ESTUDIO DE DINÁMICA LITORAL DE LAS PLAYAS DEL CLUB REGATAS PARA LA AMPLIACION DE ROMPEOLAS DE PROTECCION DE COSTA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ESTUDIO DE DINÁMICA LITORAL DE LAS PLAYAS DEL CLUB REGATAS PARA LA AMPLIACION DE ROMPEOLAS DE PROTECCION DE COSTA"

Transcripción

1 Club Regatas Lima Sede Chorrillos ESTUDIO DE DINÁMICA LITORAL DE LAS PLAYAS DEL CLUB REGATAS PARA LA AMPLIACION DE ROMPEOLAS DE PROTECCION DE COSTA ESTUDIO REALIZADO POR

2 ÍNDICE ANTECEDENTES... i I. INTRODUCCION... 2 I.1 DATOS DEL PROYECTO OBJETIVOS ALCANCE DEL DOCUMENTO INFORMACION UTILIZADA ORGANIZACION DEL ESTUDIO... 5 II. DESCRIPCION DE LA ZONA DE ESTUDIO MORFOLOGIA DE LA ZONA DE ESTUDIO LOCALIZACION DEL AREA DE ESTUDIO MORFOLOGÍA GLOBAL DE LA ZONA DE ESTUDIO EVOLUCION HISTORICA DE LA BAHIA DE MIRAFLORES DESCRIPCION DE LA BATIMETRIA MORFOLOGIA DE LA ZONA CLUB REGATAS EVOLUCION DE LA LINEA DE COSTA CARACTERISTICAS GRANULOMETRICAS III. DINÁMICA MARINA INTRODUCCION NIVEL DEL MAR NIVELES DE REFERENCIA MAREA ASTRONOMICA MAREA METEOROLOGICA... 28

3 3.4 CLIMA MARITIMO DESCRIPCION DEL OLEAJE DATOS DE OLEAJE REGIMENES EN PROFUNDIDADES INDEFINIDAS REGIMEN MEDIO REGIMEN EXTREMAL OLEAJE EN PROFUNDIDADES INDEFINIDAS VARIABILIDAD ANUAL DEL OLEAJE DISTRIBUCION CONJUNTA DE Hs-Tp OLEAJE EN LA ZONA DE ESTUDIO SISTEMA DE MODELADO NUMERICO MOPLA BATIMETRIA MALLAS PARAMETROS ESPECTRALES CASOS PROPAGADOS PROPAGACION DEL OLEAJE EN LA BAHIA MIRAFLORES REGIMENES MEDIO DIRECCIONALES Y FLUJOS MEDIOS DE ENERGIA CONCLUSIONES RESPECTO A LOS OLEAJES EN LA BAHIA DE MIRAFLORES OLEAJES EN LAS PLAYAS DEL CLUB REGATAS LIMA MODELO DE FUNCIONAMIENTO DE LAS PLAYAS EN LA SITUACION ACTUAL Y FUTURA SISTEMA CIRCULATORIO DE CORRIENTES EN ROTURA CONCLUSIONES RELATIVAS A LA CORRIENTE DE ROTURA IV. DINÁMICA LITORAL INTRODUCCIÓN ANALISIS EN LARGO PLAZO. ESTUDIO MORFOLOGICO DE LAS PLAYAS PLANTA DE EQUILIBRIO. SITUACION ACTUAL Y CON ROMPEOLAS PERFIL DE EQUILIBRIO PROFUNDIDAD DE CIERRE APLICACION DEL PERFIL DE EQUILIBRIO A LA

4 ZONA DE ESTUDIO ANALISIS DE PERFIL A CORTO PLAZO ESTADOS MORFODINAMICOS DE LA PLAYA TRANSPORTE LITORAL DE SEDIMENTOS FORMULACION CERC DE TRANSPORTE SOLIDO LITORAL METODOS DE CALCULO DE TRANSPORTE LITORAL RESULTADOS TRANSPORTE NETO MULTIANUAL CONCLUSIONES GENERALES DEL TRANSPORTE V. DIAGNOSTICO Y PROPUESTA DE ACTUACION CONCLUSIONES SOBRE EL EFECTO DEL FUTURO ROMPEOLAS RECOMENDACIONES. PROPUESTA DE ACTUACION Y METODOLOGIA VI. REFERENCIAS BIBLIOGRAFICAS ANEXOS Anexo I. Modelo de propagación de oleaje. OLUCA-RD, OLUCA SP. Anexo II. Modelo de corrientes de rotura. COPLA-MC/SP. Anexo III. Resultados de propagaciones.

5 Índice de Figuras Figura 1-1 Ubicación del área de estudio y posible afección a las playas... 2 Figura 1-2 Montaje de como quedaría el rompeolas tras la construcción... 3 Figura 2-1 Localización del área de estudio en la Bahía de Miraflores... 7 Figura 2-2 Localización de la zona de estudio Bahía de Miraflores... 8 Figura 2-3 Vista de infraestructuras marítimas construidos en la Bahía de Miraflores... 9 Figura 2-4 Evolución Litoral de la bahía de Miraflores según SOGREAH (1960) Figura 2-5. Batimetría dela bahía de Miraflores Figura 2-6. Batimetría de detalle de la zona de estudio Figura 2-7. División en sectores de la unidad fisiográfica Figura 2-8 Sector1: Punta La Chira Playa Agua Dulce Figura 2-9. Sector 2: Playa Las Sombrillas-Playa Las Cascadas Figura 2-10 Sector 3: Playa La Estrella-Playa Los Delfines Figura 2-11 Sector 4: Playa San Isidro Figura 2-12 Sector 5: Playa Marbella-Playa L Figura 2-13 Fotografía de satélite año Figura 2-14 Fotografía de satélite año Figura 2-15 Fotografía de satélite año Figura 2-16 Fotografía de satélite año 2005 y Figura 2-17 Clasificación de la textura del sedimento según Folk Figura 2-18 Diámetro de D50 (um) en la bahía de Miraflores Figura 3-1 Niveles de referencia en el Puerto del Callao Figura 3-2 Registro mensual de NMM del Callao Figura 3-3 Generación del Oleaje en alta mar Figura 3-4 Oleaje aproximandose a la costa de la Bahía de Miraflores Figura 3-5 Esquema de metodología de cálculo mediente técnica del hipercubo Figura 3-6 Localización de la boya NOAA en profundidades indefinidas Figura 3-7 Régimen escalar medio de Hs en aguas profundas Figura 3-8 Régimen medio de Hs en profundidades indefinidas Figura 3-9 Régimen medio de Tp en profundidades indefinidas Figura 3-10 Régimen extremal de Hs en profundidades indefinidas Figura 3-11 Régimen extremal de Tp en profundidades indefinidas Figura 3-12 Rosa de oleajes medios en profundidades indefinidas Figura 3-13 Rosa de oleaje en indefinidas año Figura 3-14 Rosa de oleaje en indefinidas año

6 Figura 3-15 Distribución conjunta de Hs y Tp sector NW Figura 3-16 Distribución conjunta de Hs y Tp sector W Figura 3-17 Distribución conjunta de Hs y Tp sector WSW Figura 3-18 Distribución conjunta de Hs y Tp sector SW Figura Distribución conjunta de Hs y Tp Sector SSW Figura 3-20 Batimetría generada en el SMC Figura 3-21 Batimetría de detalle de la zona de estudio Figura 3-22 Malla de propagación para la situación actual Figura 3-23 Malla de propagación para la situación con rompeolas Figura 3-24 Malla de propagación para la zona de detalle WSW y W Figura 3-25 Malla de propagación zona de detalle oleajes NW Figura 3-26 Malla de propagación zona de detalle oleajes SSW y SW Figura 3-27 Malla de propagación zona de detalle oleajes NW Figura 3-28 Malla de propagación zona de detalle oleajes SSW Figura 3-29 Malla de propagación zona de detalle oleajes W Figura 3-30 Propagación de oleajes medios SSW Figura 3-31 Propagación de oleajes medios WSW Figura 3-32 Propagación de oleajes medios W Figura 3-33 Propagación de oleajes medios SSW, isoalturas de olas Figura 3-34 Propagación de oleajes medios SW, isoalturas de olas Figura 3-35 Propagación de oleajes medios WSW, isoalturas de olas Figura 3-36 Propagación de oleajes medios W, isoalturas de olas Figura Propagación de temporal NW, bahía de Miraflores Figura Propagación de temporal W, bahía de Miraflores Figura 3-39 Propagación de temporal WSW, bahía de Miraflores Figura 3-40 Propagación de temporal SW, isoalturas de olas Figura 3-41 Propagación de temporal SSW, isoalturas de olas Figura 3-42 Propagación de temporal W, isoalturas de olas Figura 3-43 Propagación de temporal WSW, isoalturas de olas Figura 3-44 Propagación de temporal SW, isoalturas de olas Figura 3-45 Propagación de temporal SSW, isoalturas de olas Figura 3-46 Localización de los puntos de cálculo de regímenes direccionales y flujo medio de energía Figura 3-47 Régimen direccional y flujo medio de energía para el punto Figura 3-48 Régimen direccional y flujo medio de energía para el punto

7 Figura Régimen direccional y flujo medio de energía para el punto Figura 3-50 Régimen direccional y flujo medio de energía para el punto Figura 3-51 Régimen direccional y flujo medio de energía para el punto Figura 3-52 Régimen direccional y flujo medio de energía para el punto Figura 3-53 Régimen direccional y flujo medio de energía para el punto Figura Régimen direccional y flujo medio de energía para el punto Figura 3-55 Régimen direccional y flujo medio de energía para el punto Figura Régimen direccional y flujo medio de energía para el punto Figura 3-57 Propagación de oleajes medios SSW, Club Regatas Lima Figura 3-58 Propagación de oleajes medios SW, Club Regatas Lima Figura 3-59 Propagación de oleajes medios WSW, Club Regatas Lima Figura 3-60 Propagación de oleajes medios W, Club Regatas Lima Figura 3-61 Propagación de oleajes medios NW, Club Regatas Lima Figura 3-62 Propagación de oleajes medios SSW, Club Regatas Lima Figura 3-63 Propagación de oleajes medios SW, Club Regatas Lima Figura 3-64 Propagación de oleajes medios WSW, Club Regatas Lima Figura 3-65 Propagación de oleajes medios SSW, Club Regatas Lima Figura 3-66 Propagación de oleajes medios NW, Club Regatas Lima Figura 3-67 Corrientes en la bahía de Miraflores, oleajes medios NW Figura 3-68 Corrientes en la bahía de Miraflores, oleajes medios SSW Figura 3-69 Corrientes en la bahía de Miraflores, oleajes medios WSW Figura 3-70 Corrientes en la bahía de Miraflores, temporal WSW Figura 3-71 Corrientes en la bahía de Miraflores, oleajes medios SW Figura 3-72 Corrientes en la bahía de Miraflores, temporal SSW Figura 3-73 Corrientes en la bahía de Miraflores, oleajes medios W Figura 3-74 Corrientes en la bahía de Miraflores, temporal W Figura 3-75 Corrientes en la bahía de Miraflores, temporal NW Figura 3-76 Corrientes en la bahía de Miraflores, oleajes SW Figura 3-77 Corrientes en la bahía de Miraflores, oleajes WSW Figura 3-78 Corrientes en la bahía de Miraflores, oleajes W Figura 3-79 Corrientes en la bahía de Miraflores, oleajes SSW Figura 3-80 Corrientes en la bahía de Miraflores, oleajes SSW Figura 3-81 Corrientes en la bahía de Miraflores, oleajes SW Figura 3-82 Corrientes en la bahía de Miraflores, oleajes WSW Figura 3-83 Corrientes en la bahía de Miraflores, oleajes W Figura 4-1 Escalas espaciales y temporales de las playas

8 Figura 4-2 Forma en planta de equilibrio estático Figura 4-3 Localización de los puntos de cálculo de flujo medio Figura 4-4 Forma en planta de equlibrio tras la construcción del rompeolas Figura 4-5 Forma en planta de equilibrio Playa Agua Dulce Figura 4-6 Forma en planta de equilibrio playa Barranco Figura 4-7 Forma en planta de equilibrio playa Miraflores Figura 4-8 Forma en planta de equilibrio playa Marbella Figura 4-9 Perfil de equilibrio de Dean Figura 4-10 Profundidad de cierre en un perfil de equilibrio Figura 4-11 Localización de los perfiles estudiados Figura 4-12 Perfil 1 playa Agua Dulce Figura 4-13 Perfil 2 playa Barranco Figura 4-14 Perfil 3 playa Miraflores Figura 4-15 Perfil 4 playa Marbella Figura 4-16 Evolución del perfil P1 Playa Agua Dulce temporal SW Figura 4-17 Evolución del perfil P2 Playa Barranco temporal SW Figura 4-18 Evolución del perfil P3 Playa Miraflores temporal SW Figura 4-19 Evolución del perfil P4 Playa Marbella temporal SW Figura 4-20 Distribución de estados morfodinámicos playa Agua Dulce Figura 4-21 Distribución de estados morfodinámicos playa Barranco Figura 4-22 Distribución de estados morfodinámicos playa Miraflores Figura 4-23 Distribución de estados morfodinámicos playa Marbella Figura 4-24 Distribución de estados morfodinámicos Playa Grande Figura 4-25 Resultados obtenidos por Valle, Medina y Losada Figura 4-26 Localización y puntos de calculo de flujo medio Figura 4-27 Transporte en función del D50 en la bahía de Miraflores Figura 4-28 Transporte potencial para la zona Sur y Centro bahía Miraflores Figura 4-29 Transporte potencial para la zona Norte bahía de Miraflores Figura 4-30 Transporte en función del D50 para la bahía de Miraflores Figura 4-31 Transporte neto de sedimentos zona Barranco Figura 4-32 Transporte neto de sedimentos - zona Miraflores

9 Índice de Tablas Tabla 2-1 Distribución vertical de la granulometría en Bahía de Miraflores Tabla 3-1 Armónicos de marea en el puerto del Callao Tabla 3-2 Probabilidad de ocurrencia de oleajes por direcciones Tabla 3-3 Características de la mallas para la propagación de oleaje SSW y SW Tabla 3-4 Características de la mallas para la propagación del oleaje WSW y W Tabla 3-5 Cuadro de casos de propagación de oleaje Tabla 4-1 Granulometría característica en la bahía de Miraflores Tabla 4-2 Estado morfodinámico en función al parámetro de caída de grano

10 ANTECEDENTES ANTECEDENTES El Club Regatas Lima, solicitó a GGM Consultores realizar un estudio sobre la Dinámica Litoral y Transporte de Sedimentos en las playas del Club y el entorno costero, con el fin de analizar las condiciones actuales de estabilidad de las playas y evaluar las posibles afecciones en la morfología costera de la zona, como consecuencia de la prolongación y construcción de un rompeolas de protección de costa en el extremo Sur del Club Regatas Lima, en el Distrito de Chorrillos. El presente estudio es el resultado de la aplicación de los Modelos Numéricos del Sistema de Modelado Costero (SMC), desarrollado por la Universidad de Cantabria y validado con mas de 80 proyectos de desarrollo en España y a nivel internacional, adicionalmente se emplearon herramientas y técnicas de vanguardia, que incluyen trabajos de campo tales como mediciones batimétricas, topográficas, comparación de cartas náuticas, análisis granulométrico, fotografías satelitales y aéreas de diversa índole. Como resultado de los trabajos efectuados se redacta el presente documento, con el fin de ser incluido en el expediente técnico referente a la solicitud de autorización sobre la construcción de la defensa ribereña, para evitar procesos erosivos que actualmente están sufriendo las playas del Club Regatas Lima, de acuerdo a lo dispuesto en el Texto Único de Procedimientos Administrativos de la Marina (TUPAM ), edición Julio Chorrillos, Marzo de 2012 Fdo. Guillermo Ego-Aguirre de la Piniella Gerente General GGM Consultores -i-

11 CAPÍTULO I INTRODUCCION

12 CAPITULO I 1. INTRODUCCIÓN El Club Regatas Lima, es un club dedicado a la actividad social, deportiva y recreativa que tiene como misión brindar a sus asociados las facilidades y ambientes de sano esparcimiento en toda el área del Club. El proyecto de la construcción de un dique de protección de costa en las playas del Club Regatas Lima (localizado en el lado sur de la bahía de Miraflores, ver figura 1-1) está promovido por el Club Regatas Lima con la finalidad de darle protección y mayor estabilidad a las playas 01, 02 y 03, con la prolongación del rompeolas actualmente existente en el extremo sur del club y al mismo tiempo crear un área de abrigo para embarcaciones deportivas menores. Una de las principales justificaciones del proyecto es la de proteger el borde costero y los procesos erosivos que sufre debido a la presencia de fuertes oleajes que ingresan al área del Club. Conscientes de la relevancia del proyecto y los cambios que pueden ocasionar en las playas de la zona, el Club regatas Lima ha encargado a GGM Consultores para realizar un estudio de la situación de la zona con el objeto de evaluar la situación de las playas del Club y proponer actuaciones de mejora y estabilización de las mismas. Figura 1-1 Ubicación del área de estudio y posible afección a las playas del entorno. -2-

13 CAPITULO I 1.1 Datos del Proyecto El Club Regatas Lima, ha proyectado la ejecución de las obras de ampliación del rompeolas existente en el extremo sur del Club, que se prolongará en un tramo de 60 m con orientación N43E y un segundo tramo de 200 m con orientación N15E, ambos tramos con un ancho aproximado de 10 metros (véase figura 1-2). El fin principal del proyecto es proteger el borde costero donde se desarrollan actividades recreativas, específicamente en las playas 01, 02 y 03, a la vez que genera condiciones de abrigo para construir una dársena para embarcaciones pequeñas de recreación, un restaurante, servicios higiénicos y un embarcadero con una rampa para discapacitados. Este Proyecto se enmarca dentro del propósito del Estado Peruano de incentivar la inversión privada, promover el empleo en nuestro país, y al derecho que tiene toda persona de invertir y conservar un ambiente saludable; adoptando las medidas de mitigación ambientales correspondientes, sin descuidar la preservación del paisaje y la naturaleza. Los estudios de dinámica litoral y transporte de sedimentos, servirán para demostrar que los posibles impactos que se puedan ocasionar a la morfología costera y el medio ambiente, son mínimos y manejables, debido a que en la construcción del rompeolas se seguirán las normas y procedimientos de las recomendaciones de obras marítimas, garantizando criterios de respeto al orden ecológico, en donde el urbanismo y la arquitectura armonicen con el ambiente y revaloricen el paisaje natural. Figura 1-2 Montaje de como quedaría la construcción del dique de protección de costa -3-

14 CAPITULO I 1.2 Objetivos El presente estudio tiene como objetivo estudiar los posibles y futuros efectos que puede ocasionar la construcción de un rompeolas de protección de costa, sobre la dinámica litoral y morfología de las playas circunscritas al municipio de Chorrillos y de las playas de la bahía de Miraflores, haciendo especial hincapié en el efecto sobre el clima marítimo local, el transporte de sedimentos y las consecuencias a corto y largo plazo sobre la morfodinámica de las playas de la Bahía de Miraflores. Se proponen medidas y recomendaciones para paliar lo posibles efectos adversos y alteraciones en relación a la situación previa a la obra. Como objetivos específicos del trabajo se establecen los siguientes: Analizar la dinámica marina local y global de la zona, incluyendo la determinación del sistema circulatorio de corrientes y transporte de sedimentos inducidos por la rotura del oleaje en la situación actual. Establecer un modelo morfodinámico de funcionamiento de las playas adyacentes y evaluación de la estabilidad tras la construcción del Dique. Estimar la sedimentación que acontece al norte de las playas del Club regatas. Proponer líneas de actuación que minimicen las pérdidas, si es que las hubiera en algunas de las playas del entorno. 1.3 Alcance del documento Los estudios realizados dentro del presente trabajo incluyen los siguientes aspectos: Recopilación y análisis de datos y estudios previos. Estudios morfodinámicos de las playas. Propuesta de alternativas. 1.4 Información utilizada Para la realización del presente documento se ha contado con la siguiente información: Batimetría general de la zona recogida en las carta náutica 223 de la Dirección de Hidrografía y Navegación. Batimetrías de la zona realizadas de los años 2003 proporcionadas por el Club Regatas y Batimetría realizada en el

15 CAPITULO I Análisis granulométrico de muestras recolectadas en las playas del Club Regatas. Fotografías aéreas del Instituto Geográfico Nacional, año Organización del estudio Con el fin de facilitar la redacción del informe, este documento se ha organizado en unos capítulos y anexos donde se describe la correspondiente morfología, dinámica marina, dinámica litoral y propuestas de actuación. En concreto del presente documento se organiza del siguiente modo: Capítulo 1. Introducción y objetivos. En este capítulo I se plantea los antecedentes del proyecto, su ubicación y justificación del proyecto. Capítulo 2. Morfología de la zona de estudio, en el que se describe de forma global los elementos morfológicos más relevantes de la zona de estudio en su configuración actual y pasada, analizando la situación actual de las playas, la evolución histórica de la zona, usos y recursos. Capítulo 3. Dinámica marina, Se aborda el estudio de los factores forzadores tanto en profundidades indefinidas como en el entorno de las playas. Oleaje y el método para propagar a la costa y transformar los regímenes en puntos de interés. Capítulo 4. Dinámica litoral, Se estudia la variabilidad a corto y largo plazo del perfil y planta de las playas, así como el transporte potencial de sedimentos en el entorno del puerto. Capítulo 5. Diagnóstico y propuesta de actuación, Se plantean las conclusiones finales y las recomendaciones futuras de actuación. Anexos a la Memoria Anexo I. Modelos de propagación de oleaje. OLUCA-RD, OLUCA SP. Anexo II. Modelo de corrientes de rotura. COPLA-MC/SP. -5-

16 CAPITULO II CAPÍTULO II DESCRIPCION DE LA ZONA DE ESTUDIO -6-

17 CAPITULO II 2. MORFOLOGÍA DE LA ZONA DE ESTUDIO En el presente apartado se realiza una descripción de la morfología de la costa del Club Regatas Lima objeto de análisis en su situación actual y en la situación tras la construcción del dique. El objetivo es resaltar aquellos elementos que en mayor medida condicionan la dinámica marina y sedimentaria existente. 2.1 Localización del área de estudio El área afectada por la futura construcción del dique se encuentra ubicado en el lado sur del Club Regatas Lima, el mismo que se encuentra asentada hacia el Sur la bahía de Miraflores, perteneciente al municipio del Distrito de Chorrillos, Provincia y Departamento de Lima, (véase figura 2-1). Las coordenadas de la zona corresponden a los S y W, limita por el Sur con Punta Chorrillos y por el Norte con la Playa Los Pescadores con una orientación de costa de N88E. Figura 2-1 Localización del área de estudio - Bahía de Miraflores La Bahía de Miraflores, abarca desde el término municipal de Chorrillos hasta el distrito de San Miguel y cuenta con una línea de costa aproximadamente de 27 Km. El Club Regatas Lima forma uno de los principales núcleos turísticos, centros de recreación y esparcimiento en los meses de verano. Hacia el lado Sur se encuentran las Playas Caplina y La Herradura, mientras que por el lado Norte se encuentran las playas de arena Los Pescadores y Agua Dulce que son concurridos masivamente en épocas de verano. -7-

