTis No. 1 SISTEMA UNIDIMENSIONAL 1.- Localizaremos en un eje de coordenadas los puntos que tienen por coordenadas
Astronomía de Posición. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 100
Astronomía de Posición. Física Geográfica. Licenciatura de Humanidades. Febrero-Mayo, 2007. 100 Índice. 1. Repaso de Trigonometría Esférica. 2. Coordenadas Horizontales: (A,a). 3. Coordenadas Ecuatoriales:
8 Geometría. analítica. 1. Vectores
Geometría analítica 1. Vectores Dibuja en unos ejes coordenados los vectores que nacen en el origen de coordenadas y tienen sus extremos en los puntos: A(, ), B(, ), C(, ) y D(, ) P I E N S A C A L C U
Construcción del reloj de sol de cuadrante ecuatorial.
Suplemento del boletín Materraña No es que nuestro boletín se nos quede pequeño ya en su sexto número. Pensamos que puede ser interesante dedicar un suplemento monográfico a algún aspecto destacado de
Qcad. Es un programa de diseña asistido por ordenador en 2 dimensiones.
Qcad Es un programa de diseña asistido por ordenador en 2 dimensiones. 1. La ventana del Qcad Barra de títulos Barra de menús Barra de herramientas Área de dibujo Barra de herramientas de dibujo Barra
Cálculo del radio de la Tierra. Método de Eratóstenes ( Siglo III a.c.)
Cálculo del radio de la Tierra. Método de Eratóstenes ( Siglo III a.c.) Introducción histórica El griego Eratóstenes vivió en Alejandría entre los años 276 a. C. y 194 a. C. Era un conocido matemático,
KIG: LA GEOMETRÍA A GOLPE DE RATÓN. Asesor de Tecnologías de la Información y de las Comunicaciones
KIG: LA GEOMETRÍA A GOLPE DE RATÓN Asesor de Tecnologías de la Información y de las Comunicaciones GNU/LINEX Mariano Real Pérez KIG KDE Interactive geometry (Geometría interactiva de KDE) es una aplicación
Reloj Solar. Reconstrucción y Acondicionamiento. William Cori Grupo Astronomía Facultad de Ciencias - UNI. Diciembre 2008
Reloj Solar Reconstrucción y Acondicionamiento William Cori Grupo Astronomía Facultad de Ciencias - UNI Diciembre 2008 Resumen Con este proyecto se busca habilitar el Reloj Solar de la Facultad de Ciencias
1.1 Construcción de un reloj de sol de cuadrante ecuatorial
Tarea 2. Plan de mejora de las competencias lectoras en la ESO. TEXTO. 1.1 Construcción de un reloj de sol de cuadrante ecuatorial Los relojes de sol de "cuadrante solar" están formados por un estilete,
Sistemas de coordenadas en la esfera celeste
astronomia.org Documentación Sistemas de coordenadas en la esfera celeste Carlos Amengual Barcelona, 1989 Revisado febrero 2010 Este documento se encuentra en la dirección http://astronomia.org/doc/esfcel.pdf
PROYECTO ERATOSTHENES Año Internacional de la Astronomía 2009 Más de 800 centros de enseñanza, unidos para medir el radio de la Tierra
PROYECTO ERATOSTHENES Año Internacional de la Astronomía 2009 Más de 800 centros de enseñanza, unidos para medir el radio de la Tierra El día 26 de marzo de 2009 se emuló en el patio del IES Hispanidad;
x y y x 2x y x y x 2y 2 5 x 2y 2 5 EJERCICIOS PROPUESTOS
Solucionario 6 CÓNICAS 6.I. Calcula las ecuaciones de los siguientes lugares geométricos e identifícalos. a) Puntos que equidistan de A(3, 3) y de B(, 5). b) Puntos que equidistan de r: y 0 y s: y 0. c)
LA ORIENTACIÓN EN EL ESPACIO Y EN EL TIEMPO. Juan Palma