18 CAPITULO II 2.2 Morfología global de la zona de estudio La zona de estudio corresponde al Club Regatas y las playas adyacentes circunscritas a la Bahía de Miraflores. Los núcleos poblacionales más importantes pertenecen a los municipios ribereños de Chorrillos, Miraflores, Barranco, San Isidro, Magdalena del Mar y San Miguel. Para llevar a cabo el estudio de la dinámica litoral en la zona de la bahía de Miraflores y evaluar el transporte que da lugar a los procesos de erosión y sedimentación, es necesario definir antes la unidad fisiográfica global en la que se encuentra y caracterizar su dinámica. Figura 2-2 Localización de la zona de estudio - Bahía Miraflores. La costa de la Bahía de Miraflores, se caracteriza por pertenecer a una tipología de costa irregular poco abrupta, con poco aporte sedimentario del río Lurín que no favorece la presencia de playas continuas. A lo largo de la bahía de Miraflores se observa acantilados de regular altura constituidas de tierra y piedra, con edificaciones construidas en su parte alta que se extienden por los distritos de San Miguel, Magdalena, San Isidro, Miraflores, Barranco y Chorrillos, formando a su pie playas de arena y canto rodado. En la parte sur y centro de la bahía de Miraflores se han realizado numerosas actuaciones tales como la construcción de espigones, marina y embarcaderos, que han originado cambios en su dinámica y en su morfología (figura 2-3). El primer espigón construido en el área de la playa Agua Dulce de aproximadamente 200 metros de longitud, dio lugar a una gran acumulación de arena en un período de tiempo muy corto, por lo cual motivó la construcción de sucesivos espigones de longitud y dimensiones variables a lo largo de la bahía de Miraflores. -8-

19 CAPITULO II Figura 2-3 Vista de infraestructuras marítimas construidos en la bahía de Miraflores Debido a que en el estudio se analizarán datos de diferentes períodos de tiempo, se consideraran como límites de la unidad fisiográfica el área territorial perteneciente a las playas de cada municipio. 2.3 Evolución histórica de la Bahía de Miraflores La evolución a gran escala de la Bahía de Miraflores, según estudios de protección costera realizados por Sogreah, 1960 (Sociedad General de Hidráulica de Francia), menciona que las ciudades de Lima y Callao han sido construidas en lo alto de la descarga aluvial del río Rímac. En el pasado la desembocadura del río Rímac se ubicaba en el lado Sur de la bahía, sin embargo, cuando el río Rímac comenzó a desplazarse gradualmente de sur a norte, el aporte de material sedimentario fue cada vez mas limitado a la bahía de Miraflores, por tanto, al disminuir el aporte de sedimentos, en la línea de costa, por socavamiento y erosión se han formado acantilados en su mayoría subverticales, cuyo retroceso se debe a la acción erosiva de las olas Después que el río Rímac se movió hacia el lado norte, hasta encontrar su posición actual, la acción de las olas dio lugar a la modificación de la costa formando acantilados y la península La Punta en la sombra de la Isla San Lorenzo, simultáneamente se erosionó la sección central de la Bahía de Miraflores. Este proceso se desaceleró mientras el sistema costero evolucionó hacia un equilibrio. En la figura 2-4, se intenta reproducir la variación del perfil de costa de la Bahía de Miraflores según Sogreah

20 CAPITULO II Figura 2-4 Evolución del Litoral de la bahía de Miraflores según SOGREAH (1960) El Morro Solar es un macizo rocoso con acantilados altos formados por la fuerte erosión marina que concentra su acción por fenómenos de refracción del oleaje. En su seno, se han desarrollado las playas de arena de La Herradura y La Chira, aunque en la actualidad, la playa La Herradura ha sufrido un retroceso de la línea de costa como consecuencia de las actividades antropogénicas. Después de que el río Rímac se movió hacia el norte de la bahía, las formaciones de rocas de Punta La Chira, Punta Solar y Punta Chorrillos, y la presencia de la Isla San Lorenzo jugaron un papel muy importante en la configuración posterior de la morfología de la costa en la bahía de Miraflores. La altura de la terraza aluvial se incrementa de norte a sur, se inicia en la costa de Mar Brava del Callao en el distrito de la Perla que registra una altura de 4 metros, conforme avanza hacia Magdalena la costa se vuelve acantilada y de regular altura, alcanzando la máxima altura de 70 metros aproximadamente en Miraflores, mientras que al sur de Chorrillos el acantilado alcanza 32 metros. -10-

21 CAPITULO II Actualmente, el material sedimentario procede del río Lurín que desemboca al sur de Punta La Chira, el suministro de arena a las playas de la bahía de Miraflores no es muy grande, mas aún, conforme se avanza hacia el norte se aprecia una reducción considerable por la construcción de diversos espigones que retiene la poca arena que aporta el río Lurín. Adicionalmente, las aportaciones de sedimentos son cada vez menores, debido principalmente a la urbanización de los márgenes río arriba, por tanto, actualmente las playas que conforman la unidad fisiográfica se alimentan del poco aporte de sedimentos del río Lurín y de la erosión de algunas playas de la Bahía de Miraflores. 2.4 Descripción de la batimetría de la zona de estudio. Para realizar el estudio se dispone de información batimétrica fundamentalmente de dos fuentes, cartas náuticas editada por la Dirección de Hidrografía y Navegación HIDRONAV, donde se han digitalizado tanto las líneas de costa como la batimetría, en el presente estudio se han empleado las cartas siguientes: -Carta Náutica 223 de bahía de Ancón Isla Pachacamac. Última corrección Se dispone además de la batimetría de detalle de la zona de estudio, batimetría que comprende desde Punta Chorrillos hasta la playa Agua Dulce (figura 2-5 y 2-6). Como se puede observar en la figura 2-5, las líneas batimétricas se distribuyen paralelas a la costa a lo largo de la bahía de Miraflores, aumentando ligeramente su separación a medida que nos alejamos hacia el oeste. La distancia media a la costa de la cota -5 metros por el lado sur es de 800 m. mientras que por el lado norte esta distancia disminuye conforme se avanza hacia el Noroeste, en la parte central de la bahía la distancia media es de 250 m. aproximadamente, se aprecia además a esta altura los efectos combinados de la refracción y refracción-difracción de los frentes de oleaje que ocasiona la Isla San Lorenzo y los islotes de La Horadada. La línea batimétrica de los -10 metros se curva hacia el mar como una cuña frente a San Miguel y su separación de la costa no varía en todo el ancho de la bahía, la cota de -50 metros alcanza una distancia media de unos 12 Km en toda la bahía, mas al sur de la bahía las líneas batimétricas van disminuyendo su distancia a la costa, frente a la playa Villa y Conchan las líneas batimétricas se disponen paralelas a la costa (ver figura 2-5). En el área de estudio las líneas batimétricas se disponen siguiendo la forma de la línea de costa hasta el veril de los 04 metros, a partir de los cinco metros de profundidad las líneas batimétricas se distribuyen en forma paralela hasta la cota de -8 metros, lugar donde se realizará la construcción del rompeolas. -11-

22 CAPITULO II Figura 2-5 Batimetría de la Bahía de Miraflores (Fuente HIDRONAV 2000) Figura 2-6 Batimetría de detalle de la zona de estudio (Fuente: Club Regatas 2009) -12-

23 CAPITULO II A continuación se delimitan los sectores elegidos indicando su orientación y los elementos morfológicos más importantes que influyen en el transporte litoral (ver figura 2-7). Figura 2-7 División en sectores de la unidad fisiográfica. Sector 1: Punta La Chira Playa Agua Dulce (Chorrillos) (Figura 2-8). Al comienzo del tramo se encuentra Punta La Chira, saliente natural de formación rocosa que protege de los oleajes del Sur y SSW a la playa La Herradura y la Playa Caplina, en su mayor parte recibe el aporte sedimentario de la playa Villa. Es el límite Sur de la unidad morfológica y funciona como una barrera parcial al transporte litoral. Figura 2-8 Sector 1: Punta La Chira - Playa Agua Dulce (Chorrillos). -13-

24 CAPITULO II Al final de este primer sector se localiza la playa Agua Dulce, que se encuentra apoyada en un espigón construido en el año A continuación de la playa La Caplina se encuentra un tramo rocoso de acantilados donde se encuentra el Salto del Fraile. En este acantilado se forma una cala pero sin arena suficiente para su uso como playa. Seguidamente de la punta Chorrillos se dispone un tramo de costa cuyas playas se encuentran apoyadas en espigones en el que se suceden El Club Regatas, Playa Los Pescadores y la Playa Agua Dulce. Sector 2: Playa Las Sombrillas Playa Las Cascadas (Barranco) (Figura 2-9). Es un tramo de costa irregular y de orientación variable conformadas por playas de arena hacia el sur y gravas en el norte. Las playas pertenecientes al municipio de Barranco son: Playa de Las Sombrillas, Playa Los Yuyos, Playa Barranco, Playa Los Pavos, Playa Barranquito y Playa Las Cascadas. Figura 2-9 Sector 2: Playa Las Sombrillas Playa Las Cascadas (Barranco). La obra mas importante realizada en este tramo es la marina Lima Marina Club al inicio del sector. Se trata de una obra que interrumpe parcialmente el transporte litoral formándose la acumulación de arena por un lado y por el otro lado el ensanchamiento de la playa adyacente como consecuencia de la construcción del rompeolas que ocasiona la difracción del oleaje y por lo cual redistribución de sedimentos. La alineación de la línea de costa en este tramo es N2E-N14W. -14-

25 CAPITULO II Sector 3: Playa La Estrella Playa Los Delfines (Miraflores) (Figura 2-10). Es una zona de transición entre las playas de arena del sur y las playas de gravas del norte, conforme avanza hacia el norte las playas se vuelven menos arenosas con mayor predominio de cantos rodados y grava. En la actualidad las playas se encuentran en un proceso de equilibrio dinámico, debido a la existencia de espigones que mantienen la línea de playa parcialmente estable con focos de erosión a poniente de las obras de estabilización. Las playas presentes en este tramo son la Playa La Estrella, Playa Redondo, Playa Makaha, Playa Waikiki, Playa La Pampilla, Playa La Pampilla I, Playa La Pampilla II, Playa Los Tres Picos, Playa Punta Roquitas y la Playa Los Delfines. Figura 2-10 Sector 3: Playa La Estrella Playa Los Delfines (Miraflores). Sector 4: Playa San Isidro Limite Magdalena (San Isidro) (Figura 2-11). Al comienzo de este tramo se encuentra la Playa de San Isidro compuesta de canto rodado en su mayor parte, cuenta con 750 metros de longitud y es prácticamente una playa rectilínea, parcialmente estable sin transporte sólido apreciable por recibir un oleaje principalmente del Suroeste con componente de energía normal a la playa, lo cual, aunque produzcan movimientos de arena esporádicamente de un lado a otro de la propia playa, no produce pérdidas globales. En este sector de costa no se han realizado construcciones de espigones para la estabilización de la playa, debido a que dichas estructuras no capturarían volúmenes significativos de arena principalmente por el ángulo de incidencia de las olas. La orientación de la costa es N64W. -15-

26 CAPITULO II Figura 2-11 Sector 4: Playa San Isidro (San Isidro). Sector 5: - Playa Marbella Playa L3-1 (Magdalena) (Figura 2-12) Es un tramo de costa prácticamente rectilíneo de playas conformadas por gravas y canto rodado. El límite Sur de este tramo de la costa es la Playa Marbella que se encuentra expuesta a la incidencia directa de oleajes que sufren procesos de refracción y refracción-difracción antes de acercarse a la costa. Figura 2-12 Sector 5: Playa Marbella Playa L3-1 (Magdalena). La orientación de la costa varía ligeramente por el saliente artificial como consecuencia del arrojo de desmonte en el sector de la Playa L2, pudiendo tomar como alineación media del sector N67W. -16-

27 CAPITULO II 2.5 Morfología de la zona del Club Regatas Lima La zona de estudio del presente documento corresponde, como ya se ha comentado, al tramo localizado entre la Punta Chorrillos y la Playa Los Pescadores en el lado Sur de la bahía de Miraflores, ver figura Evolución de la línea de costa. Fotografías aéreas. Para una aproximación a la evolución de la línea de costa se ha optado por el análisis de las fotografías aéreas (Playa 01, 02, 03, 04 y playa Los Pescadores) obtenidas a partir de los vuelos correspondientes a los años 2000, 2002 y 2010, entre el más antiguo y el más reciente media cerca de un cuarto de siglo, suficiente para reconocer, en un primer nivel de detalle los cambios originados por la actividad humana. Estas fotografías se pueden observar en las figuras 2-13 al Figura 2-13 Fotografía de Satélite correspondiente al año Fuente: Google Earth. -17-

28 CAPITULO II Figura 2-14 Fotografía de Satélite correspondiente al año Fuente: Google Earth. Figura 2-15 Fotografía de Satélite correspondiente al año Fuente: Google Earth. -18-

29 CAPITULO II Tras comparar la línea de costa en el área del Club Regatas en las diferentes fotografías se puede concluir que no existe una diferencia apreciable, permaneciendo ésta según la dirección media del flujo de energía en la zona. En cambio se aprecia la ampliación del rompeolas norte de la playa 03 con la prolongación de 50 metros aproximadamente. Por otro lado entre las imágenes de 2005 y 2007 se observa la construcción de un molón sobre el saliente rocoso de la Punta Chorrillos y posteriormente se procedió a la construcción de un rompeolas de aproximadamente 75 metros de longitud con dirección N38E Figura 2-16 Fotografía de Satélite correspondiente al año 2005 y Fuente: Google Earth. -19-

30 CAPITULO II En la fotografía correspondiente a 2010 (figura 2-15) se observa una consolidación del crecimiento de infraestructuras en tierra y un incremento de la circulación de vehículos, así como el aumento del uso de las playas. En la zona de acantilado las líneas batimétricas son paralelas a la costa, conforme avanza hacia el norte la playa 03 presenta variaciones en su ancho de playa con una anchura media de 20 metros de playa seca. La zona de Playa 01 y 02 presenta batimétricas paralelas a la costa con una anchura media de unos 50 metros y orientación media de N69E-N72E. El perfil de playa es continuo y de pendiente moderada en la zona emergida y sumergida. 2.7 Características granulométricas La caracterización del tamaño de los sedimentos de arena en la zona de estudio es complicada, debido fundamentalmente a: (1) las variaciones de la dinámica marina a lo largo de la costa; y (2) la construcción de barreras al transporte de sedimentos (espigones, marinas, diques, etc.). En el primer caso, como se verá en el siguiente capítulo, existen variaciones del oleaje y del sistema de corrientes costeras, lo que nos indica en una variación del transporte de arena litoral, existiendo zonas con mayores aportes energéticos donde la arena fina no es estable, y por tanto, transportada. Esto va generando una segregación de los tamaños medios de arena a lo largo del litoral. Finalmente, en el último caso, cuando se tiene estructuras rígidas que ejercen de barrera litoral, aguas abajo de éste, la capacidad de la dinámica marina le permite transportar los finos costa abajo, una vez estas corrientes se han saturado de sedimentos, los transportan hasta la siguiente barrera, de tal manera que, el sedimento más grueso tiende a localizarse costa abajo de las estructuras, y los más finos, a ubicarse costa arriba de los mismos. Para que un tramo de costa de este tipo llegue a homogeneizar los tamaños de arena, se necesitan muchas décadas actuando la dinámica local. La caracterización del tamaño de los sedimentos en la zona de estudio ha sido realizado por la Dirección de Hidrografía y Navegación de la Marina (DHN,2008), específicamente se han realizado toma de muestras de sedimentos en las playas del Club Regatas. En el área de la Bahía de Miraflores y a lo largo de la línea costera que abarca hasta el veril de los 10 metros de profundidad, se ha realizado la clasificación de los sedimentos presentándose características entre grava, arena, arena limosa, limo arenoso, limo y limo arcilloso. La clasificación por textura de sedimento se muestra en la figura Los resultados obtenidos (Véase Tabla 2-1) muestran que entre Punta La Chira y Playa Agua Dulce, el sedimento se caracteriza por ser de arena, seguida de arena y grava hasta Miraflores y finalmente el lecho marino se caracteriza por ser de grava hasta San Miguel. -20-

31 CAPITULO II Figura 2-17 Clasificación de la textura del sedimento según Folk (Fuente: DHN 2009) En el área de la playa de Agua Dulce el sedimento se caracteriza por tener un valor promedio de D50=0.26 mm y D90=0.40mm. La distribución del sedimento por tamaño realizado por la Dirección de Hidrografía y Navegación (véase figura 2-16), muestran valores D50 que variaron entre 0.12 mm y 0.30 mm con un valor promedio de 0.20 mm. Frente a la costa de Magdalena del Mar y San Miguel, a 280 metros de la playa seca el sedimento se caracteriza por presentar finos con valores de D50 del orden de 0.08 mm y 0.12 mm, esta característica se debe probablemente a la existencia de materiales de construcción vertidos al mar con la finalidad de ganar terreno al mar, lo que proporciona una fuente de material fino que se mueve en suspensión a lo largo de las playas Marbella y Playa Grande en dirección norte. El sedimento mas grueso se presenta en la zona de Chorrillos, los valores de D50 y D90 en la playa La Herradura es de 0.23 mm y 0.34 mm respectivamente, mientras que en la playa Los Pescadores el D50 es de 0.15 mm y el D90 es de 0.48 mm. -21-

32 CAPITULO II Distrito Chorrillos Barranco Miraflores San Isidro Playa Playa La Herradura Playa Pescadores Playa Agua Dulce Playa Barranquito Playa Redondo II Playa Los Delfines Playa Pera del Amor Distancia de costa Descripción (m) 0 Arena atrás de la playa 90 Arena (sobre roca) 270 Arena 590 Arena 0 Arena 130 Arena 520 Arena gravosa 900 Arena 0 Arena 510 Arena 960 Arena 1600 Canto rodado (sobre roca) 0 Arena 440 Canto rodado (sobre roca) 1040 Arena gravosa 1640 Arena 2700 Arena 0 Canto rodado gravoso 500 Arena gravosa (sobre roca) 1200 Arena 1880 Arena limosa 0 Grava arenosa 560 Canto rodado gravoso sobre (sobre roca) 1340 Arena (sobre roca) 1900 Arena limosa 3040 Canto rodado (sobre roca) 0 Grava y canto rodado 420 Arena limosa y roca 980 Canto rodado y grava (sobre roca) 1580 Canto rodado gravoso (sobre roca) 2900 Arena limosa Tabla 2-1 Distribución vertical de la granulometría Bahía de Miraflores (Fuente DHN 2009) -22-

33 CAPITULO II LA PUNTA SAN MIGUEL SAN ISIDRO Figura 2-18 Diámetro de D50 (µm) en la Bahía de Miraflores (Fuente DHN 1996) -23-

34 CAPÍTULO III DINÁMICA MARINA -24-

35 III. DINAMICA MARINA 3.1 Introducción Las características temporales de los parámetros de un estado de mar, ya sea la altura de ola significante, el periodo de pico, periodo medio de pasos ascendentes por cero, la dirección de incidencia de cada estado de mar etc. Son desde el punto de vista estadístico una gran fuente de información vital para la concreta realización de las fases previas a la ejecución de una obra o actuación sobre la misma. Nos aporta información acerca de la dirección media del flujo de energía que se relaciona con la forma en planta de la playa, podemos emplear el análisis a largo plazo para realizar estimas del transporte de sedimentos en el litoral, cálculos de regímenes de agitación portuaria, frecuencia de rebase en un determinado tipo de dique. Todo esto se debe conseguir a pie de obra, no tiene sentido trabajar con una serie temporal que se refiere a las alturas de ola en profundidades indefinidas ya que este oleaje experimentará multitud de procesos y fenómenos que van a provocar que las características del oleaje en el entorno de nuestra obra o playa sean notablemente diferentes. En principio, y por diferentes motivos, no es adecuado emplear datos de oleaje procedentes de boyas en el entorno de nuestras playas ya que pueden estar afectadas por la circulación local de la zona (como veremos existe una boya seawatch localizada en aguas profundas), en ocasiones se pueden emplear pero suelen tener el handicap de no ser adecuadas para el régimen extremal debido a que la serie abarca un número escaso de años. El primer paso, por tanto, seria obtener una serie temporal de diferentes parámetros de estado de mar, en aguas profundas, para a partir de ahí propagarlo hasta la costa donde se halla nuestro punto objetivo. Posteriormente es cuando llevamos a cabo, el análisis estadístico que dará como resultado el régimen extremal y medio en el entorno del punto objetivo. De las diferentes fuentes de datos existentes y que podemos emplear la que en la actualidad se suele emplear más es la de reanálisis. Previamente, y dado que el oleaje que alcanza la zona de estudio está condicionado por el oleaje existente en aguas profundas y por la propagación del mismo hasta la costa, se analizarán las características de dicho oleaje en aguas profundas. Posteriormente, se estudiará la dinámica marina a lo largo de la línea de costa de forma global en la unidad fisiográfica, y de forma detallada en cada sector de la bahía de Miraflores. -25-

36 3.2 Nivel del Mar El conocimiento del nivel medio del mar resulta fundamental al planificar cualquier actuación en la costa debido a que afecta directamente a la propagación del oleaje, a los movimientos de ascenso-descenso, a las corrientes de rotura y a los procesos de transporte de sedimentos. Los factores más importantes a tener en cuenta y que producen variaciones del nivel del mar son la marea astronómica y la marea meteorológica. Las variaciones del nivel del mar en el corto plazo están determinadas por diversos fenómenos: marea astronómica, marea meteorológica, fuerzas de Coriolis y el set-up o ascenso del nivel medio. Se asume que las fuerzas de Coriolis y las variaciones alrededor del nivel medio en la zona de estudio son pequeñas. El cambio en el nivel del mar debido a la acción de la marea astronómica tiene importantes consecuencias en la morfología de las playas ya que modifica sustancialmente la propagación del oleaje por fenómenos de asomeramiento, refracción y muy particularmente la zona de rotura al variar continuamente la batimetría de la misma. 3.3 Niveles de referencia A continuación (Figura 3-1), se presentan las relaciones entre las cotas de los diferentes Niveles de Referencia con respecto al Cero del Puerto (CP) en el Callao, estos valores fueron obtenidos del mareógrafo de La Punta Callao, administrado por la Dirección de Hidrografía y Navegación de la Marina. -26-