LA ORIENTACIÓN EN EL ESPACIO Y EN EL TIEMPO Juan Palma OBJETIVOS Valorar las posibilidades de expresión y comunicación del dibujo topográfico para comprender el entorno natural. Conocer los medios naturales
Unidad 4: TRIGONOMETRÍA
Unidad 4: TRIGONOMETRÍA. RAZONES TRIGONOMÉTRICAS La palabra tri-gono-metría significa medida de las figuras con tres esquinas, es decir, de los triángulos. La trigonometría estudia las relaciones entre
Evaluación bimestral Al Rescate de los de Valores Perdidos para Vivir Dignamente y Convivir Pacíficamente
Evaluación bimestral Al Rescate de los de Valores Perdidos para Vivir Dignamente y Convivir Pacíficamente Asignatura: GEOGRAFIA Grado: 6 Docente: FARIDE Estudiante Fecha: Horas: Comencemos por el Ecuador,
GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA
ESCUELA PREPARATORIA OFICIAL No. 268 GUÍA DE ESTUDIO PARA EL EXAMEN EXTRAORDINARIO DE GEOMETRÍA ANALÍTICA Profra: Citlalli Artemisa García García 1) Qué es la pendiente? 2) Cómo es la pendiente de rectas
TEMA 1: REPRESENTACIÓN GRÁFICA. 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO)
TEMA 1: REPRESENTACIÓN GRÁFICA 0.- MANEJO DE ESCUADRA Y CARTABON (Repaso 1º ESO) Son dos instrumentos de plástico transparente que se suelen usar de forma conjunta. La escuadra tiene forma de triángulo
LA ESFERA CELESTE. Atlas sosteniendo la esfera celeste
LA ESFERA CELESTE. Atlas sosteniendo la esfera celeste Introducción: A simple vista, el cielo parece una inmensa cúpula que nos cubre. Durante el día se presenta de color azul con el Sol y en ciertas ocasiones
GRUPOS PUNTUALES. 4.- Si un plano de simetría contiene un eje de orden n, existen n planos que contienen el eje. formando entre ellos ángulos de
GRUPOS PUNTUALES Existen algunas relaciones entre elementos de simetría que pueden ser útiles a la hora de deducir cuales son los conjuntos de estos que forman grupo. 1.- Todos los elementos de simetría
Taller: Modelo para representar la trayectoria del sol sobre el globo terrestre
Taller: Modelo para representar la trayectoria del sol sobre el globo terrestre Ilce Tlanezi Lara Montiel y Julieta Fierro Resumen En este artículo presentaremos la manera de construir un modelo que nos
Caracterización geométrica
Caracterización geométrica Ahora vamos a centrar nuestra atención en la elipe. Esta figura geométrica tiene la misma esencia que la circunferencia, pero ésta está dilatada en uno de sus ejes. Recuerda
COORDENADAS CURVILINEAS
CAPITULO V CALCULO II COORDENADAS CURVILINEAS Un sistema de coordenadas es un conjunto de valores que permiten definir unívocamente la posición de cualquier punto de un espacio geométrico respecto de un
TEMA 10: PROYECCIONES CARTOGRÁFICAS. OBJETIVOS DEL TEMA:
TEMA 10: PROYECCIONES CARTOGRÁFICAS. OBJETIVOS DEL TEMA: Conocer el concepto de sistema de proyección cartográfica. Conocer los principales sistemas de proyección en cartografía. Conocer los principios
Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6
página 1/13 Problemas Tema 7 Enunciados de problemas ampliación Temas 5 y 6 Hoja 1 1. Dado el segmento de extremos A( 7,3) y B(5,11), halla la ecuación de su mediatriz. 2. Halla la distancia del punto
Curso Energía Solar Fotovoltaica. Conceptos Generales
Curso Energía Solar Fotovoltaica Conceptos Generales Temario Introducción Coordenadas y Movimiento de la Tierra Coordenadas Solares Orientación de los módulos Introducción La energía solar fotovoltaica
Tema 3. GEOMETRIA ANALITICA.