37 Figura 3-1 Niveles de referencia del Nivel del Mar en el Puerto del Callao (Fuente DHN 2009)

38 3.3.1 Marea astronómica La marea astronómica puede definirse como el conjunto de movimientos regulares de ascenso y descenso del nivel del mar con períodos próximos a 12 ó 24 horas y que se generan debido a los efectos gravitacionales del sistema Tierra-Luna-Sol. La acción de la marea se manifiesta en dos aspectos bien diferenciados: un cambio en el nivel del mar y la generación de corrientes. En la figura 3-2 se observa la variación del Nivel Medio del Mar (NMM) para la estación del Callao. Promedios mensuales del Nivel del Mar - Callao Metros Figura 3-2 Registro mensual del Nivel del Mar Puerto Callao ( ) (Fuente DHN 2009). La marea en la Bahía Miraflores es predominantemente de tipo semidiurna, que presenta dos pleamares y dos bajamares con un periodo aproximado de 12.4 horas, La amplitud media de la onda de marea (que se propaga de norte a sur) es de 0.54 m, mientras que la amplitud en sicigias (luna llena y/o nueva) es de 0,97 m, La pleamar máxima se define para 1.18 m, siendo la bajamar mínima de m. (Dirección de Hidrografía y Navegación de la Marina). Durante la presencia del fenómeno de "El Niño", los valores del nivel medio del mar se incrementan entre 10 a 40 cm. A partir de la información obtenida de los registros mensuales de la marea en la estación Mareográfica de La Punta - Callao (DHN), se han obtenido las constantes armónicas aplicando el software nmpr2 desarrollado por Mike Foreman del Instituto de Ciencias del Océano de Canadá, para su análisis y tratamiento estadístico en la propagación del oleaje. En la Tabla 3-1 se muestran las principales características (fase y amplitud) de las componentes de marea astronómica para el Puerto del Callao obtenidas de la Tabla de Mareas para el año 2010 editada por la Dirección de Hidrografía y Navegación de La Marina ubicada en el distrito de La Punta (12º 03.9 Sur, 77º 09.9 Oeste). -27-

39 Tabla 3-1 Armónicos de Marea en el Puerto del Callao (Fuente HIDRONAV 2010) Marea meteorológica La marea meteorológica es la sobreelevación del nivel del mar debido a las tensiones tangenciales inducidas por el viento y los campos de presiones. Dicha componente de la marea puede llegar a generar sobreelevaciones importantes del nivel medio del mar. El residuo meteorológico se obtiene por lo tanto tras la realización del análisis armónico, y tal y como se ha explicado anteriormente es debido a las variaciones de presión atmosférica y al arrastre del viento, causadas por perturbaciones meteorológicas y otras perturbaciones aleatorias del nivel medio del mar. 3.4 Clima Marítimo Se entiende por clima marítimo a la descripción estadística de la variación en el dominio del tiempo de los estados de mar en un lugar determinado. El clima marítimo, se puede definir a partir de parámetros estadísticos y espectrales representativos del estado de mar en un lugar determinado Descripción del oleaje. El oleaje se genera por la acción del viento sobre la superficie del mar, por tanto, las características del oleaje generado dependen básicamente de tres factores, (1) la velocidad del viento, (2) el área de la superficie del mar sobre la que sopla el viento (fetch) y (3) la duración de la acción del viento sobre dicha superficie. -28-

40 Figura 3-3 Generación del oleaje en alta mar El oleaje en la zona de generación (figura 3-3) es relativamente caótico, debido a la coexistencia en el mismo de numerosos trenes de ondas (componentes) con frecuencias y direcciones diferentes. A este oleaje de la zona de generación se le denomina mar de leva o, internacionalmente SEA. Una vez generado el oleaje se propaga a costa de su propia energía. La pérdida de energía en profundidades grandes es muy débil y es debida fundamentalmente a la fricción viscosa en el agua y a la fricción con la atmósfera. Sin embargo, como el oleaje generado por el viento tiene componentes de muchos períodos y direcciones, a medida que el oleaje se propaga fuera de la zona de generación, se produce una dispersión de la energía, fundamentalmente por dos mecanismos: 1.- Dispersión radial, donde los períodos más largos viajan más de prisa y se disipan menos, luego alcanzan una costa remota antes y con mayor altura que los períodos más cortos. 2.- Dispersión angular, como la anchura de la zona de generación es finita, sólo un sector de las direcciones generadas podrá alcanzar un determinado punto. Esta dispersión angular afecta casi por igual a todos los períodos y depende de la anchura del fetch y de la distancia y orientación del punto de previsión con respecto al frente del fetch. El oleaje que alcanza un determinado punto alejado de la zona de generación ha sufrido un filtrado en períodos y en direcciones como resultado de la dispersión, por lo que resulta mucho más regular. Este oleaje que se propaga fuera de la zona de generación se denomina mar tendida, mar de fondo, aceptado con el término internacional como SWELL. -29-

41 Figura 3-4 Oleaje aproximándose a la costa de la Bahía de Miraflores Al aproximarse a la costa, tanto el oleaje de viento o SEA, como la mar tendida o SWELL, sufren nuevas transformaciones debido a la interacción con el fondo denominados asomeramiento y refracción: la celeridad y la longitud de onda se modifican, de manera que los frentes tienden a soldarse y ordenarse (véase figura 3-4), al tiempo que el flujo de energía disminuye debido a la fricción con el fondo Datos de oleaje. Los datos de oleaje de los que se dispone en la actualidad provienen de tres fuentes diferentes: Datos visuales. Son obtenidos por observadores desde barcos en ruta, son tomados por observadores entrenados desde los barcos del tráfico marítimo comercial. Estos datos son enviados por radios a centros internacionales que se encargan de su recopilación, almacenamiento y distribución. Parte de la información recogida por los observadores provienen de datos instrumentales: velocidad del viento, presión atmosférica, posición del barco, fecha y hora. Sin embargo, la información recogida sobre el oleaje se realiza a estima y depende del entrenamiento del observador. Además de este inconveniente, los datos visuales sufren de importantes carencias, por lo que no son utilizados en el caso de disponer de fuentes más fiables. Dado que los datos obtenidos por reanálisis meteorológico son más exactos y fiables, la utilización de los datos visuales será descartada para el presente estudio. -30-

42 Datos instrumentales. Proceden de instrumentos fondeados en puntos fijos. La Dirección de Hidrografía y Navegación, ha realizado mediciones en diferentes puntos de la bahía de Miraflores con boyas fijas escalares por un periodo corto de tiempo, si bien es cierto, esta información no es recomendable para su empleo en el tratamiento estadístico del oleaje y obras de diseño, solo servirá como información referencial para comparar los valores de los oleajes propagados a través del modelo de propagación de oleaje OLUCA SP. Datos de reanálisis meteorológico. El uso de largas series de datos de olas en aguas profundas provenientes de los programas de reanálisis existentes y disponibles para la comunidad científica, son el resultado del empleo de modelos de generación y propagación del oleaje, como por ejemplo el WAVEWATCH III o el WAM, alimentados con datos de viento globales con duraciones de hasta 60 años. Una vez conocido y caracterizado el régimen medio y extremal del oleaje en el origen del dominio (puntos de las bases de datos), hay que trasladar la serie de datos hasta la zona de interés. Para ello deben ser propagados todos los estados de mar susceptibles de ser producidos. Como no todos los estados de mar van a ser propagados por el coste computacional que representa, se requiere el empleo de técnicas avanzadas para posibilitar la propagación, para ello se emplea la técnica del hipercubo, que consiste en la propagación de una matriz de casos posibles con oleajes de distinta altura, dirección, período y nivel del mar. El primer paso de la metodología es el análisis del oleaje en aguas profundas, una vez conocido y caracterizado el régimen medio y extremal del oleaje en el origen del dominio (puntos de las bases de datos), hay que trasladar la serie de datos hasta la zona de interés. Para ello deben ser propagados todos los estados de mar susceptibles de ser producidos. Con el fin de reducir el coste computacional y posibilitar la propagación de todos los estados de mar obtenidos por las series de reanálisis, se adoptará el siguiente procedimiento: - Propagación de una matriz de casos posibles con oleajes de distinta altura, dirección, período y nivel del mar; - Cálculo del coeficiente y el ángulo de propagación de los casos elegidos; - Interpolación del coeficiente y ángulo de propagación para cada uno de los eventos registrados en el punto de reanálisis. Esta metodología de transferencia de la serie original de aguas profundas hasta aguas someras, conocida como metodología del hipercubo, es una técnica ampliamente comprobada y validada a través de diversos estudios en España y a nivel internacional. En la figura 3-5 se presenta un esquema de interpolación de casos en la zona de estudio. -31-

43 Figura 3-5 Esquema de la metodología de cálculo de los parámetros de estado de mar Hs, Tp, y m mediante técnica del hipercubo Datos de reanálisis del oleaje. Para la obtención de los regímenes de oleaje en aguas profundas se ha utilizado información obtenida mediante reanálisis por N. Graham (2003), Wave model hindcast data for NOAA buoys off Perú de la Administración Nacional del Océano y la Atmósfera (NOAA) del gobierno de los Estados Unidos, serie que contiene los parámetros de estado de mar obtenidos de los registros direccionales, espaciados cada tres horas durante un periodo de tiempo de 20 años que comprende desde enero 1979 a diciembre del Esta información es el resultado de la aplicación del modelo numérico WAM de generación de oleaje a la información meteorológica almacenada en los citados 20 años. La información de oleaje obtenida por N. Graham (2003), calibrada y validada para aguas profundas frente a la costa peruana (véase figura 3-6), es tomada en cuenta por su gran exactitud y fiabilidad y además por que representa las condiciones naturales para el cálculo de los regímenes medios escalares, direccionales y extremales de oleaje en aguas profundas. La información se divide en estados de mar, donde se utilizaron los siguientes parámetros: - Altura de ola significante, Hs - Periodo de pico, Tp - Dirección media de propagación, m. -32-

44 Tras la reconstrucción de la serie de reanálisis en aguas profundas se procede a calcular estos parámetros en cada uno de los puntos seleccionados en aguas costeras empleando para ello el modelo de propagación de oleaje MOPLA. Figura 3-6 Localización de la boya NOAA en aguas profundas Regímenes en profundidades indefinidas Dado que el oleaje que alcanza la zona de estudio está condicionado por el oleaje existente en aguas profundas y por la propagación del mismo hasta la costa, se analizarán las características de dicho oleaje en aguas profundas y posteriormente, se estudiará la dinámica marina en las proximidades de la playa. Para la obtención del régimen medio y extremal en aguas profundas se aplicará el programa CAROL implementado en entorno Matlab, desarrollado por el Grupo de Ingeniería Oceanográfica y de Costas de la universidad de Cantabria, este programa emplea como funciones de ajuste la distribución Normal, Log-Normal, Gumbel de máximos y la Weibull de mínimos, por tanto, se ocupa de la caracterización de variables oceanográficas definidas a partir de una serie temporal. La estructura básica del programa CAROL consta de los siguientes módulos: Información preliminar. Estadística descriptiva de los datos. Caracterización del régimen medio de una determinada variable. Caracterización del régimen extremal de una variable. -33-

45 3.4.4 Régimen medio El régimen medio del oleaje se asocia al cumplimiento de los criterios de funcionalidad de una obra marítima y representa la distribución estadística del valor de un parámetro de estado de mar en un tiempo determinado. Para el cálculo correcto de esta distribución estadística es necesario que los datos de partida abarquen un período mínimo de un año con un nivel de datos válidos superior al 75% siempre y cuando los vacíos de información estén uniformemente repartidos a lo largo del año. Sin embargo, dada la variación que en distintos años pueden experimentar las muestras es aconsejable utilizar muestras de varios años consecutivos a fin de aproximarse más a lo que se viene en denominar año climático medio. El tiempo mínimo de muestreo para obtener una buena estima depende de las características climáticas de la zona de estudio, en nuestro caso es de 20 años. A continuación se enumeran las distribuciones estadísticas que se aplican en los cálculos del régimen medio. Distribución Lognormal. Se dice que una variable aleatoria x es Lognormal si su logaritmo es normal. Haciendo uso del cambio de variable, se obtiene fácilmente que la función de distribución de x es: Donde: ): es la función de distribución de la variable z normal estándar N (0,1). : es la media de la distribución normal original (parámetro de localización). : es la desviación típica de la distribución normal original (parámetro de escala). Distribución Weibull de mínimos. La función de distribución Weibull de mínimos de una variable aleatoria x es: Donde: x). es el parámetro de localización (es el menor valor posible de la variable aleatoria es el parámetro de escala. es el parámetro de forma. -34-

46 -35- En el presente estudio se ha obtenido el régimen medio anual escalar de altura de ola en aguas profundas con base a los datos de reanálisis calibrados correspondientes al punto indicado en aguas profundas (ver figura 3-6). Este régimen se ha ajustado mediante una distribución lognormal, como se expresa en la siguiente ecuación, donde el parámetro es la media de la distribución lognormal, y el parámetro es la desviación típica de la distribución lognormal. dx x x x F x log 1) log( 2 1 ) log( ) log( 2 1 exp 1 1 log 2 1 ) ( En este apartado se representa, el régimen escalar medio de la altura de ola significante. En la figura 3-7 se han representado todos los datos de oleaje calibrados de altura de ola significante del ajustado, pero el régimen escalar sólo ha sido determinado en el rango de probabilidad acumulada % (línea roja). La cola inferior se ha despreciado por tratarse de olas de muy pequeña magnitud, mientras que la cola superior de los datos se trata en la determinación de los regímenes extremales. Los parámetros de ajuste (,) se recogen en la gráfica de abajo. Figura 3-7 Régimen escalar medio de la altura de ola significante en aguas profundas.

47 Por lo tanto, aunque cualquiera de las dos distribuciones es suficientemente buena para la distribución media de las alturas de ola, estas distribuciones medias no deben utilizarse para análisis estadístico de estados de mar extremos. En la Figura 3-8 y 3-9 se muestran los mejores ajustes obtenidos para el régimen medio de Hs y Tp. Figura 3-8 Régimen medio de Hs en aguas profundas Figura 3-9 Régimen medio de Tp en aguas profundas -36-

48 3.4.5 Régimen Extremal Se denomina Régimen Extremal a la función de distribución de los valores extremos de una determinada variable. Dicha función expresa la probabilidad de que un valor dado no sea superado en un periodo de tiempo prefijado. Para el diseño de seguridad es necesario el conocimiento de la estadística de extremos de los parámetros del oleaje o, en aquellos casos en los que la obra puede fallar por una sola ola, la estadística de extremos de las olas individuales. Dado que estas obras se diseñan con decenas de años de vida útil, la determinación de la seguridad de una estructura requiere de información del oleaje de largos períodos de tiempo, información que, en general no está disponible. Por ello, en general, será necesario un determinado nivel de extrapolación. El período de retorno (T) de una variable extremal anual al número medio de años que transcurren entre dos superaciones de un valor determinado de la variable: 1 T 1 V donde: 1 (1 PFV ) PFV: Probabilidad de Fallo en la Vida útil. V: Vida Útil de la obra o proyecto Figura 3-10 Régimen extremal de Hs en profundidades indefinidas -37-

49 Si el fallo de una estructura marítima o un proyecto de ingeniería de costas se asocian exclusivamente a la superación de un valor determinado por un estado de mar, por ejemplo la altura de ola significante, entonces asumiendo una determinada probabilidad de fallo se puede determinar el periodo de retorno del parámetro con el régimen extremal del mismo. En las figuras 3-10 y 3-11 se representa el régimen extremal escalar de la altura de ola y período de pico, indicándose en la gráfica los parámetros de ajuste. Figura 3-11 Régimen extremal de Tp en profundidades indefinidas Oleajes en aguas profundas En este apartado se describen los resultados obtenidos del análisis de largo plazo del oleaje en aguas profundas en la zona de estudio. Así mismo, se realiza una breve descripción de las características más importantes de dichos resultados. Para la determinación de los regímenes direccionales medios y extremales de la altura de ola significante se han definido sectores de 22.5º. A continuación en tabla 3-2 se muestran los parámetros de altura de ola y probabilidad de ocurrencia por direcciones. Con base en esta información se ha confeccionado la rosa de oleaje en aguas profundas para toda la serie de datos obtenidas en el punto que se muestra en la figura 3-6. La rosa de oleaje consiste en agrupar en sectores de 22.5 las direcciones con su correspondiente altura que van desde el Norte, Este, Sur y Oeste. A partir de estos datos se generó los gráficos de regímenes medio y extremal en la que se muestra la probabilidad de ocurrencia de oleaje. -38-

50 Tabla 3-2 Probabilidad de ocurrencia de oleajes por direcciones. La rosa de oleaje (véase figura 3-12) obtenida con los datos de reanálisis en aguas profundas por N. Graham (2003) de la NOAA, se aprecia como los oleajes reinantes y dominantes en alta mar provienen del SSW, SW, WSW, W y NW. Más adelante se verá como los oleajes están afectados por procesos de refracción, difracción y reflección por efectos del cambio de profundidad y la presencia de puntas de formación rocosa en el lado sur y la isla San Lorenzo en el lado norte. Figura 3-12 Rosa de oleajes medios en aguas profundas (Fuente N. Graham 2003, NOAA) -39-

51 3.4.7 Variabilidad anual del oleaje Los oleajes en aguas profundas en la zona de estudio provienen principalmente del SSW, SW, WSW, W y oleajes de componente NW. La división direccional se corresponde con sectores de 22.5º, tal y como se muestra en la rosa de oleaje obtenidas por el método de reanálisis. En esta rosa se puede observar que los oleajes se encuentran encuadrados en el segundo y tercer cuadrante. Los oleajes predominantes del SSW y SW son los más energéticos y provienen del tercer cuadrante, mientras que por orientación de la costa los oleajes energéticos son de componente WSW y W que se propagan hacia las proximidades de la costa de la bahía de Miraflores. Los oleajes procedentes del NW afectan a las playas del Sur de la bahía, no afectan a la zona Norte y Centro debido a la protección que ejerce la isla San Lorenzo y la península La Punta. Estos oleajes del NW se presentan en épocas de verano cuando se relajan los vientos alisios y frecuentemente durante la presencia del fenómeno El Niño. Analizando la serie de oleaje a lo largo de los años se observa que no existe gran variabilidad anual en cuanto a la dirección de los oleajes reinantes y dominantes, por lo general los oleajes predominantes se mantienen en el mismo cuadrante. En las figuras 3-13 y 3-14 se presentan las rosas de oleaje para los años 1979 y 2000 en las que se aprecia como el año 2000 está marcado por una ligera dominancia de los oleajes del SSW con respecto al año 1979 que muestra la misma tendencia con los oleajes de componente SW. En general los oleajes predominantes se ubican en el tercer y cuarto cuadrante. Figura 3-13 Rosa de oleaje en aguas profundas en el año 1979 (Fuente N. Graham 2003, NOAA) -40-

52 Figura 3-14 Rosa de oleaje en aguas profundas en el año 2000 (Fuente N. Graham 2003, NOAA) Distribución conjunta Hs-Tp. Con el objetivo de establecer la relación entre la altura de ola significante Hs y el período de pico Tp se ha establecido la distribución conjunta Hs-Tp con los datos de 20 años espaciados cada tres horas, los resultados agrupados en sectores se muestran en las figuras del 3-15 al A continuación se pueden observar la distribución conjunta de altura de ola significante y periodo de pico por sectores de dirección. Figura 3-15 Distribución conjunta de Hs y Tp Sector NW -41-

53 Figura 3-16 Distribución conjunta de Hs y Tp Sector W Figura 3-17 Distribución conjunta de Hs y Tp Sector WSW -42-

54 Figura 3-18 Distribución conjunta de Hs y Tp. Sector SW Figura 3-19 Distribución conjunta de Hs y Tp Sector SSW -43-

55 3.5 Oleaje en la zona de estudio Cuando el oleaje se propaga hacia la costa sufre procesos de refracción, difracción, reflexión, asomeramiento y disipación de energía por fondo. Para caracterizar correctamente el oleaje en la zona de estudio, se hace necesario propagar los oleajes existentes desde aguas profundas hasta la zona de interés en la costa. La reconstrucción de la serie de estados de mar en el ámbito costero se realizará con el objetivo de evaluar el flujo y dirección de la energía en la zona de rompientes a efectos de calcular el transporte potencial asociado, por lo tanto, el modelo numérico a emplear es el MOPLA Sistema de modelado numérico MOPLA Las propagaciones necesarias se han realizado utilizando el modelo integral MOPLA (MOrfodinámica de PLAyas). EL MOPLA, es un programa que permite simular en una zona litoral, la propagación del oleaje desde aguas profundas hasta la línea de costa. Esta propagación se ha realizado utilizando el Modelo de Propagación de Oleaje y Corrientes (OLUCA), del Grupo de Ingeniería Oceanográfica y de Costas de la Universidad de Cantabria. El modelo ha sido desarrollado inicialmente en la Universidad de Delaware, U.S.A. y mejorado posteriormente entre miembros de la citada Universidad y del Grupo de Ingeniería Oceanográfica y de Costas de la Universidad de Cantabria. Este modelo integra un módulo de propagación y rotura de oleaje basado en la ecuación de la pendiente suave (OLUCA) con un modelo de corrientes debidas al oleaje (COPLA) y un modelo de transporte de sedimento y cambio de la batimetría (EROS). Dicho modelo es capaz de simular los procesos antes descritos, tanto para oleaje monocromático como para oleaje espectral, resolviendo la forma parabólica de la ecuación de pendiente suave (Mild Slope) e incorpora modelos de propagación no lineales, simulación de capa límite turbulenta o laminar, la rugosidad del fondo, entre otros factores. El modelo de propagación y rotura de oleaje basado en la ecuación de la pendiente suave (OLUCA) es un modelo de propagación de oleaje irregular basado en la versión parabólica de la ecuación de la pendiente suave, Kirby (1986). Esta ecuación incluye los procesos de refracción, asomeramiento, difracción y la disipación por fricción por fondo y rotura del oleaje. A partir de este oleaje, se lleva a cabo el cálculo de corrientes inducidas en la zona de rompientes, y finalmente simula la evolución morfodinámica de una playa. Por lo tanto, el MOPLA permite propagar oleajes monocromáticos o espectrales desde aguas profundas hasta la costa incluyendo los procesos de refracción, asomeramiento, difracción, disipación por rotura y pos-rotura. -44-