Álgebra lineal. Curso 087-009. Tema. Hoja 1 Tema. GEOMETRIA ANALITICA. 1. Hallar la ecuación de la recta: a) que pase por ( 4, ) y tenga pendiente 1. b) que pase por (0, 5) y tenga pendiente. c) que pase
Tema 4.3 Proyecciones cónicas y cilíndricas: La UTM. Cartografía I 2º Curso de IT en Topografía 1 er Cuatrimestre 2008/09 EPS Jaén
Tema 4.3 Proyecciones cónicas y cilíndricas: La UTM Cartografía I 2º Curso de IT en Topografía 1 er Cuatrimestre 2008/09 EPS Jaén 1. Proyecciones cónicas 2. Proyecciones cilíndricas 3. Proyección Mercator
Geometría analítica. Impreso por Juan Carlos Vila Vilariño Centro I.E.S. PASTORIZA
Conoce los vectores, sus componentes y las operaciones que se pueden realizar con ellos. Aprende cómo se representan las rectas y sus posiciones relativas. Impreso por Juan Carlos Vila Vilariño Centro
EJERCICIOS DE PUNTOS EN EL ESPACIO
EJERCICIOS DE PUNTOS EN EL ESPACIO 1.- Las coordenadas de los vértices consecutivos de un paralelogramo son A (1, 0, 0) y B(0, 1, 0). Las coordenadas del centro M son M(0, 0, 1). Hallar las coordenadas
Reloj Solar Portátil LABORATORIO. Objetivos. Materias. Destrezas. Información. Los alumnos aprenderán a:
Objetivos Los alumnos aprenderán a: onstruir y manejar un reloj de sol portátil. Se ofrece información necesaria para que el alumno calcule la hora con las correcciones correspondientes a la ecuación del
GEOMETRÍA. 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto?
GEOMETRÍA 307. Cuántas cajitas de 5 cm de largo, 1 cm de fondo y 3 cm de alto, caben en una caja de 28 cm de lago por 18 cm de fondo y 50 cm de alto? A) 740 B) 840 C) 540 D) 640 308. El largo de un rectángulo
Trigonometría I Razones trigonométricas
I. E. S. Siete Colinas (Ceuta) Departamento de Matemáticas Matemáticas de º CURSO de Educación Secundaria Obligatoria Trigonometría I Razones trigonométricas Por Javier Carroquino Cañas Catedrático de
TRANSFORMACIONES ISOMÉTRICAS
TRANSFORMACIONES ISOMÉTRICAS En una transformación isométrica: 1) No se altera la forma ni el tamaño de la figura. 2) Sólo cambia la posición (orientación o sentido de ésta). TRANSFORMACIONES ISOMÉTRICAS
5 Geometría analítica plana
Solucionario Geometría analítica plana ACTIVIDADES INICIALES.I. Halla las coordenadas del punto medio del segmento de extremos A(, ) y B(8, ). El punto medio es M(, 8)..II. Dibuja un triángulo isósceles
UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL SISTEMA DE EDUCACIÓN A DISTANCIA CARRERA DE CIENCIAS DE EDUCACIÓN AREA DE MATEMÁTICAS. Módulo
UNIVERSIDAD TECNOLÓGICA EQUINOCCIAL SISTEMA DE EDUCACIÓN A DISTANCIA CARRERA DE CIENCIAS DE EDUCACIÓN AREA DE MATEMÁTICAS Módulo TRIGONOMETRÍA Y DIBUJO TÉCNICO Msc. Sexto Nivel Tercera Edición Quito, marzo