56 A continuación se describen las distintas etapas que se han seguido para la implementación del sistema de modelado numérico en la zona de estudio Batimetría Como primer paso para el estudio de la propagación del oleaje, se hace necesario definir la batimetría necesaria para el MOPLA utilizando el Sistema de Modelado Costero. El Sistema de Modelado Costero (SMC) es una interfaz gráfica, la cual forma parte del proyecto titulado Modelo de Ayuda a la Gestión del Litoral, proyecto llevado a cabo por el Grupo de Ingeniería Oceanográfica y de Costas (G.I.O.C.) de la Universidad de Cantabria. El SMC permite generar un proyecto de estudio donde se pueden incorporar y combinar las batimetrías de aguas profundas, intermedias y batimetrías de detalle provenientes de diversas fuentes. Una vez introducida en el modelo, es posible ir codificándola y generando sobre esta batimetría diferentes alternativas o situaciones de estudio. La batimetría empleada en el presente estudio fue realizada por la Dirección de Hidrografía y Navegación de la Marina de Guerra del Perú y fueron tomadas de la Carta Náutica 223 levantada en el año En la Figura 3-20 y 3-21 se muestra la batimetría generada utilizando el SMC y la batimetría medida en el área de estudio respectivamente. Figura 3-20 Batimetría generada en el SMC -45-

57 Figura 3-21 Batimetría de detalle de la zona de estudio. Proyecto SMC Mallas La función de las mallas es la discretización del dominio computacional en el que se van a realizar los cálculos de las propagaciones sobre la batimetría de la zona de estudio, o área en la que se desea analizar la propagación. A continuación se describen las distintas combinaciones de mallas utilizadas para la correcta propagación de los distintos oleajes. Los detalles de los requisitos que deben cumplir las mallas se pueden consultar en el manual del usuario Mopla 2.0. Por requerimiento del modelo utilizado, una de las alineaciones de la malla ha de coincidir con la dirección de propagación del oleaje, o estar comprendida en un ángulo no superior a 60º respecto a dicha dirección. Para propagar los oleajes procedentes del SSW y el SW desde aguas profundas hasta las proximidades de la costa en la bahía de Miraflores se ha seleccionado una malla exterior de grandes dimensiones anidada a una malla intermedia y finalmente una malla en aguas someras con el fin de tener mayor precisión en la zona de estudio. Sobre este conjunto de batimetrías se ha introducido la planta del futuro rompeolas, tal y como se puede ver en la figura número 3-22 y 3-23, las propagaciones se van a realizar sobre la situación actual y con rompeolas construido con el objeto de poder comparar los resultados. -46-

58 Figura 3-22 Malla de propagación para la situación actual. Figura 3-23 Malla de propagación para la situación con rompeolas En las figuras 3-24 al 3-29 se muestra el conjunto de mallas anidadas utilizadas para propagar los oleajes procedentes de los sectores SSW, SW, WSW, W y NW respectivamente. La discretización de las mallas es variable para cada dirección que oscilan entre 100 m para las mallas exteriores, 50 m para las mallas intermedias y 25 m para aguas someras. -47-

59 Figura 3-24 Malla de propagación para la zona de detalle, oleajes WSW y W. Figura 3-25 Malla de propagación para la zona de detalle, oleajes NW. -48-

60 Figura 3-26 Malla de propagación para la zona de detalle, oleajes SSW y SW. Figura 3-27 Malla de propagación para oleajes NW monocromático. -49-

61 Figura 3-28 Malla de propagación para oleajes del SSW en el área de estudio. Figura 3-29 Malla de propagación para oleajes del W en el área de estudio. Se ha tenido en cuenta en el diseño las limitaciones computacionales así como las condiciones impuestas por los diferentes oleajes a propagar (profundidad donde el oleaje comienza a sentir el fondo en función de su periodo). -50-

62 3.5.4 Parámetros espectrales Con el propósito de observar con mayor detalle y describir correctamente el oleaje que llega a las playas del Club Regatas Lima, se han realizado propagaciones de oleaje espectral a fin de representar con mayor precisión la evolución de la altura de ola. Los parámetros = factor de ensanchamiento del pico y m = ancho del espectro (grados) son parámetros que definen la forma del espectro. Estos parámetros están íntimamente ligados: espectros apuntados tienen parámetros de anchura espectral bajos y al contrario. Cuando el espectro es apuntado y la anchura es pequeña, la energía está contenida en una estrecha banda de frecuencias: se trata de oleajes tipo SWELL o de Mar de fondo. Este tipo de oleajes ya han abandonado el área de generación y se propagan con olas poco peraltadas y periodos y longitud de onda grandes, dando lugar a un aspecto ordenado y regular de la superficie. En cambio, cuando el espectro es poco apuntado y la anchura espectral es grande, la energía está contenida en un amplio rango de frecuencias típicos de oleajes tipo SEA o Mar de viento, que se caracteriza por ser olas muy peraltadas con periodos y longitudes de onda pequeños, que todavía se encuentra en el área de generación, y no se ha agrupado. Para el caso de las playas de la bahía de Miraflores, se han propagado espectros tipo TMA (Boas et al., 1985) al que se le aplica la función de dispersión angular propuesta por Borgman (1984). Cada espectro propagado queda definido por cinco parámetros: Hs: Altura de ola significante. Tp: Período de pico. m: Dirección media. : Factor de ensanchamiento del pico. : Parámetro de dispersión angular. Los parámetros y de caracterización de la forma del espectro bidimensional sólo dependen del período de pico. Los resultados obtenidos en cada propagación se almacenan en archivos de datos, a partir de los cuales pueden obtenerse las gráficas siguientes: - Gráfica de isoalturas de ola significante. - Gráfica de vectores altura de ola significante, dirección media de propagación. Dado el elevado volumen de figuras que supondría la presentación de todas las gráficas de propagación, se ha optado por presentar las gráficas de isoalturas y de vectores correspondientes a oleajes medios anuales y temporales para cinco direcciones (SSW, SW, WSW, W y NW). -51-

63 3.5.5 Casos propagados En la Tabla 3-5 se muestran los casos de oleaje propagados desde aguas profundas hasta las proximidades de la costa. Los resultados de estas propagaciones nos permiten reconstruir el clima marítimo y calcular el flujo medio de energía en el área de estudio y así poder calcular el valor de Hs12 en dicha zona y por lo tanto, la profundidad de cierre del perfil de la playa h*, el cual será de utilidad a la hora de diseñar las actuaciones en las playas existentes. Los estados de mar en aguas profundas están caracterizados por Hs, Tp, o y Nivel del Mar. Debido a que la amplitud de marea en la zona de estudio no es considerable, las propagaciones se realizarán sin tener en cuenta la carrera de marea. Solo se considera los casos de propagación que puedan llegar a la playa. Los oleajes del NW serán considerados en las propagaciones, debido a que estos frentes alcanzan la zona sur de la bahía, la presencia de la isla San Lorenzo y la península La Punta impide que estos oleajes alcanzan hasta las proximidades de la costa Norte y Centro de la bahía de Miraflores, por tanto, la presencia de los oleajes del NW en la zona Sur de la bahía son importantes a considerar en la dinámica del área de estudio. Nivel Sector Dirección Hs (m) Tp (seg) Marea NW NW NW NW W W W W WSW WSW WSW WSW SW SW SW SW SSW SSW SSW SSW Tabla 3-3 Cuadro de casos de propagación de oleaje. -52-

64 3.5.6 Propagación del oleaje en la Bahía de Miraflores La configuración de la morfología costera por el lado sur y la presencia de la isla San Lorenzo por el lado norte, sumados a la batimetría exterior y en cercanías de las costas condicionan de manera importante el oleaje que alcanza las playas. En las figuras 3-30 a 3-38 se muestra la propagación de oleajes medios para distintas direcciones en aguas profundas. Para los oleajes del WSW, se aprecia importantes procesos de refraccióndifracción y captación de energía conforme el frente se acerca a costa en la zona centro y norte de la bahía, mientras que para los oleajes del SW se nota un incremento de alturas como consecuencia de los procesos de reflección en la Punta Chorrillos. En cuanto a los oleajes del NW, en la zona sur se aprecia importantes giros condicionados por la batimetría exterior y el bajo que se encuentra frente a San Miguel generando gran captación de energía cuyos frentes se propagan con dirección a las playas La herradura, Los Pescadores y la Playa Agua Dulce con importantes procesos de refracción. La propagación de oleajes de temporal para la bahía de Miraflores son mostradas en las figuras 3-39 al 3-47 para las direcciones SSW, SW, WSW y W. -53-

65 Figura 3-30 Propagación de oleajes medios NW. -54-

66 Figura 3-31 Propagación de oleajes medios SSW. -55-

67 Figura 3-32 Propagación de oleajes medios SW. -56-

68 Figura 3-33 Propagación de oleajes medios WSW. -57-

69 Figura 3-34 Propagación de oleajes medios W. -58-

70 Figura 3-35 Propagación de oleajes medios SSW. Isoalturas de olas -59-

71 Figura 3-36 Propagación de oleajes medios SW. Isoalturas de olas -60-

72 Figura 3-37 Propagación de oleajes medios WSW. Isoalturas de olas -61-

73 Figura 3-38 Propagación de oleajes medios W. Isoalturas de olas -62-

74 Figura 3-39 Propagación de temporal NW Bahía de Miraflores. -63-

75 Figura 3-40 Propagación de temporal W Bahía de Miraflores. -64-

76 Figura 3-41 Propagación de temporal WSW Bahía de Miraflores. -65-

77 Figura 3-42 Propagación de temporal SW Bahía de Miraflores. -66-

78 Figura 3-43 Propagación de temporal SSW Bahía de Miraflores. -67-

79 Figura 3-44 Propagación de temporal W, isoalturas de ola. -68-

80 Figura 3-45 Propagación de temporal WSW, isoalturas de ola. -69-

81 Figura 3-46 Propagación de temporal SW, isoalturas de ola. -70-

82 Figura 3-47 Propagación de temporal SSW, isoalturas de ola. -71-

83 Tras realizar las propagaciones con obra y sin obra se procedió a crear los cuadros de interpolación en cada uno de los puntos seleccionados, a partir de éstos y mediante interpolación, se trasladó la serie de Hs y Dir desde aguas profundas hasta los puntos de interés Regímenes medios direccionales de oleaje y flujos medios de energía Los regímenes medios de oleaje nos permiten determinar cuanta energía llega a la playa y cómo se distribuye direccionalmente, aspecto importante a la hora del cálculo de corrientes, y por tanto, del transporte litoral. Se ha calculado el régimen medio y flujo medio de energía en diez puntos a lo largo de la zona de estudio. En base a los resultados en estos puntos se calcularán los estados morfodinámicos de las playas seleccionadas y el flujo medio de energía, variable esta que se utilizará posteriormente para calcular la forma en planta de equilibrio de las playas. Flujo medio de energía La forma en planta de equilibrio de una playa depende de la dirección del flujo medio de energía F. El vector flujo medio de energía FM es el resultado de la agregación de todos los oleajes que afectan a la paya en un año medio. El vector flujo de energía F Fxi Fy j correspondiente a un determinado oleaje tiene como dirección la correspondiente al vector número de onda (que coincide con la 1 2 dirección del oleaje) y como magnitud * * * * 8 g H C g El vector flujo medio de energía es el vector suma de todos los flujos de energía de todos los oleajes en un año. Así, por ejemplo si para cada hora del año existe un flujo de energía, el flujo medio de energía se define como: F M t1h F x, t i 8760 t1h F y, t j Para obtener el modulo del vector flujo medio de energía se utiliza la siguiente expresión: F M F x 2 F y 2 Finalmente, para calcular la dirección del flujo medio de energía se utiliza la expresión que relaciona las componentes del vector flujo medio de energía: F atan F y x -72-

84 En la figura 3-48 se observa los diez puntos de control seleccionados para el cálculo del flujo medio de energía. Los puntos han sido localizados fuera de la zona de rotura, pero en cercanías a la costa. En las figuras 3-49 al 3-58 se muestra, para cada punto, la rosa de oleaje junto con la dirección media del flujo de energía (línea roja) y la orientación de la Playa (línea azul). También se muestra el régimen medio de alturas de ola en el punto en cuestión. En general para los puntos situados fuera de la zona de rotura se observa como los oleajes que llegan a la costa están dentro del abanico WSW - SSW con alguna presencia del W siendo predominantes las direcciones SW y SSW. Los oleajes de dirección NW, SSW y SW se han refractado llegando a la costa sur con direcciones SW y WSW. Figura 3-48 Localización de los puntos de cálculo de regímenes direccionales y flujo medio de energía -73-

85 PUNTO 1 Figura 3-49 Régimen direccional y flujo medio de energía para el punto

86 PUNTO 2 Figura 3-50 Régimen direccional y flujo medio de energía para el punto

87 PUNTO 3 Figura 3-51 Régimen direccional y flujo medio de energía para el punto

88 PUNTO 4 Figura 3-52 Régimen direccional y flujo medio de energía para el punto

89 PUNTO 5 Figura 3-53 Régimen direccional y flujo medio de energía para el punto

90 PUNTO 6 Figura 3-54 Régimen direccional y flujo medio de energía para el punto

91 PUNTO 7 Figura 3-55 Régimen direccional y flujo medio de energía para el punto

92 PUNTO 8 Figura 3-56 Régimen direccional y flujo medio de energía para el punto

93 PUNTO 9 Figura 3-57 Régimen direccional y flujo medio de energía para el punto

94 PUNTO 10 Figura 3-58 Régimen direccional y flujo medio de energía para el punto

95 3.5.8 Conclusiones respecto a los oleajes en la Bahía de Miraflores Con base en las propagaciones y lo anteriormente dicho, podemos afirmar que: La presencia de las Puntas La Chira y Punta Chorrillos por el lado sur, la isla San Lorenzo e islotes La Horadada por el lado norte, adicional a la batimetría exterior, condicionan de manera muy importante el oleaje que alcanza las playas de la Bahía de Miraflores. Los oleajes del NW sufren importantes procesos de refracción en su propagación hacia la costa en el lado sur de la bahía de Miraflores. Los oleajes reinantes y dominantes de la zona provienen, en aguas profundas, de sectores definidos del SSW, SW, WSW y W. Los oleajes de componente SW y WSW introducen mayor altura de ola tanto para condiciones medias como para temporales. En general, en las playas de la bahía de Miraflores existen dos direcciones predominantes SW y SSW, excepto en los puntos 1 y 2 de la figura 3-48 donde predominan las direcciones W y WSW. La frecuencia de ocurrencia de los oleajes de estos sectores no experimentan cambios drásticos de un año al otro, por lo tanto, el análisis y los cálculos del transporte litoral se llevan a cabo con base a una densidad de datos de oleajes lo suficientemente extenso (20 años) para caracterizar adecuadamente dicho transporte. 3.6 Oleajes en las playas del Club Regatas Lima. A modo de ejemplo de las propagaciones, en este apartado se presentan los gráficos de vectores en la zona de estudio con obra y sin obra, para un oleaje medio anual con Hs = 1 m y Tp = 12 s (véase figuras 3-59 a 3-68). Oleajes medios anuales Los oleajes medios se encuentran menos afectados por la refracción como es de esperar en oleajes de periodo bajo. Debido a esto, los oleajes del SW y WSW llegan con mínima inclinación a las playas del Club Regatas Lima. Los oleajes de componente WSW no se ven afectados por la batimetría exterior para condiciones medias por lo que llegarán a la costa con dirección similar a la de aguas profundas. En toda la zona no se observan gradientes de altura de ola para ninguno de los oleajes propagados pero si cierta oblicuidad en los frentes de los oleajes de componente SW. Esta oblicuidad hace que se tenga mayor altura de ola en Playa 01 y 03 que en la Playa Agua Dulce. Para los oleajes de componente Oeste los frentes son -84-

96 prácticamente paralelos a la costa e introducen más altura de ola que los oleajes de componente Suroeste. Oleajes de temporal El mayor periodo de los temporales de componente SW hace que los efectos de la refracción causados por la batimetría exterior sean mayores que para condiciones medias de oleaje. Esto implica que el oleaje llega a las playas del Club Regatas Lima con menor ángulo de inclinación y una mayor disminución de altura de ola que los oleajes de condiciones medias. Obsérvese que la altura de ola con la que llegan los temporales de componente WSW y NW es del mismo orden de la que llega con condiciones medias. Los temporales de componente Noroeste, al igual que los oleajes de condiciones medias, se ven afectados por la península La Punta y La isla San Lorenzo por lo que incidirán en la costa con un ángulo similar al de condiciones medias. No se observan gradientes de altura de ola en toda la zona y la oblicuidad de los frentes de oleaje en las cercanías de las playas es menor que en los casos de temporal. -85-

97 Figura 3-59 Propagación de oleajes medios SSW, zona Club Regatas Lima. -86-

98 Figura 3-60 Propagación de oleajes medios SW, zona Club Regatas Lima. -87-

99 Figura 3-61 Propagación de oleajes medios WSW, zona Club Regatas Lima. -88-

100 Figura 3-62 Propagación de oleajes medios W, zona Club Regatas Lima. -89-

101 Figura 3-63 Propagación de oleajes medios NW, zona Club Regatas Lima. -90-

102 Figura 3-64 Propagación de oleajes medios SSW, zona Club Regatas Lima con obra. -91-

103 Figura 3-65 Propagación de oleajes medios SW, zona Club Regatas Lima con obra. -92-

104 Figura 3-66 Propagación de oleajes medios WSW, zona Club Regatas Lima con obra. -93-

105 Figura 3-67 Propagación de oleajes medios W, zona Club Regatas Lima con obra. -94-

106 Figura 3-68 Propagación de oleajes medios NW, zona Club Regatas Lima con obra. -95-

107 3.7 Modelo de funcionamiento de las playas situación actual y futura. En esta sección se va abordar el comportamiento de las playas bajo la acción de los principales oleajes, tanto en condiciones medias como bajo situación de temporal, es también objetivo determinar el posible efecto del rompeolas sobre el comportamiento del oleaje a lo largo de la bahía de Miraflores. Para la selección de los oleajes a propagar desde aguas profundas nos hemos basado en las principales conclusiones extraídas del clima marítimo en aguas profundas, como se detalló en su momento los oleajes de mayor frecuencia de presentación son SSW, SW, WSW, NW y W, siendo los de mayor energía en aguas profundas los oleajes del SW y WSW. En su propagación los oleajes del primer cuadrante se encuentran, con una plataforma tendida con unas isobatas próximas entre si y alienadas con la normal al frente de oleaje lo que favorece la disipación por refracción del oleaje. Esto se produce por lo menos hasta llegar a la ubicación de la playa 03, justo al norte se genera una zona de importante refracción que atraerá sobre todo a los oleajes del SSW y SW de periodos y alturas importantes, es previsible que la atenuación de estos oleajes sea importante en las playas objeto de estudio alcanzando coeficientes de propagación bajos. En el caso de los oleajes del NW en indefinidas presentan cierto ángulo con las isobatas lo que favorecerá la refracción cuando se halle próxima a la costa. Para los oleajes de mayor energía (SW y WSW) su orientación con respecto a la batimetría presenta mayor ángulo aunque en los oleajes del SW este ángulo es pequeño y los frentes llegan estar alineados con las isobatas cuando alcanzan menores profundidades. Los oleajes de baja probabilidad de presentación son los que mayor energía presentan en aguas profundas por orientación de la costa y los que mayores coeficientes de propagación van a generar. Por un lado no se ven afectados por el fondo hasta estar bastante cerca de la costa y a diferencia de los oleajes del WSW y NW, que transcurren prácticamente paralelos a la costa, la configuración de la línea de costa favorece el efecto disipador que se da al sur de la bahía. Como es previsible las zonas de cabos y salientes rocosos que se observan a simple vista a la entrada de las bahías son claras zonas de concentración de la energía del oleaje y así se podrá visualizar en las propagaciones efectuadas. Las mallas empleadas en las propagaciones son las que se han señalado anteriormente y los casos simulados son los característicos de una situación media y de temporal extraídos a partir de los resultados de clima marítimo en profundidades indefinidas. Como situación media para cada una de las direcciones propagadas se ha escogido la altura de ola que es superada el 50 % del tiempo, mientras que para la situación de temporal se ha escogido la altura de ola significante que supera el 10% -96-

108 del tiempo. La selección de periodos se ha realizado tomando el periodo más probable de acuerdo a las distribuciones bidimensionales de Hs-Tp. En relación a los oleajes del SSW y SW, éstos sufren una modificación sustancial justo al norte de la ubicación del futuro rompeolas donde la plataforma tiene una puntual mayor anchura y aguas más someras que favorecen la refracción y concentración de la energía sobre esta zona de la costa. Este patrón de comportamiento no parece modificarse sustancialmente por la presencia de la obra aunque el efecto general para la dirección WSW y W es una leve pero perceptible pérdida de energía. Para los sectores SW y WSW la presencia de la obra no parece dar lugar a una modificación del oleaje al norte de la obra. Al llegar a la entrada de la punta Chorrillos se producen claras concentraciones de energía que se propagan hacia las playas Agua Dulce mientras que la energía es menor a medida que se acerca hacia la costa. Para los oleajes del NW, la presencia del rompeolas no afecta su comportamiento observamos un patrón de concentración de energía hacia el lado sur de la bahía de Miraflores, el oleaje se refracta de manera intensa al entrar al sur de la bahía. Las playas 01, 02 y 03 del Club Regatas Lima se encuentran claramente protegidas del oleaje del SW por el rompeolas y su propia orientación. 3.8 Sistema circulatorio de corrientes en rotura La rotura del oleaje combinada con los gradientes de altura de ola y la incidencia oblicua del oleaje, producen corrientes longitudinales a lo largo de la costa, generalmente paralelas a la playa. Estas corrientes pueden llegar a mover una gran cantidad de sedimento en las zonas costeras, debido a la acción combinada de la rotura del oleaje que lo pone en suspensión y las corrientes que la transporta. La determinación de estas corrientes longitudinales puede ser obtenida por medio de expresiones analíticas en ciertos casos de geometrías de playa simples. En el caso de la bahía de Miraflores, la complejidad de los contornos y la batimetría existente, dan como resultado que estas corrientes sólo puedan ser calculadas por métodos numéricos. Para el presente estudio de corrientes asociado a la rotura del oleaje se ha utilizado el modelo COPLA desarrollado por el Grupo de Ingeniería Oceanográfica y de Costas de la Universidad de Cantabria. Básicamente, en lo que refiere a las corrientes por rotura, el modelo determina el tensor de radiación del oleaje a partir de los resultados obtenidos de altura e incidencia del oleaje obtenidos en la propagación, calculando el campo de corrientes y niveles debido a dichos tensores de radiación por medio de un modelo no-lineal que resuelve las ecuaciones integradas de Navier-Stokes. Del conjunto de simulaciones de oleaje del apartado anterior, se han obtenido con el COPLA los sistemas de corrientes asociados, para verificar el nivel de estabilidad del modelo se ha establecido tres puntos de control lo que alcanza en 346 segundos (véase figura 3-69) -97-

109 Los resultados se muestran de acuerdo a las propagaciones realizadas según los casos de la tabla 3-3. Figura 3-69 Puntos de control y nivel de estabilidad del modelo Corrientes en la Bahía de Miraflores Con base en las propagaciones anteriormente descritas, procedemos a analizar el sistema de corrientes inducido por dichos oleajes en la Bahía de Miraflores. A continuación se describen los patrones circulatorios de las corrientes inducidas por la rotura del oleaje (véase figuras del 3-70 al 3-85) Patrón circulatorio generado por oleaje del SSW en indefinidas. La incidencia del oleaje del SSW genera corrientes que se desplazan de sur a norte, desde la ensenada de Chorrillos hasta la playa la Pampilla en Miraflores, a partir de este sector se evidencia la formación de corrientes de retorno y sistemas celulares que son características de corrientes con mínima incidencia oblicua del oleaje. Las velocidades de la corriente predichas por el modelo varían de 0.4 a 2.7 cm/s. En el área de la Playa Marbella la corriente de menor intensidad circula en sentido contrario, hacia el sur. Patrón circulatorio generado por oleaje del SW en indefinidas. El sistema de corrientes inducido es el mismo que el inducido por oleaje del SSW en indefinidas. En este caso la velocidad máxima de las corrientes litorales que recorre la playa de Miraflores y predicha por el modelo es de 6 cm/s. -98-

110 Patrón circulatorio generado por oleaje del WSW en indefinidas. En la parte central y sur de la bahía de Miraflores, las corrientes muestran velocidades que oscilan entre 2 y 6 cm/s, la dirección de las corrientes esta condicionada por la oblicuidad de los frentes de oleaje que generan corrientes de retorno con dirección al norte y al sur formando cusps o formas arquedas en la orilla de la playa. Patrón circulatorio generado por oleaje del W en indefinidas. Generan corrientes inducidas por el oleaje, al ser olas de gran altura que arriban a la costa sin casi pérdida de energía a la zona central y norte de la Bahía de Miraflores. Las corrientes generadas muestran comportamientos similares a los olajes del WSW. Patrón circulatorio generado por oleaje del NW en indefinidas. El comportamiento de las corrientes para este sector muestra una clara formación de cambio de dirección de las corrientes ocasionado por la difracción que sufre los oleajes a la altura de la Playa Los Yuyos cuyas direcciones fluyen hacia el sur bordeando la playa Agua Dulce y hacia el Norte por la playa Barranco provocando la formación de remolino en el cabezo de la marina Lima Marina Club. -99-

111 Proyecto: Bahía de Miraflores Gráfico: Vectores corriente Caso Monocromático: G124 Características de la simulación OLUCA-MC COPLA-MC MOPLA-MC G1: 24: Monocromático NW NW Hs 1.5 Tp 14 Periodo T: 14 s Altura H: 1.5 m Dirección:(N45.5W ) Marea NM: 0 m Chezy C: 10 m 1/ 2 /s Viscosidad de remolino : 100 m 2 /s N W E S MOPLA 2.0: Darwin Loarte Programa desarrollado por Figura 3-70 Corrientes en la bahía de Miraflores, oleajes medios NW -100-

112 Figura 3-71 Corrientes en la bahía de Miraflores, oleajes medios WSW

113 Figura 3-72 Corrientes en la bahía de Miraflores, temporal WSW

114 Figura 3-73 Corrientes en la bahía de Miraflores, Oleajes medios SW

115 Figura 3-74 Corrientes en la bahía de Miraflores, temporal SSW

116 Figura 3-75 Corrientes en la bahía de Miraflores, oleajes medios W

117 Figura 3-76 Corrientes en la bahía de Miraflores, temporal W

118 Figura 3-77 Corrientes en la bahía de Miraflores, temporal NW

119 Figura 3-78 Corrientes en la bahía de Miraflores, oleaje del SW

120 Figura 3-79 Corrientes en la bahía de Miraflores, Oleaje del WSW

121 Figura 3-80 Corrientes en la bahía de Miraflores, Oleajes del W

122 Figura 3-81 Corrientes en la bahía de Miraflores, oleaje SSW, situación con obra

123 Figura 3-82 Corrientes en la bahía de Miraflores, oleaje SSW situación con obra

124 Figura 3-83 Corrientes en la bahía de Miraflores, oleaje SW - situación con obra

125 Figura 3-84 Corrientes en la bahía de Miraflores, oleaje WSW, situación con obra

126 Figura 3-85 Corrientes en la bahía de Miraflores, oleaje W, situación con obra

127 3.9 Conclusiones relativas a las corrientes de rotura Las corrientes en la bahía de Miraflores se presentan en dos situaciones claramente diferenciadas, según los oleajes en indefinidas, sean de componente S (SSW-SW) o de componente W (WSW-W). Los primeros generan corrientes de Sur a Norte que se extiende desde la ensenada de Chorrillos hasta la playa La Pampilla de Miraflores, a partir de este sector se evidencia la formación de corrientes de retorno, sistemas celulares de corrientes y corrientes longitudinales que se dirigen de norte a sur. Estos sistemas de corrientes se generan tanto para condiciones medias como para temporales. Este patrón de corrientes da lugar a la acumulación de material a levante de los espigones construidos. En la zona central de la bahía de Miraflores se generan sistemas celulares de corrientes asociados a oscilaciones infragravitatorias y corrientes de retorno con dos componentes que se dirigen hacia el norte y el sur, aunque con menor intensidad que en el tramo de la playa Mar Brava. El patrón de las corrientes asociadas a la rotura del oleaje de los sectores SSW, SW y WSW (los más frecuentes) se caracteriza por presentar un sentido norte-sur sobre todo en las zonas centro-sur de la playa Agua Dulce. El flujo ha sido mucho más evidente en esta zona mientras que la zona centro a norte las corrientes mantienen un sentido hacia el norte, la existencia de un rompeolas no influye en el cambio de dirección de las corrientes. Bajo condiciones medias las corrientes que se generan en general son débiles y presentan menor intensidad en la zona sur de la bahía de Miraflores. Los oleajes de componente Sur generan una corriente de Sur a Norte que continua hasta el extremo norte de la bahía de Miraflores donde sufren una parada debido al efecto de bloqueo que genera la península La Punta en las corrientes. El poco material que transportan estas corrientes tiende a depositarse en esta zona La zona a poniente de Punta Chorrillos, zona de acantilados y Playa la Herradura sufre pérdidas constantes de sedimentos con los temporales del SSW y que se recupera con los temporales del WSW. Al no tener ningún punto de apoyo su situación es inestable y totalmente condicionada por la dinámica dominante. En relación a la posible afección del sistema de corrientes de la bahía por la construcción del rompeolas no se han detectado en ningún caso diferencias significativas ni en el patrón, ni en la intensidad ni en la distribución de las zonas de aceleración-desaceleración del flujo

128 CAPITULO IV CAPÍTULO IV -117-

129 CAPITULO IV DINÁMICA LITORAL ACTUAL IV. DINÁMICA LITORAL 4.1 Introducción En el presente capítulo se va abordar el estudio de la estabilidad y la evolución de las playas que se encuentran en el entorno del área de estudio así como un análisis del transporte potencial de sedimentos en el sector lineal de costa donde se ubicará el futuro rompeolas con el objetivo estimar la afección a las playas por este motivo. En concreto se analiza la estabilidad y evolución de las playas 01, 02, y 03 pertenecientes al Club Regatas Lima y las playas adyacentes tales como Playa Los Pescadores, Playa Agua Dulce, Playa Barranco, Playa Miraflores y Playa Marbella, pertenecientes a los distritos de Chorrillos, Barranco, Miraflores y Magdalena respectivamente, llevándose a cabo un análisis global y local del transporte litoral de arena en la zona. Previo al desarrollo de dicho análisis se plantea, en este apartado, la metodología que se utilizará en la evaluación de la estabilidad y evolución de las playas. Una metodología que se fundamenta en dos conceptos previos: Dimensionalidad de los procesos. Escalas de los procesos. Dimensionalidad de los procesos Todos los procesos hidrodinámicos y sedimentarios que acontecen en una playa son, en mayor o menor medida, procesos tridimensionales. Sin embargo, las limitaciones de las herramientas, formulaciones e incluso de nuestra capacidad de entendimiento de dichos procesos no nos permiten analizarlos en toda su complejidad. De este modo, surge como primera y más importante hipótesis de trabajo en el estudio de la estabilidad de una playa, la relativa a la ortogonalidad de los movimientos longitudinales y transversales de la misma. De acuerdo con esta hipótesis de ortogonalidad, cualquier movimiento de una playa, como por ejemplo el ocurrido tras un temporal (braveza de mar), puede ser analizado estudiando los movimientos longitudinales y transversales de la misma, los cuales se asume que son independientes entre si. Nótese que la hipótesis de ortogonalidad permite analizar la estabilidad de una playa estudiando por separado: Estabilidad del perfil de playa (eje transversal) Estabilidad de la planta de la playa (eje longitudinal). La hipótesis de ortogonalidad es, en general, suficientemente aproximada a la realidad, especialmente en playas abiertas con estados morfodinámicos extremos -118-

130 CAPITULO IV (disipativas o reflejantes). En playas con estados morfodinámicos intermedios, o en playas encajadas con una forma en planta de gran curvatura, existe, sin embargo, una notable interacción planta-perfil, por lo que el análisis por separado del perfil y la planta debe realizarse con cautela, siendo necesario incorporar en el análisis los estados modales y la evolución de los estados morfodinámicos de la playa. Escala espacial y temporal de los procesos Las diferentes dinámicas que afectan a una playa se presentan en escalas espaciales que van desde los centímetros (turbulencia), hasta las decenas de kilómetros (marea) y en escalas temporales que van desde los segundos (olas) hasta las décadas (ascenso del nivel medio del mar). Como respuesta a dichas dinámicas la morfología de la playa cambia, a su vez, dentro de todas esas escalas: centímetroskilómetros, segundos-décadas, véase figura 4-1. Cuadro III.6. Escalas espaciales y temporales típicas de algunos cambios morfológicos de las playas. ESCALAS ESPACIALES DE LOS CAMBIOS MORFOLÓGICOS EN PLAYAS Erosión-sedimentación secular Erosión-sedimentación por ciclos climáticos plurianuales Forma en planta Megacusps Barras rítmicas Perfil Avance de una flecha Beach cusps Escarpes Ripples Suspensión y rodadura cm dm m Dm Hm Km Mm Microescala Mesoescala Macroescala ESCALAS TEMPORALES DE LOS CAMBIOS MORFOLÓGICOS EN PLAYAS Erosión-sedimentación secular Erosión-sedimentación por ciclos climáticos plurianuales Avance de una flecha Evolución de la planta Acreción del perfil Formación de megacusps Evolución de barras Erosión del perfil Beach cusps Formación de escarpes Ripples Suspensión y rodadura seg min horas días sema. mes año década siglo Corto plazo Medio plazo Largo plazo -119-

131 CAPITULO IV Figura 4-1 Escalas espaciales y temporales típicas de algunos cambios morfológicos de las playas A pesar de la potencia de cálculo de los ordenadores, y de los intentos realizados en esa dirección, no es posible (ni adecuado) calcular los cambios que acontecen en las escalas superiores, por integración de los procesos de las escalas inferiores. Esto es debido a la falta de una teoría unificada de transporte de sedimentos que retenga la influencia de todos los efectos que se producen en las diferentes escalas espaciales y temporales. Esta carencia de teoría unificada da lugar a que los procesos que ocurren en diferentes escalas (de tiempo o espacio) deban ser analizados con diferentes herramientas o formulaciones. Es necesario, por tanto, conocer cuál es la escala de interés en cada problema particular y utilizar la formulación adecuada a dicha escala de interés. En el estudio de estabilidad y evolución de una playa las escalas de interés son la Meso escala (decenas-centenas de metro), Macro escala (km) y el largo plazo (años). Los elementos de escalas inferiores (por ejemplo, la erosión producida por un temporal) solo son relevantes si sus efectos permanecen en el tiempo, o en el espacio, en unidades cercanas a las de interés (por ejemplo, meses), o si su efecto provoca el fallo funcional de la obra (por ejemplo, el oleaje alcanza el trasdós de la playa). El estudio de estabilidad y evolución se realizará, por tanto, con criterios y herramientas de largo plazo verificándose, posteriormente, los eventos de medio y corto plazo. 4.2 Análisis en el largo plazo. Estudio morfológico de las playas Planta de equilibrio. Situación actual y con el rompeolas construido. Se dice que la forma en planta de una playa está en equilibrio cuando la forma de ésta no varía bajo la acción de las dinámicas actuantes constantes en el tiempo o bien que la respuesta de la planta sea mucha más rápida que las acciones actuantes. Esta situación de equilibrio puede ser estática en el caso de que el transporte litoral sea nulo o bien dinámico con la existencia de un transporte litoral no nulo. Todas nuestras playas presentan una forma en planta en forma de concha, esto se debe a que el oleaje en su propagación hacia las playas se encuentra con accidentes rocosos en la costa que da lugar a una cesión lateral de energía (difracción), esta variación en la distribución espacial de la energía da lugar a una respuesta por parte de la línea de costa que tiende a curvarse de forma llamativa en ocasiones (ejemplo de éste proceso se puede ver claramente por la formación de los tómbolos y hemitómbolos detrás de los diques exentos)

132 CAPITULO IV Por tanto la forma final de las playas encajadas va a estar condicionadas por estos puntos de difracción ya que condicionan la forma en que la energía del oleaje va a llegar a la playa. La forma en planta de equilibrio es la correspondiente a la media anual. Esta forma presentará oscilaciones (normalmente estacionales, aunque en ocasiones en playas de escasa longitud la variación puede ocurrir a menores escalas) en torno a la considerada como planta de equilibrio media anual y normalmente se desprecian. Por tanto si logramos determinar cuales son las condiciones medias de energía en la proximidad de los puntos de difracción estaremos en disposición de conocer la planta de equilibrio de nuestras playas. Para la determinación de la forma en planta de nuestras playas se pueden emplear diferentes ajustes que tienen en cuenta la interacción del oleaje con los obstáculos anteriormente citados. Estas metodologías se basan en el dibujo de una curva cuyo origen se encuentra en el punto de difracción. Entre las formulaciones más destacables tenemos la expresión parabólica desarrollada por Hsu y Evans que adopta la siguiente expresión: Donde: R = radio-vector, tomado desde el punto de difracción, que define la forma en planta de la playa. Ro = radio-vector, tomado desde el punto de difracción, correspondiente al extremo no abrigado de la playa. Co, C1, C2 = coeficientes (función de β). β(90-αmin) = ángulo (fijo) formado entre el frente de oleaje y el radio vector Ro. αmin = ángulo que define la posición a partir de la cual la playa se sitúa paralela al frente, medido entre la perpendicular al frente y el radio vector Ro. Ө = ángulo (variable) entre el frente del oleaje y el radio-vector Rc. González y Medina desarrollaron una metodología para el diseño de playas encajadas a partir de la formulación de Hsu. En el método desarrollado β es función de: 1. El número de longitudes de onda o distancia adimensional que exista hasta la línea de costa (Y/L), siendo Y la distancia a la línea de costa y L la longitud de onda. Esta distancia adimensional es especialmente relevante cuando la línea de costa es cercana al punto de control mientras que para valores de Y/L mayores a 8 la variación de αmin con la de Y/L es de escasa magnitud. 2. La dirección del frente de oleaje, que corresponde con la dirección del flujo medio de energía anual en la zona del polo de difracción (punto de control). Se emplea la -121-

133 CAPITULO IV media anual porque se asume que la forma en planta de la playa es incapaz de reaccionar instantáneamente a los cambios en la dirección media del oleaje tendiendo a ubicarse en una posición de equilibrio respecto al las condiciones medias anuales del oleaje. En la figura 4-2 se muestra un esquema de la forma en planta descrito. Figura 4-2 Forma en planta de equilibrio estático El procedimiento que se ha seguido para obtener la dirección del flujo medio de energía ha sido el siguiente: - Selección de los puntos de control en el área de estudio (véase figura 4-3) - Propagación del oleaje desde profundidades indefinidas hasta el punto de control (en función de lo desarrollado en el apartado de propagación del oleaje); - Obtención de los coeficientes de propagación; -122-

134 CAPITULO IV - Obtención de los flujos de energía asociados a cada estado de mar de la muestra; - Cálculo vectorial de la dirección del flujo medio de energía. Figura 4-3 Localización de los puntos de cálculo de flujo medio Este modelo de equilibrio está implementado en el Sistema de Modelado Costero SMC, y es aplicado siguiendo la metodología que esta señalada en el esquema de la figura 4-2 con los datos reales obtenidos del flujo medio, longitud de onda en función del período Ts12 obtenida a partir del Hs12 de la tabla 3-2, los cuales se incorporan al modelo SMC para determinar la forma en planta de una playa como se observa en la figura 4-4. En el caso de playas abiertas se comprobará si la alineación de la playa es paralela al frente del oleaje que corresponde con la dirección del flujo medio de energía, lo que nos indicará que la playa se encuentra en equilibrio. El estudio de las fotografías aéreas realizado en el primer capítulo concluía que la línea de costa no había experimentado modificaciones destacables por lo que de forma previa a la construcción del rompeolas la dirección media del flujo en las playas se puede extraer de un ajuste de la orilla de equilibrio directamente a la parábola de Hsu, esto se hizo para validar los resultados de la dirección media del flujo de energía obtenidos a partir de la reconstrucción de la serie en las playas y el cálculo vectorial del mismo. El estudio de la forma en planta de equilibrio de las playas ubicadas en la ensenada de Chorrillos ha tenido en cuenta la modificación en la dirección media del flujo de energía que se ha detectado en los puntos cercanos a los polos de difracción que se identifican claramente en el lado sur del Club Regatas Lima

135 CAPITULO IV La metodología explicada anteriormente está integrada en el SMC a través del módulo de Modelado del Terreno, a continuación se muestran las figuras donde queda reflejada la forma en planta ajustada y la futura planta de equilibrio que se estima presentará la playa 01 tras la construcción del rompeolas. Para el correcto ajuste realizado en la playa 01 del Club Regatas Lima, se toma en cuenta como punto de difracción el morro del rompeolas tras ser construido, la dirección del flujo en dicho punto (punto 1) es de N85E (línea amarilla) produciéndose un leve giro horario hasta N88E. Figura 4-4 Forma en planta de equilibrio estimada tras la construcción del rompeolas Tras el rompeolas construido el cambio detectado en los puntos son bastante leves, el nuevo punto de difracción ubicado en el morro del dique de abrigo crea un nuevo polo de difracción afectando sobre todo al sector SSW cuyos frentes tras difractarse en el morro modifican su dirección de propagación hasta llegar a los polos de difracción que controlan la forma en planta de nuestras playas Playa Agua Dulce (figura 4-5): Es el tramo comprendido entre la Punta Chorrillos y la Playa Agua Dulce, las playas que conforman este tramo de costa se encuentran apoyadas en espigones retenedores de arena y a la vez protegido por la Punta Chorrillos y el morro del dique diseñado de los oleajes del SSW y SW. La orientación de la costa en la playa Agua Dulce es de N6E mientras que el flujo medio de energía es S88W, la diferencia entre el flujo medio de energía y la orientación de la costa nos indica que habrá un transporte neto hacia el norte

136 CAPITULO IV Figura 4-5 Forma en planta de equilibrio playa Agua Dulce Playa Barranco (figura 4-6): Tramo correspondiente al municipio de Barranco, el transporte litoral se encuentra afectado por espigones construidos en décadas pasadas en las playas Los Pescadores, Playa Agua Dulce y la marina Lima Marina Club construido en el Su forma en planta está determinada por el flujo medio de energía en el cabezo del rompeolas de la Marina Lima Club y la difracción que este genera. Esta es la zona de parada de corrientes originada por la construcción de la marina

137 CAPITULO IV Figura 4-6 Forma en planta de equilibrio playa Barranco. Playa Miraflores (figura 4-7): Está gobernada por la incidencia de los oleajes del SW y W. El transporte litoral es interrumpido por el espigón donde se asienta el restaurante La Rosa Naútica y el flujo medio calculado en el punto extremo del espigón, será el que defina la forma en planta de equilibrio de la playa y servirá para el ajuste de la forma en planta de equilibrio de la playa. Figura 4-7 Forma en planta de equilibrio Playa Miraflores. Tramo 4 Playa Marbella (figura 4-8): En este tramo de costa la orientación del flujo medio de energía calculada en el punto es S32W. La orientación de la costa S37E es prácticamente rectilínea. La orientación de la costa (línea roja) no coincide con el flujo medio de energía calculado que es S40W (línea azul) y debido a esta diferencia de orientaciones se mantiene el transporte en la zona

138 CAPITULO IV Figura 4-8 Forma en planta de equilibrio de Playa Marbella Perfil de equilibrio Se define perfil de playa como la variación de la profundidad del agua, h, con la distancia desde la línea de costa, x, en dirección normal a la misma. Según Dean (1991), el perfil de equilibrio se puede definir, como la resultante del balance entre fuerzas constructivas y destructivas que ocurre en condiciones de oleaje estacionario para un sedimento en particular. El perfil de playa depende de la granulometría presente, ya que el transporte transversal es función de las acciones hidrodinámicas, las dimensiones de la partícula y de su peso. Igualmente, es de suponer, que el oleaje se verá afectado por los cambios en la configuración del perfil, pues el oleaje responde a la configuración batimétrica. Tal circunstancia, lleva a concluir, que existe una relación biunívoca de equilibrio, entre la dinámica marina y la morfología del perfil. La respuesta de un perfil de playa a la acción de las dinámicas actuantes se produce en escalas de tiempo de corta duración (horas en el caso de erosión por un temporal, semanas-meses en el caso de acumulación), que pueden ser consideradas como instantáneas dentro de un estudio a largo plazo. El conocimiento cuantitativo de las características de los perfiles de equilibrio en las playas es muy importante en el ámbito de seguimiento, gestión y regeneración de playas, así como en la interpretación de los procesos costeros. Dean (1991) describió cuatro particularidades del perfil de equilibrio: - Los perfiles de equilibrio son cóncavos hacia arriba. - Un menor tamaño de arena origina un perfil con pendiente mas suave. - Usualmente el frente de playa es plano. - Ondas peraltadas dan lugar a pendientes más suaves y presentan tendencia a la formación de barras. En la figura 4-9 se muestra un cuadro explicativo sobre el perfil de equilibrio de Dean

139 CAPITULO IV Figura 4-9 Perfil de equilibrio de Dean Actualmente, el modelo de perfil de equilibrio más utilizado es el conocido perfil de Dean, probablemente por su simplicidad matemática, además de por haber sido ajustado a un número elevado de perfiles de playa. Dean (1977) ajusta el perfil de una playa a través de una expresión potencial donde la única variable es el llamado parámetro A, que Dean (1987) definió como una función del tamaño de grano: donde, h = A x