1. Vectores 1.1. Definición de un vector en R2, R3 (Interpretación geométrica), y su generalización en Rn.
1. VECTORES INDICE 1.1. Definición de un vector en R 2, R 3 (Interpretación geométrica), y su generalización en R n...2 1.2. Operaciones con vectores y sus propiedades...6 1.3. Producto escalar y vectorial
1. Introducción. Planteamiento del problema de la medida del tiempo
1. Introducción. Planteamiento del problema de la medida del tiempo El concepto físico de tiempo como intervalo entre dos sucesos y prescindiendo de los efectos relativistas es un fenómeno simultáneo para
Academia de Matemáticas T.M Geometría Analítica Página 1
INSTITUTO POLITECNICO NACIONAL CENTRO DE ESTUDIOS CIENTIFICOS Y TECNOLOGICOS 10. CARLOS VALLEJO MÁRQUEZ PROBLEMARIO DE GEOMETRIA ANALITICA Distancia entre puntos 1.- Determina la distancia entre los puntos
Unidad V: Integración
Unidad V: Integración 5.1 Introducción La integración es un concepto fundamental de las matemáticas avanzadas, especialmente en los campos del cálculo y del análisis matemático. Básicamente, una integral
UNIVERSIDAD COMPLUTENSE DE MADRID
TIEMPO: INSTRUCCIONES GENERALES Y VALORACIÓN 120 minutos. INSTRUCCIONES: La prueba consiste en la realización de cinco ejercicios, a elegir entre dos opciones, denominadas A y B. El alumno realizará una
1. Introducción. Planteamiento del problema de la medida del tiempo
1. Introducción. Planteamiento del problema de la medida del tiempo El concepto físico de tiempo como intervalo entre dos sucesos y prescindiendo de los efectos relativistas es un fenómeno simultáneo para
Posición y Movimiento del Sol
Posición y Movimiento del Sol Eva Roldán Saso Grupo de Energía y Edificación CURSO 2: Urbanismo Sostenible y diseño bioclimático 2009/10 1 ÍNCIDE 1. Trayectorias Solares 1.1 Movimientos de la Tierra 1.2
COLEGIO NUESTRA SEÑORA DEL BUEN CONSEJO. Melilla LUGARES GEOMÉTRICOS Y CÓNICAS
LUGARES GEOMÉTRICOS Y CÓNICAS 01. Halla la ecuación de la circunferencia de centro ( 5, 12) y radio 13. Comprueba que pasa por el punto (0, 0). 02. Halla las ecuaciones de los siguientes lugares geométricos:
UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD
Opción A Ejercicio 1.- [2 5 puntos] Una ventana normanda consiste en un rectángulo coronado con un semicírculo. De entre todas las ventanas normandas de perímetro 10 m, halla las dimensiones del marco
LA ESFERA TERRESTRE. MEDIDAS
LA ESFERA TERRESTRE. MEDIDAS En este apartado vamos a realizar los siguientes cálculos, mediciones y definiciones sobre la esfera terrestre: Definiciones de: La Tierra Paralelos Paralelos más conocidos.
Curso Básico de Astronomía 2011-1
Curso Básico de Astronomía 2011-1 Sistemas de Coordenadas Astronómicas Dr. Lorenzo Olguín Ruiz 1 Sistemas de Coordenadas 1. Sistema Horizontal 2. Sistema Ecuatorial 4. Coordenadas Galácticas 2 Coordenadas
Sistema Diédrico (I). Verdadera magnitud. Abatimientos
Sistema Diédrico (I). Verdadera magnitud. Abatimientos Cuando dibujamos las proyecciones diédricas (planta, alzado y perfil) de una figura, superficie, sólido, etc.., observamos cómo sus elementos (aristas
LA ORIENTACIÓN EN EL MEDIO NATURAL
1. INTRODUCCIÓN: IES FRAY LUIS DE LEÓN 1º ESO 3ª EVALUACIÖN LA ORIENTACIÓN EN EL MEDIO NATURAL Dentro del abanico de actividades en la naturaleza, nos encontramos la orientación, que como deporte y actividad
1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a)
Ejercicios de cónicas 1º bachillerato C 1) Clasifica las siguientes cónicas y expresa sus focos y su excentricidad: a) b) c) d) e) f) g) h) i) Soluciones: a) Circunferencia de centro ( y radio 3. Excentricidad
TEMA 7: CÓNICAS CIRCUNFERENCIA. A partir de esta ecuación podemos hallar el centro y el radio sin más que deshacer los cambios:
TEMA 7: CÓNICAS CIRCUNFERENCIA Se define la circunferencia como el lugar geométrico de los puntos del plano que equidistan de un punto fijo llamado centro. A dicha distancia se le llama radio de la circunferencia.
INSTITUCIÓN EDUCATIVA SAN PEDRO CLAVER DEPARTAMENTO DE INGLÉS FECHA: 31 DE AGOSTO AL 11 DE SEPTIEMBRE 2015
DOCENTE: Juan de Dios Varelas GRADO: 5º A-B-C-D- E - F TEMA: EL CUBO Y ORTOEDRO FECHA: 31 DE AGOSTO AL 11 DE SEPTIEMBRE 2015 ESTANDAR: construyo y descompongo figuras y sólidos a partir de condiciones
UNIDAD N 4: TRIGONOMETRÍA
Matemática Unidad 4 - UNIDD N 4: TRIGONOMETRÍ ÍNDICE GENERL DE L UNIDD Trigonometría....... 3 Sistema de medición angular... 3 Sistema seagesimal...... 3 Sistema Radial....... 3 Tabla de conversión entre
SISTEMAS DE COORDENADAS SISTEMA COORDENADO UNIDIMENSIONAL
SISTEMAS DE COORDENADAS En la vida diaria, nos encontramos con el problema de ordenar algunos objetos; de tal manera que es necesario agruparlos, identificarlos, seleccionarlos, estereotiparlos, etc.,
ACTIVIDAD: RELOJES DE SOL (información sobre relojes de Sol).
Relojes de Sol Los relojes de Sol nos han acompañado desde hace milenios (ya existía un tipo de reloj de Sol en el antiguo Egipto) y siguen con nosotros aunque pasen un poco desapercibidos. Continúan mostrándonos
CRITERIOS DE VALORACIÓN
PRUEBAS DE ACCESO A LA UNIVERSIDAD PARA ALUMNOS DE BACHILLERATO LOE Junio 2010 DIBUJO TÉCNICO II. CÓDIGO Ejercicio nº 1 CRITERIOS DE VALORACIÓN OPCIÓN A 1. Construcción del heptágono conocido el lado...
EJERCICIOS RESUELTOS DE CÓNICAS
EJERCICIOS RESUELTOS DE CÓNICAS 1. Hallar la ecuación de la circunferencia que tiene: a) el centro en el punto (, 5) y el radio es igual a 7. b) un diámetro con extremos los puntos (8, -) y (, 6). a) La
RELOJ DE SOL ECUATORIAL AL MINUTO -CON CALENDARIO-
ALGO SOBRE GNOMONICA RELOJ DE SOL ECUATORIAL AL MINUTO -CON CALENDARIO- Por: JOSE IGNACIO RUIZ Artículo del Boletín de la Sociedad Geográfica de Colombia Número 104, Volumen XXVII 1972 L os relojes de
Tema 1.1 La bóveda celeste. Fundamentos geométricos.