140 CAPITULO IV h: es la profundidad respecto al nivel medio en reposo x: es la distancia horizontal desde la línea de costa A: es un parámetro dimensional de forma, dependiente de las características del sedimento W: es la velocidad de caída de grano Profundidad de cierre El perfil de equilibrio asume que existe una profundidad de cierre donde no existe transporte significativo de material. Esta hipótesis, si bien no es estrictamente cierta, es lo suficientemente aproximada dentro del contexto en el cual se establece el concepto de perfil de equilibrio (figura 4-10). El perfil de equilibrio a partir de cierta profundidad ya no responde activamente a la acción del oleaje, definiéndose una profundidad a partir de la cual, el transporte longitudinal y transversal no tiene una magnitud apreciable, a esta profundidad se le denomina también profundidad de corte y puede ser estimada a partir de la ecuación propuesta por Birkemeier (1985): h* 1.75Hs ( Hs12 / gts Hallermeier (1978) propuso una zonificación del perfil de playa en función de la variabilidad del perfil y tipo de transporte dominante, por lo que distingue tres zonas: - Zona exterior: no existen cambios en el perfil. - Zona de asomeramiento: existen pequeños cambio en el perfil a lo largo del año, fundamentalmente, debido a transporte transversal. - Zona litoral: se producen grandes cambios del perfil debido tanto a transporte longitudinal como a transporte transversal. El límite entre la zona litoral y la zona de asomeramiento queda determinado por la profundidad d1, y entre ésta y la zona exterior, por la profundidad di: donde, d 2.28H d i i H sm S T 2 H S g TS sm g / 5000D 0. 5 Hs12 es la altura de ola significante local que es excedida 12 horas al año Ts es el período asociado a Hs12 Hsm es la altura de ola significante local media anual Tsm es el período medio anual D es el diámetro medio del material situado a la cota 1.5di 2 2 ) -129-

141 CAPITULO IV Figura 4-10 Profundidad de cierre en un perfil de equilibrio Birkemeier (1985), utilizando numerosos datos de medidas de perfiles de playa obtuvo una expresión modificada para la profundidad de cierre: d i 2 H S H S g TS Cálculo de la profundidad de cierre en el área de estudio Utilizando las formulaciones de Birkemeier y Hallermeier se obtiene la profundidad de cierre. Evidentemente existen diferencias en ambas formulaciones, se opta por el dato que resulta mas desfavorable en términos de movimiento de sedimentos, es decir la mayor de ellas estima que existe todavía transporte en una zona exterior. A partir de los datos de oleajes en aguas profundas Hs12 y Ts12, valores excedidos solo doce horas al año obtenidos a través del régimen medio en la zona de estudio, se determinó que, Hs12=3,7 m y Ts=14 s. Con estos valores y aplicando Birkemeier (1985) se obtiene que h* = 6,1 m. Aplicando Harllermeier (1981), se obtiene que h* = 7.9 m Aplicación del perfil de equilibrio a la zona de estudio En la zona de estudio, debido principalmente a la dinámica de corrientes dominantes de Sur a Norte se observa una distribución granulométrica uniforme con playas de arena, mientras que a lo largo de la bahía de Miraflores por su gran extensión de aproximadamente 27 kilómetros, presenta variaciones granulométricas con playas de arena al sur, arena y grava en el centro y gravas cantos rodados en el norte (Véase tabla 4-1)

142 CAPITULO IV Distrito Playa Descripción Chorrillos Club Regatas Pescadores Agua Dulce Arena Arena Arena Barranco Barranquito Arena Miraflores Redondo II Los Delfines Canto rodado gravoso Grava arenosa San Isidro Pera del Amor Grava y canto rodado Magdalena Marbella Grava y canto rodado San Miguel Grande Grava y Canto rodado Tabla 4-1 Granulometría característica en las playas de la Bahía de Miraflores (Fuente DHN 2009) Para el análisis de los perfiles en el área de estudio se han seleccionado cinco perfiles de playa, tomando en consideración la ubicación y la granulometría característica para la zona Sur, Centro y Norte, véase su localización en la figura P4 P3 P2 P1 Figura 4-11 Localización de los perfiles estudiados. En las figuras que se muestran a continuación desde la 4-12 a la 4-15 se presenta un análisis para cada uno de los perfiles por separado

143 CAPITULO IV Perfil 1: Corresponde a las Playas Club Regatas Lima, Los Pescadores y Playa Agua Dulce (figura 4-12), se caracteriza por presentar barras que se sitúan entre los 300, 500 y 900 m de distancia de la playa seca, a una cota aproximada de -3 m, -4.5 m y -7 m, lo que nos está indicando la zona de rotura, las olas rompen bajo la acción de estas formas de barra y se reorganizan en nuevas olas de períodos del orden de la mitad del incidente para romper nuevamente. El perfil de playa activa se extiende aproximadamente hasta la cota -6.5 m. La característica más saltante de este perfil es la presencia de una planicie en la cota -3 m lo que nos indica que es una zona abrigada. PERFIL 1 - PLAYA AGUA DULCE h (m) BARRAS ,000 x (m) Figura 4-12 Perfil 1 Playa Agua Dulce 1,200 1,400 Perfil 2: Corresponde a la Playa Barranco (figura 4-13), no se observa la presencia significativa de barras, esta característica se explica en la poca energía que aporta el oleaje como consecuencia de la protección que ejerce la Punta Chorrillos y la Marina Lima Marina Club, por lo tanto mantiene una pendiente baja y homogénea hasta la cota de -10 m. de profundidad PERFIL 2 PLAYA BARRANCO h (m) ,000 x (m) 1,200 1,400 1,600 1,800 Figura 4-13 Perfil 2 Playa Barranco

144 CAPITULO IV Perfil 3: Corresponde a la Playa Miraflores (figura 4-14), perfil típico de tipo intermedio entre playa disipativa y reflejante, presenta dos barras ubicadas aproximadamente a 400 m y 1000 metros de distancia de la playa seca y se ubican en la cota de -2 m y -5 m con una pendiente homogénea que se extiende hasta los - 10 m de profundidad. Esta característica se observa en playas con arena de tamaño medio y gruesa. -1 PERFIL3 PLAYA MIRAFLORES h (m) Figura 4.5 Perfil 3 Playa Miraflores ,000 x (m) 1,200 1,400 1,600 1,800 2,000 Figura 4-14 Perfil 3 Playa Miraflores. Perfil 4: Corresponde a la playa Marbella en el municipio de Magdalena (fig. 4-15), presenta un perfil disipativo de baja pendiente y homogénea en toda su longitud, la diferencia entre la pendiente por encima y por debajo de la cota -2 m. nos indican un cambio en la granulometría, pasando de un tamaño de grano grueso por encima de la cota -2 m. a tamaños de arena más finos por debajo de esta cota. De acuerdo con la granulometría estos tamaños son del orden del 0.2 mm mm por encima de la cota -2 m. y de mm mm por debajo PERFIL 4 PLAYA MARBELLA h (m) ,000 1,200 1,400 1,600 x (m) Figura 4-15 Perfil 4 Playa Marbella. 1,800 2,

145 CAPITULO IV Análisis de perfil a corto plazo. Para analizar el comportamiento de los perfiles de nuestras playas en el corto plazo, es decir, en un plazo de horas-días se acude a los modelos de evolución morfodinámica del transecto transversal en la zona de rompientes, que nos permiten simular los efectos del perfil bajo unas determinadas condiciones del oleaje (normalmente un temporal tipo, cuyos parámetros se determinan a partir del clima marítimo), entre los resultados de la simulación está el volumen de sedimento movilizado, los cambios en la batimetría asociados al temporal, las corrientes generadas y el retroceso de la línea de costa generado. Para la caracterización del sedimento de cada uno de los perfiles se ha empleado los resultados del análisis granulométrico realizado por la Dirección de Hidrografía y Navegación, que arrojaban un sedimento que variaba (en el frente de playa) entre D50= 0.20 mm mm para las zonas Sur-Centro y D50=0.10 mm mm para la zona norte. La selección del temporal de cálculo se ha realizado en base a los gráficos de las propagaciones en situación de temporal mostradas en el Capítulo III Dinámica Marina escogiendo la altura de ola significante aproximadamente en un punto sobre una cota cercana a la profundidad de cierre y para los temporales de los sectores de mayor frecuencia de presentación (SW y WSW) se han simulado 04 perfiles de las playas seleccionadas. La altura de ola significante escogida para el temporal es de 2.5 metros, su duración de 12 horas. Con una altura de ola inicial de 2.5 metros y periodo de pico asociado de 14 segundos alcanzándose la máxima altura a las 9 horas con un periodo asociado de 16 segundos y disminuyendo hasta 2.3 metros al final con periodo de pico asociado de 11 segundos (el temporal agrupa a varios estados de mar con características diferentes). El ángulo medio de incidencia del oleaje sobre el perfil ha sido de 15 grados (si fuera exactamente normal, es decir, de 0 grados, no habría transporte longitudinal y como hemos visto en las propagaciones los sistemas de corrientes siguen un patrón a lo largo de la línea de costa de la Bahía de Miraflores. A continuación se muestran los resultados (figuras 4-16 a 4-19) obtenidos tras la simulación en cada perfil, se muestra la evolución de la batimetría del perfil, la corriente de fondo o undertow y la variación de la sobreelevación del nivel medio o set-up. Los resultados para las playas correspondientes al centro y norte de la bahía de Miraflores deben interpretarse con cautela debido a que los cálculos se realizaron con la batimetría general de la Bahía de Miraflores, mientras que para las playas del área de estudio los cálculos fueron realizados con la batimetría de detalle logrando mayor exactitud en los volúmenes de acumulación y erosión en el perfil simulado, en todo caso estos valores son aproximados y referenciales para cada playa

146 CAPITULO IV Figura 4-16 Evolución del perfil P1 en Playa Agua Dulce frente a un temporal del SW. Figura 4-17 Evolución del perfil P2 en Playa Barranco frente a un temporal del SW. Figura 4-18 Evolución del perfil P3 en Playa Miraflores frente a un temporal del SW

147 CAPITULO IV Figura 4-19 Evolución del perfil P4 en Playa Marbella frente a un temporal del WSW. En la mayor parte de las simulaciones se puede observar como el temporal del SW erosiona la parte alta del perfil depositándose la arena en la parte baja del mismo generando una pequeña barra de arena. En la figura 4-19 se muestra la evolución del perfil frente al temporal del WSW, en ella se aprecia cómo el temporal tiende a erosionar la barra en la playa Marbella. El mecanismo de cambio de perfil tras un temporal en la Bahía de Miraflores da lugar a un perfil más tendido que favorece la disipación de la energía del oleaje y es típico que tras los temporales del invierno tengamos perfiles más tendidos y barras arenosas desarrolladas al final del perfil. En verano el transporte transversal tiene una tendencia inversa y la arena de la barra tiende a subir hasta alcanzar el frente de playa, de esta forma existe un mecanismo natural que recupera la arena perdida en la playa seca durante los temporales invernales. El volumen desplazado en la playa Barranco fue de unos m 3 /m.l para el temporal del SW y m 3 /m.l en la playa Grande para el temporal del WSW Estados morfodinámicos modales de la playa Los estados morfodinámicos modales de una playa tratan de determinar la relación existente entre la morfología de una playa con el tipo de sedimento y la dinámica del oleaje. Permiten predecir el cambio de estado de una playa cuando cambian las condiciones del oleaje. El análisis del estado morfodinámico modal de la playa aporta información sobre el grado de tridimensionalidad de los procesos, las formas de playa existentes ( cusps, barras, etc.) y la hidrodinámica asociada ( rips, ondas infragravitatorias, etc.), aspectos de gran relevancia, no sólo en el cálculo de la estabilidad de la playa, sino en el diseño funcional de la misma

148 CAPITULO IV Las playas situadas en los extremos de la escala (disipativas y reflejantes), son las que experimentan una menor oscilación en su perfil. Aquellas playas cuyo estado modal es intermedio, especialmente aquellas con estado modal cercano al reflejante pero sometidas a fuertes oleajes periódicos que las transforman en disipativas, son las que tienen mayor oscilación. La caracterización del estado modal de la playa se realizará por medio de los parámetros Ω y M : donde, H b W T Hb: altura de ola significante en rotura T: periodo de pico Ws: velocidad de caída de grano M: rango de marea S p y M M ' H b Para playas micromareales, Wright y Short (1984), definieron los siguientes tipos de playa, en función del parámetro adimensional de caída de grano, Ω*: * H b W T Estado Morfodinámico Ω* Disipativa >5,5 Barra longitudinal y seno 4,7 Barra y playa rítmicas 3,5 Barra transversal y corriente de retorno (rip) 3,1 Barra-canaleta o terraza de bajamar 2,4 Reflejante < 1,5 Tabla 4-2 Estado morfodinámico en función del parámetro adimensional de caída de grano Estados morfodinámicos en el área de estudio Tal como se dijo anteriormente, separar una playa en dos modos ortogonales independientes en planta y perfil, es bastante real cuanto más cerca estemos de los extremos, ya sea playa reflejante o disipativa. En este caso se va analizar en las playas del Club Regatas Lima, Playa Agua Dulce, Playa Barranco, Playa Miraflores, Playa Marbella y Playa Grande, cuál es el estado modal. En la figura 4-3, se muestra los puntos donde se han realizado cálculos del flujo medio de energía para el análisis de los estados morfodinámicos de las playas circunscritas a la Bahía de Miraflores

149 CAPITULO IV Siguiendo la misma metodología para el cálculo de la orientación del flujo medio de energía en un punto de la costa y con las granulometrías analizadas, se propagaron los 20 años de oleaje en cada uno de los puntos seleccionados, donde se obtuvo,, para cada ola, junto con un D50 asociado. Con base en esta información, se determinó la distribución de los estados morfodinámicos en las playas mencionadas (véase figuras de 4-20 al 4-23). La playa Agua Dulce (figura 4-20) presenta un estado modal predominante de playa disipativa, barra longitudinal y seno durante todo el año con el 80% del tiempo para un D50= 0.25 mm. Se caracteriza por tener una pendiente muy suave con varias barras longitudinales donde las olas sufren procesos de rotura en decrestamiento, luego se reorganizan en nuevas ondas de período menor y vuelven a romper al acercarse a costa con energía disipada. R : Reflejante LTT : Barra-canaleta TBR: Barra transversal y corriente de retorno RBB: Barra y playa rítmicas LBT: Barra longitudinal y seno D : Disipativa Figura 4-20 Distribución de estados morfodinámicos - Playa Agua Dulce

150 CAPITULO IV En la Playa Barranco (figura 4-21), la zona sumergida mantiene un estado disipativo con un 72% del tiempo para un D50= 0.25 mm, se observa en el borde de la playa ligera formación de cusp característico de este tipo de estado morfodinámico de playa. R : Reflejante LTT: Barra-canaleta TBR: Barra transversal y corriente de retorno RBB: Barra y playa rítmicas LBT: Barra longitudinal y seno D: Disipativa Figura 4-21 Distribución de estados morfodinámicos - Playa Barranco La Playa Miraflores (figura 4-22), con un tamaño medio de D50= 0,20 mm para la parte sumergida, consigue el estado modal predominante de playa disipativa, barra longitudinal y seno, la zona de rompientes es relativamente ancha y en ella se desarrolla una importante disipación turbulenta. R : Reflejante LTT: Barra-canaleta TBR: Barra transversal y corriente de retorno RBB: Barra y playa rítmicas LBT: Barra longitudinal y seno D : Disipativa Figura 4-22 Distribución de estados morfodinámicos - Playa Miraflores -139-

151 CAPITULO IV En la playa Marbella (figura 4-23), la zona sumergida presenta características de un estado morfodinámico de playa reflejante, barra canaleta, pasando por el resto de los estados un menor porcentaje de tiempo. R : Reflejante LTT: Barra-canaleta TBR: Barra transversal y corriente de retorno RBB: Barra y playa rítmicas LBT: Barra longitudinal y seno D : Disipativa Figura 4-23 Distribución de estados morfodinámicos Playa Marbella Transporte Litoral de Sedimentos Entendemos por transporte de sedimentos al proceso por el cual las partículas sedimentarias son acarreadas esencialmente en horizontal de un punto a otro del fondo, bien aisladamente, bien en forma de mezcla de granos y un fluido independiente que es el vehículo transportador. Entender la evolución de sistemas costeros próximos a obras marítimas en la franja litoral, como puertos y diques de abrigo es un componente crítico en cualquier estudio o actuación. Este planteamiento requiere de un cálculo de la cantidad de transporte de sedimentos a lo largo de una región o en las proximidades de los puertos para el mantenimiento de unos criterios mínimos en la gestión de la costa. La tasa de transporte es la medida de la cantidad de granos que pasan por una sección de anchura unidad, en la unidad de tiempo. El incremento o disminución de este transporte causan avance o retroceso en la línea de costa. En casos concretos en que este transporte es interrumpido por elementos estructurales como diques o desembocaduras causa desequilibrio y por tanto acumulación en la zona a barlovento y erosión en la zona de sotavento de la obra. El transporte litoral se encuentra relacionada a la incidencia del oleaje y la energía que incide a la costa, el ángulo de incidencia en la zona de rotura y el tipo de perfil existente en la playa. Estas variables son conjugadas para estimar el transporte litoral

152 CAPITULO IV Formulación CERC de transporte sólido litoral Para la estima del transporte potencial en la bahía de Miraflores se ha escogido la formulación del CERC que se basa en el flujo de energía de lo estados de mar en el punto de rotura del oleaje. La fórmula del CERC relaciona la tasa de transporte de sedimento a lo largo de la playa como peso sumergido, I, con el flujo de energía del oleaje por unidad de longitud de la costa, Pl, como: I KP L (1) donde K es un coeficiente empírico de proporcionalidad, y: P ( sin cos ) (2) l EC g b donde el subíndice b se refiere a la rotura. La densidad de energía E y la celeridad de grupo Cg en el punto de rotura, se aproximan a partir de teoría lineal de ondas como: 1 E wgh 8 C g ( gh b ) b gh b b 1 2 (3) donde: w = la densidad del agua g = la aceleración de la gravedad Hb, b y hb = altura de ola, ángulo de los frentes y profundidad en rotura H b b h b con lo cual, la ecuación (1) queda, por tanto: I K wg H b sin(2 b ) (4) 16 b Por otro lado, el peso sumergido de la arena transportada es: I ( ) ga' Q (5) s w -141-

153 CAPITULO IV donde s es la densidad del material que forma el sedimento, a = (1-p) donde p es la porosidad, y Q es el caudal del transporte sólido. Relacionando las ecuaciones 4 y 5 se llega a: 1 2 K 5 wg 2 Q H b sen(2 b ) (6) 16( )(1 p) s w b Obsérvese que Q depende directamente de la altura de ola elevada a la potencia 5/2 y el seno de dos veces el ángulo, lo que implica que el transporte tiene un máximo para = 45º y decrece para ángulos mayores o menores que éste. b Las primeras calibraciones de la fórmula del CERC (1966), se llevaron a cabo con base en 9 datos de campo y 150 ensayos de laboratorio, donde propusieron un valor K = 0,42 (utilizando la altura de ola como la media cuadrática, Hbrms). Komar e Inman (1970) incluyeron otras 14 playas a las 9 iniciales, y excluyeron los datos de laboratorio, obteniendo K = 0,77, el cual es el valor recomendado por el Shore Protection Manual (SPM) (1977, 1984) con Hbrms o K = 0,39 con altura de ola significante (Hbs). Otros autores como del Valle, Medina y Losada (1991), han abordado el problema proponiendo una dependencia exponencial entre el tamaño de grano y el parámetro K de la formulación del CERC (véase figura 4-25), con la relación: K 2,5D50 1,4e (14) Figura 4-25 Resultados obtenidos por Valle, Medina y Losada (1994) -142-

154 CAPITULO IV Un aspecto que se había puesto de manifiesto en el análisis de la granulometría de la zona es la importante variación en el tamaño de sedimento que puede haber en nuestras playas, por este motivo la formulación del CERC que vamos a aplicar (a pesar de la incertidumbre que genera por no disponer de datos de campo para su corrección) tiene un coeficiente K que varia con el tamaño de grano Métodos de cálculo del transporte litoral La metodología que se va aplicar para el cálculo de transporte sólido litoral está basada en la aplicación de las formulaciones teóricas existentes en la actualidad, es importante señalar que estas formulaciones se deben utilizar con cautela, siendo necesario calibrar los resultados con información de campo o estudios de evolución de la línea de costa a partir de fotografías aéreas históricas que no se han realizado en este caso. Los cálculos del transporte sólido litoral se realizará siguiendo las pautas indican a continuación: que se a.- Para el análisis del transporte litoral, la costa se ha dividido en cinco sectores (véase figura 4-26), relacionando las condiciones morfológicas (orientación de la línea de costa, D50, pendiente del perfil, etc.) y condiciones dinámicas (oleaje y corrientes). Para cada uno de estos sectores utilizaremos los flujos medios de energía calculados en el Capítulo 3, figura Figura 4-26 Localización de los sectores definidos y puntos de cálculo de flujo medio -143-

EL PUERTO DE AGUETE Y LA PLAYA

EL PUERTO DE AGUETE Y LA PLAYA NOTA INFORMATIVA Aguete, 27 enero 2014. EL PUERTO DE AGUETE Y LA PLAYA El Real Club de Mar de Aguete es una sociedad Marinense sin ánimo de lucro, que lleva 40 años en la ensenada de Aguete y cuenta como

Más detalles

CARACTERÍSTICAS DE LOS TORRENTES

CARACTERÍSTICAS DE LOS TORRENTES CARACTERÍSTICAS DE LOS TORRENTES Según Suarez V. Luis Miguel (1993), los cursos naturales de agua pueden dividirse, de acuerdo con sus características, en dos grandes categorías principales: los ríos y

Más detalles

REGENERACIÓN DE LA PLAYA DE LA ZURRIÓLA SAN SEBASTIAN (GUIPÚZCOA)

REGENERACIÓN DE LA PLAYA DE LA ZURRIÓLA SAN SEBASTIAN (GUIPÚZCOA) PROYECTOS Y CONSTRUCCIÓN DE PLAYAS ARTIFICIALES Y REGENERACIÓN DE PLAYAS V. Experiencias Recientes. MOPTMA. REGENERACIÓN DE LA PLAYA DE LA ZURRIÓLA SAN SEBASTIAN (GUIPÚZCOA) Gregorio Gómez-Pina*, Galo

Más detalles

Estudio experimental de la influencia del estrato rocoso en la forma del foso de erosión producida por jet en salto de esquí.