Módulo 1. La bóveda celeste. Astronomía observacional. Tema 1.1 La bóveda celeste. Fundamentos geométricos. Objetivos del tema: En este tema aprenderemos los fundamentos geométricos del movimiento de la
Interpolación de Coordenadas Geográficas
Interpolación de Coordenadas Geográficas Normativa 1 Dirección Nacional de Metodología Estadística, Tecnología y Coordinación del Sistema Estadístico Nacional Departamento de Cartografía y Sistemas de
Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores
Apoyo para la preparación de los estudios de Ingeniería y Arquitectura Física (Preparación a la Universidad) Unidad 4: Vectores Universidad Politécnica de Madrid 5 de marzo de 2010 2 4.1. Planificación
Matemáticas. Segundo de Bachillerato. I.E.S. Los Boliches. Departamento de Matemáticas
Matemáticas. Segundo de Bachillerato. I.E.S. Los Boliches. Departamento de Matemáticas Relación. Geometría en el espacio (II) 1. Estudiar la posición relativa de los siguientes conjuntos de planos: (a)
3.1 DEFINICIÓN. Figura Nº 1. Vector
3.1 DEFINICIÓN Un vector (A) una magnitud física caracterizable mediante un módulo y una dirección (u orientación) en el espacio. Todo vector debe tener un origen marcado (M) con un punto y un final marcado
Aplicaciones de vectores
Aplicaciones de vectores Coordenadas del punto medio de un segmento Las coordenadas del punto medio de un segmento son la semisuma de las coordenadas de los extremos. Ejemplo: Hallar las coordenadas del
Atlas de Radiación Solar de Colombia. Apéndices
Apéndices 113 114 APÉNDICE A 1. RELACIONES ASTRONÓMICAS SOL-TIERRA 1.1. Propagación de la radiación solar La energía proveniente del sol es generada en el núcleo solar, en un proceso de fusión termonuclear
Normalización y Acotación
Normalización y Acotación Ingeniería Gráfica Curso 2010-2011 Normalización y Acotación Normativa de Referencia - UNE 1-039-94: Norma Española. Dibujos Técnicos. Acotación (Basada en la Norma ISO 129-1985.
Construimos un CUADRANTE y aprendemos a utilizarlo.
Construimos un CUADRANTE y aprendemos a utilizarlo. El cuadrante es un sencillo instrumento que sirve para medir, generalmente, ángulos de elevación. Fue utilizado, sobretodo, en los comienzos de la navegación
Explica tu respuesta.
G.MG.6.8.3 Describe y aplica las relaciones de paralelismo, perpendicularidad y simetría en el mundo real. Ejemplo: Si dos calles se intersecan, son perpendiculares? Explica tu respuesta. Rectas paralelas:
Ejercicios 16/17 Lección 5. Geometría. 1. como combinación lineal de u = (2,5), expresa uno de ellos como combinación lineal de los otros dos.
Ejercicios 16/17 Lección 5. Geometría. 1 1. Expresa el vector u = ( 3, 1) como combinación lineal de los vectores v = ( 3, ) w = ( 4, 1). y. Expresa w = (4, 6) como combinación lineal de u = (,5) y v =
Ejercicios de Análisis propuestos en Selectividad
Ejercicios de Análisis propuestos en Selectividad.- Dada la parábola y 4, se considera el triángulo rectángulo T( r ) formado por los ejes coordenados y la tangente a la parábola en el punto de abscisa
INECUACIONES Y VALOR ABSOLUTO
INECUACIONES Y VALOR ABSOLUTO U.C.V. F.I.U.C.V. CÁLCULO I (051) - TEMA 1 Pág.: 1 de 3 1. Resuelva las siguientes ecuaciones: a. 4 3x = 5 b. x + 1x + = 3 c. x + 1x + 4 = 10 d. x 1 + = 4 e. x + 3 = 4 f.
I.E.S. ANDRÉS DE VANDELVIRA DEPARTAMENTO DE TECNOLOGÍA SISTEMAS DE REPRESENTACIÓN GRÁFICA: PERSPECTIVA. J.Garrigós
I.E.S. ANDRÉS DE VANDELVIRA DEPARTAMENTO DE TECNOLOGÍA J.Garrigós I.E.S. ANDRÉS DE VANDELVIRA DEPARTAMENTO DE TECNOLOGÍA 1 1.INTRODUCCIÓN Los sistemas de representación en perspectiva, tienen como objetivo
LA ENSEÑANZA DE LAS MATEMÁTICAS A TRAVÉS DE LAS NUEVAS TECNOLOGÍAS 2. SOFTWARE DE GEOMETRÍA DINÁMICA MAURICIO CONTRERAS
LA ENSEÑANZA DE LAS MATEMÁTICAS A TRAVÉS DE LAS NUEVAS TECNOLOGÍAS 2. SOFTWARE DE GEOMETRÍA DINÁMICA MAURICIO CONTRERAS GEOMETRÍA CON CABRI Introducción El estudio de la geometría con Cabri permite introducir