Estudio experimental de la influencia del estrato rocoso en la forma del foso de erosión producida por jet en salto de esquí. 1. Introducción. Este capítulo trata sobre los sistemas de medición que hemos utilizado en la realización de los ensayos. Se han incluido todos los sistemas de medida utilizados, aquellos que han funcionado

Más detalles

CONVENIO ENTRE LA CONSEJERIA DE MEDIO AMBIENTE, EL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS (C.S.I.C.) Y LA UNIVERSIDAD DE CANTABRIA PARA EL

CONVENIO ENTRE LA CONSEJERIA DE MEDIO AMBIENTE, EL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS (C.S.I.C.) Y LA UNIVERSIDAD DE CANTABRIA PARA EL CONVENIO ENTRE LA CONSEJERIA DE MEDIO AMBIENTE, EL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTÍFICAS (C.S.I.C.) Y LA UNIVERSIDAD DE CANTABRIA PARA EL ESTUDIO DE LOS EFECTOS DE LA EXTRACCIÓN DE SEDIMENTOS

Más detalles

4 Teoría de diseño de Experimentos

4 Teoría de diseño de Experimentos 4 Teoría de diseño de Experimentos 4.1 Introducción En los capítulos anteriores se habló de PLC y de ruido, debido a la inquietud por saber si en una instalación eléctrica casera que cuente con el servicio

Más detalles

ANEXO I Capítulo 6 GENERACIÓN EÓLICA TÉCNICAMENTE ADMISIBLE EN EL SISTEMA ELÉCTRICO PENINSULAR ESPAÑOL. ANEXO I (Capítulo 6)

ANEXO I Capítulo 6 GENERACIÓN EÓLICA TÉCNICAMENTE ADMISIBLE EN EL SISTEMA ELÉCTRICO PENINSULAR ESPAÑOL. ANEXO I (Capítulo 6) ANEXO I Capítulo 6 GENERACIÓN EÓLICA TÉCNICAMENTE ADMISIBLE EN EL SISTEMA ELÉCTRICO PENINSULAR ESPAÑOL RETELGAS 13/09/2002 GENERACIÓN EÓLICA TÉCNICAMENTE ADMISIBLE EN EL SISTEMA ELÉCTRICO PENINSULAR ESPAÑOL

Más detalles

ORDENACIÓN DE LAS ACTUACIONES PERÍODICAS DEL CONSEJO SOCIAL EN MATERIA ECONÓMICA

ORDENACIÓN DE LAS ACTUACIONES PERÍODICAS DEL CONSEJO SOCIAL EN MATERIA ECONÓMICA Normativa Artículo 2, 3 y 4 de la Ley 12/2002, de 18 de diciembre, de los Consejos Sociales de las Universidades Públicas de la Comunidad de Madrid Artículo 14 y 82 de la Ley Orgánica 6/2001, de 21 de

Más detalles

A tres años del tsunami del 26 de agosto de 2012

A tres años del tsunami del 26 de agosto de 2012 A tres años del tsunami del 26 de agosto de 2012 El 26 de agosto de 2012, parte de la costa salvadoreña fue afectada por un tsunami, cuya fuente generadora fue un sismo de magnitud 7.3 ocurrido a las 22:37

Más detalles

Informe técnico S-23/2012

Informe técnico S-23/2012 Informe técnico S-23/2012 Investigación del accidente del pesquero SIEMPRE DIABLILLO, en la ría de San Martín de la Arena (Cantabria), el 21 de abril de 2011 ADVERTENCIA Este informe ha sido elaborado

Más detalles

REGENERACIÓN DE LA PLAYA DE SAN LORENZO, T.M. DE GIJÓN MEMORIA ÍNDICE 7. ESTUDIO DE GESTIÓN DE RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN...

REGENERACIÓN DE LA PLAYA DE SAN LORENZO, T.M. DE GIJÓN MEMORIA ÍNDICE 7. ESTUDIO DE GESTIÓN DE RESIDUOS DE CONSTRUCCIÓN Y DEMOLICIÓN... MEMORIA REGENERACIÓN DE LA PLAYA DE SAN LORENZO, T.M. DE GIJÓN MEMORIA ÍNDICE 1. INTRODUCCIÓN Y ANTECEDENTES... 1 2. MEDIO FÍSICO... 3 2.1. MORFOLOGÍA DE LA PLAYA DE SAN LORENZO... 3 2.2. CARACTERÍSTICAS

Más detalles

Imágenes del poder. 6.1 Las personas jóvenes y la imagen del poder.

Imágenes del poder. 6.1 Las personas jóvenes y la imagen del poder. 6 Imágenes del poder El objetivo general de este capítulo es analizar un conjunto de datos y tendencias que indican que los jóvenes se sienten cada vez más lejos de las formas políticas institucionalizadas

Más detalles

Movilidad habitual y espacios de vida en España. Una aproximación a partir del censo de 2001

Movilidad habitual y espacios de vida en España. Una aproximación a partir del censo de 2001 Movilidad habitual y espacios de vida en España. Una aproximación a partir del censo de 2001 Centre d Estudis Demogràfics (Universitat Autònoma de Barcelona) Dirección de la investigación: Marc Ajenjo

Más detalles

Informe de transparencia del sector fundacional andaluz

Informe de transparencia del sector fundacional andaluz Informe de transparencia del sector fundacional andaluz Transparencia de las fundaciones en Internet Asociación de Fundaciones Andaluzas Elaborado por: D. Pablo Aguirre Díaz Octubre 2013 Índice Página

Más detalles

Geometría orbital, cambio climático y Astrocronología

Geometría orbital, cambio climático y Astrocronología Geometría orbital, cambio climático y Astrocronología Francisco Sierro Sánchez Dpto. de Geología (Paleontología) Universidad de Salamanca. Sierro@usal.es Capítulo 5 Página - 1- Vivir en la Tierra es caro,

Más detalles

Capítulo 1: Características de la Población

Capítulo 1: Características de la Población 14 Capítulo 1: Características de la Población Perfil Sociodemográfico de la Provincia de Lima Capítulo 1 Características de la Población 1.1 Población y Crecimiento Los Censos de Población y Vivienda

Más detalles

NIVEL DEL MAR Y RÉGIMEN DE MAREA EN LAS ESTACIONES MAREOGRÁFICAS DE COLOMBIA

NIVEL DEL MAR Y RÉGIMEN DE MAREA EN LAS ESTACIONES MAREOGRÁFICAS DE COLOMBIA NIVEL DEL MAR Y RÉGIMEN DE MAREA EN LAS ESTACIONES MAREOGRÁFICAS DE COLOMBIA Recopilado por: Martha Cecilia Cadena marthac@ideam.gov.co Instituto de Hidrología, Meteorología y Estudios Ambientales - IDEAM

Más detalles

La variabilidad interanual de las precipitaciones y las condiciones de sequía en la provincia de Tucumán (R. Argentina)

La variabilidad interanual de las precipitaciones y las condiciones de sequía en la provincia de Tucumán (R. Argentina) La variabilidad interanual de las precipitaciones y las condiciones de sequía en la provincia de Tucumán (R. Argentina) César M. Lamelas*, Jorge D. Forciniti** y Lorena Soulé Gómez*** La variabilidad temporal

Más detalles

LINEAMIENTOS PARA LA ELABORACIÓN DEL PROGRAMA ANUAL DE TRABAJO

LINEAMIENTOS PARA LA ELABORACIÓN DEL PROGRAMA ANUAL DE TRABAJO LINEAMIENTOS PARA LA ELABORACIÓN DEL PROGRAMA ANUAL DE TRABAJO Junio 2012 INDICE 1. INTRODUCCIÓN 2. ANTECEDENTES 3. SITUACIÓN ACTUAL A) Daños a la Salud Principales características sociodemográficas Principales

Más detalles

GERENCIA DE INTEGRACIÓN

GERENCIA DE INTEGRACIÓN GERENCIA DE INTEGRACIÓN CONTENIDO Desarrollo del plan Ejecución del plan Control de cambios INTRODUCCIÓN La gerencia de integración del proyecto incluye los procesos requeridos para asegurar que los diversos

Más detalles

Política de Gestión Integral de Riesgos Compañía Sud Americana de Vapores S.A.

Política de Gestión Integral de Riesgos Compañía Sud Americana de Vapores S.A. de Riesgos Compañía Sud Americana de Vapores S.A. Elaborado Por Revisado Por Aprobado por Nombre Cargo Fecha Claudio Salgado Comité de Directores Contralor Comité de Directores Diciembre 2015 21 de diciembre

Más detalles

Operación 8 Claves para la ISO 9001-2015

Operación 8 Claves para la ISO 9001-2015 Operación 8Claves para la ISO 9001-2015 BLOQUE 8: Operación A grandes rasgos, se puede decir que este bloque se corresponde con el capítulo 7 de la antigua norma ISO 9001:2008 de Realización del Producto,

Más detalles

CAPÍTULO III 3. MÉTODOS DE INVESTIGACIÓN. El ámbito de los negocios en la actualidad es un área donde que cada vez más

CAPÍTULO III 3. MÉTODOS DE INVESTIGACIÓN. El ámbito de los negocios en la actualidad es un área donde que cada vez más CAPÍTULO III 3. MÉTODOS DE INVESTIGACIÓN El ámbito de los negocios en la actualidad es un área donde que cada vez más se requieren estudios y análisis con criterios de carácter científico a fin de poder

Más detalles

ESTUDIO SOBRE LA GESTIÓN DOMICILIARIA DE LOS RESIDUOS EN LA CIUDAD DE ZARAGOZA.

ESTUDIO SOBRE LA GESTIÓN DOMICILIARIA DE LOS RESIDUOS EN LA CIUDAD DE ZARAGOZA. ESTUDIO SOBRE LA GESTIÓN DOMICILIARIA DE LOS RESIDUOS EN LA CIUDAD DE ZARAGOZA. PROYECTO: UTILIZA, SEPARA, RECUPERA Y RECICLA DEPARTAMENTO DE MEDIO AMBIENTE Secretaría de Salud Laboral y Medio Ambiente

Más detalles

WAVENERGY La energía del Océano

WAVENERGY La energía del Océano WAVENERGY La energía a del Océano La energía a del Océano - Introducción La energía a de los océanos se presenta con una gran perspectiva de futuro, ya que el recurso de los mares es el menos explotado

Más detalles

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico

35 Facultad de Ciencias Universidad de Los Andes Mérida-Venezuela. Potencial Eléctrico q 1 q 2 Prof. Félix Aguirre 35 Energía Electrostática Potencial Eléctrico La interacción electrostática es representada muy bien a través de la ley de Coulomb, esto es: mediante fuerzas. Existen, sin embargo,

Más detalles

Propuesta de Autobuses Directos (Exprés) Alpedrete-Madrid

Propuesta de Autobuses Directos (Exprés) Alpedrete-Madrid 2013 Propuesta de Autobuses directos (exprés) entre Alpedrete y Madrid Propuesta de Autobuses Directos (Exprés) Alpedrete-Madrid i ÍNDICE 1. OBJETO... 1 2. PRINCIPALES VARIABLES SOCIOECONÓMICAS Y DE TRANSPORTE

Más detalles

PLIEGO DE PRESCRIPCIONES TÉCNICAS

PLIEGO DE PRESCRIPCIONES TÉCNICAS PLIEGO DE PRESCRIPCIONES TÉCNICAS DENOMINACIÓN DEL CONTRATO DE SERVICIOS: SISTEMAS DE COMERCIALIZACIÓN DE LAS EMPRESAS Y OPERADORES DEL TRANSPORTE DE VIAJEROS Y MERCANCÍAS POR CARRETERA 1 ÍNDICE 1. OBJETO

Más detalles

PROCEDIMIENTO PARA LA INVESTIGACIÓN, ANÁLISIS Y DIAGNÓSTICO DE LA PRESENCIA DE FUEL EN LA ARENA DE LAS PLAYAS DEL LITORAL AFECTADO

PROCEDIMIENTO PARA LA INVESTIGACIÓN, ANÁLISIS Y DIAGNÓSTICO DE LA PRESENCIA DE FUEL EN LA ARENA DE LAS PLAYAS DEL LITORAL AFECTADO MINISTERIO DE MEDIO AMBIENTE SECRETARÍA DE ESTADO DE AGUAS Y COSTAS DIRECCIÓN GENERAL DE COSTAS PROCEDIMIENTO PARA LA INVESTIGACIÓN, ANÁLISIS Y DIAGNÓSTICO DE LA PRESENCIA DE FUEL EN LA ARENA DE LAS PLAYAS

Más detalles

CAPITULO IV DESCRIPCIÓN Y CLASIFICACIÓN DE SUELOS

CAPITULO IV DESCRIPCIÓN Y CLASIFICACIÓN DE SUELOS CAPITULO IV DESCRIPCIÓN Y CLASIFICACIÓN DE SUELOS La caracterización de las propiedades físicas, mecánicas e hidráulicas del suelo es de suma importancia en la determinación de la capacidad de soporte

Más detalles

4. DESARROLLO DEL SISTEMA DE INFORMACIÓN REGISTRAL AUTOMATIZADO

4. DESARROLLO DEL SISTEMA DE INFORMACIÓN REGISTRAL AUTOMATIZADO 4. DESARROLLO DEL SISTEMA DE INFORMACIÓN REGISTRAL AUTOMATIZADO 4.1. Reseña del Proyecto En el año 1995, la Oficina Registral de Lima y Callao (ORLC), con el objetivo de mejorar la calidad de los servicios

Más detalles

ACTIVIDAD PARA LA CLASE DE FÍSICA I MEDIO TEMA: ONDAS SÍSMICAS

ACTIVIDAD PARA LA CLASE DE FÍSICA I MEDIO TEMA: ONDAS SÍSMICAS Colegio Sagrados Corazones Profesora: Guislaine Loayza M. Manquehue Dpto. de Ciencias ACTIVIDAD PARA LA CLASE DE FÍSICA I MEDIO TEMA: ONDAS SÍSMICAS Nombre:... Curso:... Fecha:... LOS SISMOS Un terremoto,

Más detalles

Los estados financieros proporcionan a sus usuarios información útil para la toma de decisiones

Los estados financieros proporcionan a sus usuarios información útil para la toma de decisiones El ABC de los estados financieros Importancia de los estados financieros: Aunque no lo creas, existen muchas personas relacionadas con tu empresa que necesitan de esta información para tomar decisiones

Más detalles

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d.

TRABAJO Y ENERGÍA. W = F d [Joule] W = F d cos α. Donde F y d son los módulos de la fuerza y el desplazamiento, y α es el ángulo que forman F y d. C U R S O: FÍSICA COMÚN MATERIAL: FC-09 TRABAJO Y ENERGÍA La energía desempeña un papel muy importante en el mundo actual, por lo cual se justifica que la conozcamos mejor. Iniciamos nuestro estudio presentando

Más detalles

UNIVERSIDAD DE CANTABRIA TESIS DOCTORAL

UNIVERSIDAD DE CANTABRIA TESIS DOCTORAL UNIVERSIDAD DE CANTABRIA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE CAMINOS, CANALES Y PUERTOS TESIS DOCTORAL Desarrollo de una metodología para el estudio de la morfología de playas basado en mapas auto-organizativos

Más detalles

EVOLUCION DE LA ISLA DE CALOR DN TOLUCA MEX.

EVOLUCION DE LA ISLA DE CALOR DN TOLUCA MEX. EVOLUCION DE LA ISLA DE CALOR DN TOLUCA MEX. JUAN VIDAL B. * ERNESTO JÁUREGUI O. ** INTRODUCCION Es motivo de gran preocupación el impacto que el hombre efectúa sobre el medio ambiente y en este contexto

Más detalles

Para llegar a conseguir este objetivo hay una serie de líneas a seguir:

Para llegar a conseguir este objetivo hay una serie de líneas a seguir: INTRODUCCIÓN La Gestión de la Calidad Total se puede definir como la gestión integral de la empresa centrada en la calidad. Por lo tanto, el adjetivo total debería aplicarse a la gestión antes que a la

Más detalles

Sistema de Monitoreo de Deslizamientos

Sistema de Monitoreo de Deslizamientos Sistema de Monitoreo de Deslizamientos El sistema de monitoreo para deslizamientos es una combinación de componentes que permiten conocer de manera periódica los factores que pueden detonar en algún momento

Más detalles

CAPÍTULO III MARCO TEÓRICO. Cada día cambian las condiciones de los mercados debido a diferentes factores como: el

CAPÍTULO III MARCO TEÓRICO. Cada día cambian las condiciones de los mercados debido a diferentes factores como: el CAPÍTULO III MARCO TEÓRICO 3.1 Introducción Cada día cambian las condiciones de los mercados debido a diferentes factores como: el incremento de la competencia, la globalización, la dinámica de la economía,

Más detalles

Programa de trabajo para Escuelas Asociadas

Programa de trabajo para Escuelas Asociadas Programa de trabajo para Escuelas Asociadas Qué es la CONAE? La Comisión Nacional de Actividades Espaciales es un organismo del Estado Nacional que se encarga de diseñar, ejecutar, controlar, gestionar

Más detalles

PROYECTO DEPORTE Y SOLIDARIDAD 2015

PROYECTO DEPORTE Y SOLIDARIDAD 2015 . JUSTIFICACIÓN PROYECTO DEPORTE Y SOLIDARIDAD 2015 La práctica del deporte, y en general los deportistas, son una valiosa herramienta para elaborar políticas de solidaridad y de apoyo a aquellas personas

Más detalles

GUÍA TÉCNICA PARA LA DEFINICIÓN DE COMPROMISOS DE CALIDAD Y SUS INDICADORES

GUÍA TÉCNICA PARA LA DEFINICIÓN DE COMPROMISOS DE CALIDAD Y SUS INDICADORES GUÍA TÉCNICA PARA LA DEFINICIÓN DE COMPROMISOS DE CALIDAD Y SUS INDICADORES Tema: Cartas de Servicios Primera versión: 2008 Datos de contacto: Evaluación y Calidad. Gobierno de Navarra. evaluacionycalidad@navarra.es

Más detalles

Informe final de evaluación del seguimiento de la implantación de títulos oficiales GRADO EN FUNDAMENTOS DE LA ARQUITECTURA

Informe final de evaluación del seguimiento de la implantación de títulos oficiales GRADO EN FUNDAMENTOS DE LA ARQUITECTURA Informe final de evaluación del seguimiento de la implantación de títulos oficiales 2013 GRADO EN FUNDAMENTOS DE LA ARQUITECTURA Escuela Técnica Superior de Arquitectura INFORMACIÓN PUBLICA Valoración

Más detalles

M PRY PUE 1 04 002/08

M PRY PUE 1 04 002/08 LIBRO: TEMA: PARTE: TÍTULO: CAPÍTULO: PRY. PROYECTO PUE. Puertos 1. ESTUDIOS 4. Estudios de Mareas 2. Recopilación y Análisis de Información A. CONTENIDO Este Manual contiene los procedimientos para efectuar

Más detalles

LUIS GALINDO PÉREZ DE AZPILLAGA HÉCTOR JOSÉ GARCÍA FERNÁNDEZ. Instituto Cibernos. Master Sistemas de Información Geográfica de Sevilla

LUIS GALINDO PÉREZ DE AZPILLAGA HÉCTOR JOSÉ GARCÍA FERNÁNDEZ. Instituto Cibernos. Master Sistemas de Información Geográfica de Sevilla APLICABILIDAD DE UN SISTEMA DE INFORMACIÓN GEOGRÁFICA PARA EL ESTUDIO DE LA IMPLANTACIÓN DE NUEVAS INFRAESTRUCTURAS EN UN ESPACIO INTERIOR DE LA CIUDAD DE SEVILLA. LUIS GALINDO PÉREZ DE AZPILLAGA HÉCTOR

Más detalles

MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO

MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO BOLILLA 5 MOVIMIENTO ABSOLUTO Y MOVIMIENTO RELATIVO Sistemas de referencia Inerciales y No-inerciales En la bolilla anterior vimos que las leyes de Newton se cumplían en marcos de referencia inercial.

Más detalles

Ing. Benoît FROMENT MODULO 4 4.2 FOTOGRAFIAS AEREAS

Ing. Benoît FROMENT MODULO 4 4.2 FOTOGRAFIAS AEREAS 4.2 FOTOGRAFIAS AEREAS 1 - DESARROLLO DE LA FOTOGRAFIA AEREA El hombre, para enfrentar los problemas que le plantea la organización y el desarrollo del medio que habita, se ha visto obligado a crear novedosas

Más detalles

PROCEDIMIENTO DE GESTIÓN DE LOS ASPECTOS AMBIENTALES

PROCEDIMIENTO DE GESTIÓN DE LOS ASPECTOS AMBIENTALES H. R. U. CARLOS HAYA SERVICIO ANDALUZ DE SALUD Fecha: 13/12/2007 PROCEDIMIENTO DE Nombre y Cargo Firma Fecha Elaborado Sergio Pérez Ortiz 12/12/2007 Responsable Operativo del Sistema de Gestión Ambiental

Más detalles

5. METODOLOGÍA. OBTENCIÓN DE DATOS

5. METODOLOGÍA. OBTENCIÓN DE DATOS 5. 48 5.1. INTRODUCCIÓN AL ANÁLISIS Y OBTENCIÓN DE DATOS Los datos obtenidos de los ensayos del proyecto VOWS fueron almacenados como archivos binarios. Mediante el programa EXTRACT.FOR se obtuvo los datos

Más detalles

CONCEPTOS Y CRITERIOS DE LOS INDICADORES DE CALIDAD

CONCEPTOS Y CRITERIOS DE LOS INDICADORES DE CALIDAD CONCEPTOS Y CRITERIOS DE LOS INDICADORES DE CALIDAD Las tablas con los indicadores de calidad recogen los siguientes campos: 1. Denominación de la actividad. Nombre que aparece en el Programa Estadístico

Más detalles

Para cada cada valor de la función original lo multiplicas por 3 lo recorres 45 a la derecha y lo subes 5 unidades.

Para cada cada valor de la función original lo multiplicas por 3 lo recorres 45 a la derecha y lo subes 5 unidades. 3.5 Gráficas de las funciones: f(x) = a sen (bx + c) + d f(x) = a cos (bx + c) + d f(x) = a tan (bx + c) + d en donde a, b, c, y d son números reales En la sección 3.4 ya realizamos algunos ejemplos en

Más detalles

PROYECTO DE ACONDICIONAMIENTO Y RESTAURACIÓN AMBIENTAL DE LOS CAUCES DEL TERMINO MUNICIPAL DE ALGINET (VALENCIA) UNIDAD COMPETENTE: DIRECCIÓN TÉCNICA

PROYECTO DE ACONDICIONAMIENTO Y RESTAURACIÓN AMBIENTAL DE LOS CAUCES DEL TERMINO MUNICIPAL DE ALGINET (VALENCIA) UNIDAD COMPETENTE: DIRECCIÓN TÉCNICA PROYECTO DE ACONDICIONAMIENTO Y RESTAURACIÓN AMBIENTAL DE LOS CAUCES DEL TERMINO MUNICIPAL DE ALGINET (VALENCIA) UNIDAD COMPETENTE: DIRECCIÓN TÉCNICA UBICACIÓN Término municipal Provincia Alfarp, Carlet,

Más detalles

Qué quiere decir Nuestro Entorno?

Qué quiere decir Nuestro Entorno? Qué quiere decir Nuestro Entorno? En todo momento estamos rodeados de paisajes. Todo lo que nos envuelve se presenta ante nosotros formando imágenes instantáneas en permanente cambio. Valoramos nuestro

Más detalles

RUIDO. Consideraciones previas... 1. Situación en el casco urbano... 2. Situación en pedanías... 7. Ferrocarril... 7

RUIDO. Consideraciones previas... 1. Situación en el casco urbano... 2. Situación en pedanías... 7. Ferrocarril... 7 RUIDO Consideraciones previas... 1 Situación en el casco urbano... 2 Situación en pedanías... 7 Ferrocarril... 7 Grandes ejes de comunicación... 9 Población afectada... 10 Consideraciones previas El Ayuntamiento

Más detalles

NORMA TÉCNICA DE AUDITORÍA SOBRE CONSIDERACIONES RELATIVAS A LA AUDITORÍA DE ENTIDADES QUE EXTERIORIZAN PROCESOS DE ADMINISTRACIÓN

NORMA TÉCNICA DE AUDITORÍA SOBRE CONSIDERACIONES RELATIVAS A LA AUDITORÍA DE ENTIDADES QUE EXTERIORIZAN PROCESOS DE ADMINISTRACIÓN Resolución de 26 de marzo de 2004, del Instituto de Contabilidad y Auditoría de Cuentas, por la que se publica la Norma Técnica de Auditoría sobre consideraciones relativas a la auditoría de entidades

Más detalles

SISTEMA DE LIMPIEZA POR VACÍO

SISTEMA DE LIMPIEZA POR VACÍO SISTEMA DE LIMPIEZA POR VACÍO MODELO MF PARA TANQUES RECTANGULARES Catálogo 48.1.1 Limpieza automática Adecuado incluso para grandes longitudes Mantenimiento sin riesgos Uno de los problemas que presentan

Más detalles

ENCUESTA DE REFERENCIA VISUAL PARA EL DESARROLLO DEL PLAN DE PARTICIPACIÓN PÚBLICA DE UN ESTUDIO DE INTEGRACIÓN PAISAJÍSTICA

ENCUESTA DE REFERENCIA VISUAL PARA EL DESARROLLO DEL PLAN DE PARTICIPACIÓN PÚBLICA DE UN ESTUDIO DE INTEGRACIÓN PAISAJÍSTICA INARMED 1 1 ENCUESTA DE REFERENCIA VISUAL PARA EL DESARROLLO DEL PLAN DE PARTICIPACIÓN PÚBLICA DE UN ESTUDIO DE INTEGRACIÓN PAISAJÍSTICA PROYECTO DE PLANTA FIJA DE CLASIFICACIÓN Y VALORIZACIÓN DE RCD S

Más detalles

Medidas Paliativas frente a los Efectos de las Inundaciones en el Tramo Medio del Río Ebro

Medidas Paliativas frente a los Efectos de las Inundaciones en el Tramo Medio del Río Ebro Medidas Paliativas frente a los Efectos de las Inundaciones en el Tramo Medio del Río Ebro Manuel Cayuela López Ingeniero de Caminos, Canales y Puertos m.cayuela@euroestudios.es José Luis Martínez Mazariegos

Más detalles

Proyecto de cooperación "Mejora del acceso al agua potable en la población de Mugulat (ETIOPÍA)

Proyecto de cooperación Mejora del acceso al agua potable en la población de Mugulat (ETIOPÍA) Proyecto de cooperación "Mejora del acceso al agua potable en la población de Mugulat (ETIOPÍA) Entidades que han colaborado con la identificación social del proyecto de Mejora del acceso al agua potable

Más detalles

RUTASPIRINEOS Rutas de montaña, senderismo y excursiones

RUTASPIRINEOS Rutas de montaña, senderismo y excursiones Rutas de montaña, senderismo y excursiones Familias y niños Lagos, ríos y cascadas Español Corto paseo hasta la cascada del río Aguas Limpias en Sallent de Gállego Sallent de Gállego, Valle de Tena, Alto

Más detalles

Escala Nacional-Regional PRESENTACIÓN

Escala Nacional-Regional PRESENTACIÓN 5. ESCALA NACIONAL - REGIONAL PRESENTACIÓN La escala Nacional-regional viene definida por el establecimiento de subdivisiones marinas del conjunto de las aguas jurisdiccionales españolas. El objetivo que

Más detalles

V. CONCLUSIONES. Primera.

V. CONCLUSIONES. Primera. V. CONCLUSIONES Primera. El inventario de actividad física habitual para adolescentes (IAFHA) es un instrumento fiable y válido, y permite obtener información sobre la actividad física habitual en los

Más detalles

AYUNTAMIENTO DE MUSKIZ

AYUNTAMIENTO DE MUSKIZ AYUNTAMIENTO DE MUSKIZ DOCUMENTO RESUMEN APROBACIÓN DE LOS MAPAS DE RUIDO Documento nº: 121108 Fecha: 17/07/12 Nº de páginas incluída esta: 13 + Anexo AAC Acústica + Lumínica Parque Tecnológico de Álava

Más detalles

Poletti, S. 1, Tarela, P. 2, Perone, E. 2,Chesini, A. 1, 1. Central Nuclear Atucha, Nucleoeléctrica Argentina S.A. 2.

Poletti, S. 1, Tarela, P. 2, Perone, E. 2,Chesini, A. 1, 1. Central Nuclear Atucha, Nucleoeléctrica Argentina S.A. 2. MODELIZACIÓN MATEMÁTICA DE LAS EMISIONES GASEOSAS DE LA CENTRAL NUCLEAR ATUCHA I, EN EL MARCO DE LA LÍNEA BASE AMBIENTAL DE LA CENTRAL NUCLAR ATUCHA II Poletti, S. 1, Tarela, P. 2, Perone, E. 2,Chesini,

Más detalles

Ministerio de Agricultura, Alimentación y Medio Ambiente Demarcación de Costas de Cádiz

Ministerio de Agricultura, Alimentación y Medio Ambiente Demarcación de Costas de Cádiz Ministerio de Agricultura, Alimentación y Medio Ambiente Demarcación de Costas de Cádiz ALEGACIONES de Ecologistas en Acción al PROYECTO DE RECUPERACIÓN DE LA PLAYA DE FUENTEBRAVÍA. T.M. EL PUERTO STA.

Más detalles

EFECTO DE LA AGRESIVIDAD ATMOSFÉRICA EN LA TENACIDAD A FRACTURA DE METALES Y ALEACIONES METÁLICAS

EFECTO DE LA AGRESIVIDAD ATMOSFÉRICA EN LA TENACIDAD A FRACTURA DE METALES Y ALEACIONES METÁLICAS EFECTO DE LA AGRESIVIDAD ATMOSFÉRICA EN LA TENACIDAD A FRACTURA DE METALES Y ALEACIONES METÁLICAS Dentro de la caracterización mecánica de los materiales de ingeniería, la resistencia a la tensión y la

Más detalles

CLAVE: ESTUDIOPARAELDESARROLLOSOSTENIBLE DEL ALBUFERADEVALENCIA RI1-03 4 RECOPILACIÓN DE INFORMACIÓN YTOMADEDATOS

CLAVE: ESTUDIOPARAELDESARROLLOSOSTENIBLE DEL ALBUFERADEVALENCIA RI1-03 4 RECOPILACIÓN DE INFORMACIÓN YTOMADEDATOS CLAVE: 08.803-190/0411 TIPO: ESTUDIO REF.CRONOLÓGICA: 04/03 TÍTULODELESTUDIO: TÍTULODELDOCUMENTO: ESTUDIOPARAELDESARROLLOSOSTENIBLE DEL ALBUFERADEVALENCIA FASE: 1 ACTIVIDAD: RI1-03 SUBACTIVIDAD: 4 RECOPILACIÓN

Más detalles

Análisis y cuantificación del Riesgo

Análisis y cuantificación del Riesgo Análisis y cuantificación del Riesgo 1 Qué es el análisis del Riesgo? 2. Métodos M de Análisis de riesgos 3. Método M de Montecarlo 4. Modelo de Análisis de Riesgos 5. Qué pasos de deben seguir para el

Más detalles

SIIT SISTEMA INFORMÁTICO DE INSPECCIONES DE TRABAJO. Modulo de Planificación Manual de Usuario

SIIT SISTEMA INFORMÁTICO DE INSPECCIONES DE TRABAJO. Modulo de Planificación Manual de Usuario SISTEMA INFORMÁTICO DE INSPECCIONES DE TRABAJO Modulo de Planificación Manual de Usuario Oficina General de Estadística e Informática Oficina de Informática Unidad de Análisis y Desarrollo MÓDULO DE PLANIFICACIÓN

Más detalles

UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA. UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología AURICULARES

UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA. UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología AURICULARES UNIDAD DE TRABAJO Nº2. INSTALACIONES DE MEGAFONÍA UNIDAD DE TRABAJO Nº2.1. Descripción de Componentes. Simbología 2. Auriculares. Descripción. AURICULARES Son transductores electroacústicos que, al igual

Más detalles

Capítulo 6: Conclusiones

Capítulo 6: Conclusiones Capítulo 6: Conclusiones 6.1 Conclusiones generales Sobre el presente trabajo se obtuvieron varias conclusiones sobre la administración del ancho de banda en una red inalámbrica, basadas en la investigación

Más detalles

METODOLOGÍA DE LA OPERACIÓN ESTADÍSTICA DE MOVIMIENTOS MIGRATORIOS

METODOLOGÍA DE LA OPERACIÓN ESTADÍSTICA DE MOVIMIENTOS MIGRATORIOS METODOLOGÍA DE LA OPERACIÓN ESTADÍSTICA DE MOVIMIENTOS MIGRATORIOS 1. Introducción Las migraciones son un componente fundamental en la dinámica de los procesos de cambio de la población, de su crecimiento

Más detalles

Cálculo de altura de formación de auroras.

Cálculo de altura de formación de auroras. Cálculo de altura de formación de auroras. Andrea Polo Padilla E X P E D I C I Ó N S H E L I O S C A R L A M E N D O Z A R U T A D E L A S E S T R E L L A S 2 0 1 5 I E S L u c a s M a r t í n E s p i

Más detalles

Seo de Nemiña 05_05_224 1. EMPLAZAMIENTO DATOS GENERALES

Seo de Nemiña 05_05_224 1. EMPLAZAMIENTO DATOS GENERALES Seo de Nemiña 1. EMPLAZAMIENTO DATOS GENERALES Comarca: Costa da Morte. Sector: Costas de Touriñán e Fisterra. Municipio: Muxía. Parroquias: San Cristovo de Nemiña. Extensión: 1,14km2. 05_05_224 2. CARACTERIZACIÓN

Más detalles

Recarga de acuíferos mediante la construcción de tinas ciegas

Recarga de acuíferos mediante la construcción de tinas ciegas Recarga de acuíferos mediante la construcción de tinas ciegas Eduardo Cota 1 Luis E. Marín 2,3, y Mario Balcazar 4 1 Director de Conservación y Restauración Ecológica, Pronatura México, A.C. 2 Departamento

Más detalles

1.3. Mareas extraordinarias

1.3. Mareas extraordinarias 1.3. Mareas extraordinarias Las variaciones en el nivel del mar de las mareas están asociadas a varios fenómenos, el más común y predecible es el astronómico, producto de la fuerza causada por la atracción

Más detalles

CAPITULO VI CONCLUSIONES. Al haber analizado los conceptos presentados en este trabajo, pudimos llegar a la

CAPITULO VI CONCLUSIONES. Al haber analizado los conceptos presentados en este trabajo, pudimos llegar a la CAPITULO VI CONCLUSIONES 6.1 Conclusión Al haber analizado los conceptos presentados en este trabajo, pudimos llegar a la conclusión de que la comunicación organizacional, es el flujo de información que

Más detalles

Programa de Criminología UOC

Programa de Criminología UOC Programa de Criminología UOC Trabajo Final de Grado Presentación Descripción La asignatura en el conjunto del plan de estudios Campos profesionales en que se proyecta Conocimientos previos Objetivos y

Más detalles

Estos talleres certifican la calidad del movimiento asociativo

Estos talleres certifican la calidad del movimiento asociativo Estos talleres certifican la calidad del movimiento asociativo EL AYUNTAMIENTO Y CAJASOL ORGANIZAN LOS I TALLERES DE TRANSPARENCIA Y BUENAS PRÁCTICAS PARA ONGS EN MÁLAGA La Fundación Lealtad es la encargada

Más detalles

CAPÍTULO III. MARCO METODOLÓGICO. del Hotel y Restaurante El Mandarín S.A. de C.V. en la ciudad de San Miguel.

CAPÍTULO III. MARCO METODOLÓGICO. del Hotel y Restaurante El Mandarín S.A. de C.V. en la ciudad de San Miguel. CAPÍTULO III. MARCO METODOLÓGICO. III.A. HIPÓTESIS. III.A.1. HIPÓTESIS GENERAL. H 1 La elaboración de un diseño de Plan Estratégico contribuye a mejorar la competitividad del Hotel y Restaurante El Mandarín

Más detalles

Anexo I. La visión. El proceso de la visión. 1. Introducción. 2. La visión

Anexo I. La visión. El proceso de la visión. 1. Introducción. 2. La visión Anexo I. La visión El proceso de la visión 1. Introducción El ojo humano ha sufrido grandes modificaciones a través de los tiempos como consecuencia de las diferentes formas de vida, desde cuando se usaba

Más detalles

Sistemas de Generación de Energía Eléctrica HIDROLOGÍA BÁSICA. Universidad Tecnológica De Pereira

Sistemas de Generación de Energía Eléctrica HIDROLOGÍA BÁSICA. Universidad Tecnológica De Pereira 2010 Sistemas de Generación de Energía Eléctrica HIDROLOGÍA BÁSICA Universidad Tecnológica De Pereira Conceptos Básicos de Hidrología La hidrología es una ciencia clave en el estudio de los sistemas de

Más detalles

1.1 Probetas de sección cuadrada

1.1 Probetas de sección cuadrada ANEXOS En este apartado se muestran todas las gráficas de todos los ensayos realizados en cada uno de los planos. 1.1 Probetas de sección cuadrada Con este tipo de ensayos se pretende estudiar si los resultados

Más detalles

Las Mareas INDICE. 1. Introducción 2. Fuerza de las mareas 3. Por que tenemos dos mareas al día? 4. Predicción de marea 5. Aviso para la navegación

Las Mareas INDICE. 1. Introducción 2. Fuerza de las mareas 3. Por que tenemos dos mareas al día? 4. Predicción de marea 5. Aviso para la navegación Las Mareas INDICE 1. Introducción 2. Fuerza de las mareas 3. Por que tenemos dos mareas al día? 4. Predicción de marea 5. Aviso para la navegación Introducción La marea es la variación del nivel de la

Más detalles

PARA COMERCIANTES Y AUTÓNOMOS. INFORMACIÓN SOBRE TARJETAS DE CRÉDITO.

PARA COMERCIANTES Y AUTÓNOMOS. INFORMACIÓN SOBRE TARJETAS DE CRÉDITO. PARA COMERCIANTES Y AUTÓNOMOS. INFORMACIÓN SOBRE TARJETAS DE CRÉDITO. QUÉ DEBES SABER CUANDO ACEPTAS UNA TARJETA COMO FORMA DE PAGO EN TU ESTABLECIMIENTO? Hace ya muchos años que la mayoría de las microempresas

Más detalles

PROGRAMAS OFICIALES DE POSGRADO

PROGRAMAS OFICIALES DE POSGRADO INFORME DEL GRADO DE SATISFACCIÓN DEL ALUMNADO Y DEL PROFESORADO PROGRAMAS OFICIALES DE POSGRADO CURSO 2012-2013 Vicerrectorado de Planificación y Calidad UNIVERSIDAD INTERNACIONAL DE ANDALUCÍA Octubre

Más detalles

Escuela Secundaria Técnica No. 96 Miguel Alemán Valdés. Proyecto: Recolección de agua pluvial y elaboración de filtro caseros.

Escuela Secundaria Técnica No. 96 Miguel Alemán Valdés. Proyecto: Recolección de agua pluvial y elaboración de filtro caseros. Escuela Secundaria Técnica No. 96 Miguel Alemán Valdés 2 Concurso para Emprendedores Soluciones para el Futuro Escuelas Secundarias Técnicas en el D.F. inovando con visión de emprendedor Proyecto: Recolección

Más detalles

8. CONCERTACIÓN MULTISECTORIAL PARA LA LUCHA CONTRA LAS DROGAS EN EL

8. CONCERTACIÓN MULTISECTORIAL PARA LA LUCHA CONTRA LAS DROGAS EN EL 8. CONCERTACIÓN MULTISECTORIAL PARA LA LUCHA CONTRA LAS DROGAS EN EL MARCO DE LA PREVENCIÓN COMUNITARIA Se considera que la concertación multisectorial, es decir la posibilidad y necesidad que tienen las

Más detalles

CASO DE ESTUDIO ANÁLISIS DE LA CONVENIENCIA DE LA CONSTRUCCIÓN DE UNA NUEVA CARRETERA DE ESTÁNDARES SUPERIORES ENTRE DOS CIUDADES.

CASO DE ESTUDIO ANÁLISIS DE LA CONVENIENCIA DE LA CONSTRUCCIÓN DE UNA NUEVA CARRETERA DE ESTÁNDARES SUPERIORES ENTRE DOS CIUDADES. CASO DE ESTUDIO ANÁLISIS DE LA CONVENIENCIA DE LA CONSTRUCCIÓN DE UNA NUEVA CARRETERA DE ESTÁNDARES SUPERIORES ENTRE DOS CIUDADES Síntesis El objetivo del análisis de este caso de estudio es introducir

Más detalles

Nota de Información al cliente ISO/IEC 22301 Proceso de auditoría

Nota de Información al cliente ISO/IEC 22301 Proceso de auditoría Nota de Información al cliente ISO/IEC 22301 Proceso de auditoría La presente Nota de Información al Cliente explica las principales fases del proceso de certificación y auditoría de Sistemas de Gestión

Más detalles

CAPÍTULO IX INDICADORES DE RENTABILIDAD DE LA INVERSIÒN

CAPÍTULO IX INDICADORES DE RENTABILIDAD DE LA INVERSIÒN CAPÍTULO IX INDICADORES DE RENTABILIDAD DE LA INVERSIÒN Con la finalidad de medir la rentabilidad del proyecto a la luz de sacrificar la oportunidad de utilizar el dinero en otras inversiones, o sea el

Más detalles

INDICADORES SOBRE TURISMO Y SOSTENIBILIDAD EN LOS DESTINOS: UNA APROXIMACIÓN DESDE ANDALUCÍA

INDICADORES SOBRE TURISMO Y SOSTENIBILIDAD EN LOS DESTINOS: UNA APROXIMACIÓN DESDE ANDALUCÍA Estudios Turísticos, n. o 172-173 (2007), pp. 131-139 Instituto de Estudios Turísticos Secretaría General de Turismo Secretaría de Estado de Turismo y Comercio INDICADORES SOBRE TURISMO Y SOSTENIBILIDAD

Más detalles

Experiencia de la DOP en el Diseño de Playas Artificiales

Experiencia de la DOP en el Diseño de Playas Artificiales Experiencia de la DOP en el Diseño de Playas Artificiales Eduardo Mesina Azócar Jefe División de Proyectos Dirección de Obras portuarias 27 de Noviembre de 2012 1 Tabla de Contenidos 1.- Experiencia en

Más detalles

Unidad VI: Supervisión y Revisión del proyecto

Unidad VI: Supervisión y Revisión del proyecto Unidad VI: Supervisión y Revisión del proyecto 61. Administración de recursos La administración de recursos es el intento por determinar cuánto, dinero, esfuerzo, recursos y tiempo que tomará construir

Más detalles

PLIEGO DE PRESCRIPCIONES TÉCNICAS QUE REGIRÁ EL CONTRATO DEL SUMINSTRO E INSTALACIÓN DEL BALIZAMIENTO DE LA PLAYA DE LAS VISTAS. T.M DE ARONA.

PLIEGO DE PRESCRIPCIONES TÉCNICAS QUE REGIRÁ EL CONTRATO DEL SUMINSTRO E INSTALACIÓN DEL BALIZAMIENTO DE LA PLAYA DE LAS VISTAS. T.M DE ARONA. SECCIÓN DE MEDIO AMBIENTE PLIEGO DE PRESCRIPCIONES TÉCNICAS QUE REGIRÁ EL CONTRATO DEL SUMINSTRO E INSTALACIÓN DEL BALIZAMIENTO DE LA PLAYA DE LAS VISTAS. T.M DE ARONA. 1. OBJETO. El objeto de este Pliego

Más detalles

II. ELEMENTOS DE UN CENTRO ACUÁTICO II.1 Introducción Los espacios dentro de un centro acuático se centran alrededor de la alberca como el elemento

II. ELEMENTOS DE UN CENTRO ACUÁTICO II.1 Introducción Los espacios dentro de un centro acuático se centran alrededor de la alberca como el elemento II. ELEMENTOS DE UN CENTRO ACUÁTICO II.1 Introducción Los espacios dentro de un centro acuático se centran alrededor de la alberca como el elemento más importante de la estructura. Sin embargo, existen

Más detalles

PROCEDIMIENTO INTEGRADO SOBRE NOTIFICACIÓN DE ACCIDENTES E INVESTIGACIÓN DE INCIDENTES

PROCEDIMIENTO INTEGRADO SOBRE NOTIFICACIÓN DE ACCIDENTES E INVESTIGACIÓN DE INCIDENTES SOBRE NOTIFICACIÓN DE ACCIDENTES E INVESTIGACIÓN DE INCIDENTES Hoja 1 de 7 PROCEDIMIENTO INTEGRADO SOBRE NOTIFICACIÓN DE ACCIDENTES E Realizado por Revisado por Aprobado por Fco. Javier Martí Bosch Comité

Más detalles

CALIDAD SUPERFICIAL: RUGOSIDAD

CALIDAD SUPERFICIAL: RUGOSIDAD 1 CALIDAD SUPERFICIAL: RUGOSIDAD Introducción Dentro del mundo de la tecnología, se observan gran cantidad de piezas que han de ponerse en contacto con otras y rozarse a altas velocidades. El acabado final

Más detalles