Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales"

Transcripción

1 Mecánica de Fluidos Docente: Ing. Alba V. Díaz Corrales

2 Mecánica de Fluidos Contenido Fluidos incompresibles Ecuación de continuidad Ecuación de Bernoulli y aplicaciones Líneas de cargas piezométricas y cargas totales Potencia al fluido y potencia al freno

3 Mecánica de Fluidos Para fluidos reales, el estudio de la mecánica de fluidos es mas complejo. Estudiaremos fluidos ideales. Sin embargo, los resultados son muy útiles en situaciones reales.

4 Características de los fluidos ideales en movimiento Incompresible La densidad es constante y uniforme. Flujo Constante La velocidad no cambia con el tiempo aunque puede ser diferente en diferentes puntos. No-viscoso - Sin fricción. Las fuerzas son conservativas. Irrotacional Las partículas sólo tienen movimiento de traslación.

5 Mecánica de Fluidos Los principios físicos más útiles en las aplicaciones de la mecánica de fluidos son el balance de materia, o ecuación de continuidad, las ecuaciones del balance de cantidad de movimiento y el balance de energía mecánica.

6 ECUACIÓN DE CONTINUIDAD D, m D, m Consideraciones: Flujo de a constante La cantidad de fluido que pasa por cualquiera sección del tubo ó es constante Si no se retira o agrega fluido entonces el fluido m= m en un tiempo determinado Q Q cte Q AV m AV AV AV A V A V

7 GASTO VOLUMÉTRICO El gasto volumétrico o caudal es el volumen de agua que pasa a través de una sección de tubería por unidad de tiempo. Se expresa en m3/s, L/s, Pie3/s dependiendo del sistema de unidades en que se trabaje. Q = V/t = va AINT= DINT Xπ/4 Q: Flujo volumétrico m3/s V: Velocidad promedia del flujo en la sección transversal de estudio m/s A: Superficie de la sección transversal m

8 Ecuación de Continuidad Esta expresión expresa la idea de que la masa de fluido que entra por el extremo de un tubo debe salir por el otro extremo. A V A V

9 Ecuación de Continuidad Ley de conservación de la masa en la dinámica de los fluidos: A.V = A.V = constante Recordar que P = F/A = F = P.A

10 Área Real: ÁREAS DE TUBERÍAS ESTÁNDAR se da en tablas por los fabricantes y se puede calcular diámetros reales de la relación. Se hace referencia al diámetro comercial ¾, ½ etc. Se recomienda utilizar tablas de fabricantes para realizar cálculos reales.

11 VELOCIDAD DE FLUJO EN DUCTOS Y TUBERÍAS Los factores que afectan la elección de la velocidad son: Tipo de fluido Longitud del sistema de flujo El tipo de Ducto y tubería La caída de presión permisible Bombas, accesorios, válvulas que puedan conectar para manejar las velocidades específicas La temperatura, la presión y el ruido Se debe tener en cuenta: Ductos y Tuberías de gran diámetro producen baja velocidad y viceversa, tubos de pequeño diámetro altas velocidades. Velocidades Recomendadas: V = 3 m/s, para líquidos como agua y aceite livianos y para la salida de una bomba V = m/s, para la entrada a una bomba

12 método de resolución de problemas El Ingeniero eficaz reduce los problemas complicados a partes sencillas que se puedan analizar fácilmente y presenta los resultados de manera clara, lógica y limpia siguiendo los siguientes pasos:

13 método de resolución de problemas. Leer el problema atentamente.. Identificar el resultado requerido. 3. Identificar los principios necesarios para obtener el resultado. 4. Preparar un croquis a escala y tabular la información que se proporciona. 5. Dibujar los diagramas de sólido libre adecuados. 6. Aplicar los principios y ecuaciones que proceda. 7. Dar la respuesta con el número de cifras significativas adecuado y las unidades apropiadas. 8. Estudiar la respuesta y determinar si es razonable.

14 Ejemplo A través de un tubo de pulgadas de diámetro fluye en una centrífuga, con velocidad de 40 cm/seg, leche integral de gravedad específica.035; dentro de la centrífuga la leche es separada en crema de gravedad específica.0 y leche desnatada de gravedad específica.04. Calcúlese las velocidades de flujo de la leche y de la crema cuando se descargan a través de un tubo de ¾ de pulgada. Densidad del agua g/cm3

15 ECUACIÓN DE BERNOULLI Es una relación aproximada entre la presión, la velocidad y la elevación. Balance de Energía

16 Restricciones a la ecuación de Bernoulli Válida solamente para fluidos incompresible. No hay transferencia de calor hacia dentro o fuera del fluido. No puede haber pérdidas de energía debido a la fricción. No puede haber dispositivos mecánicos entre las dos secciones de interés.

17 ECUACIÓN DE BERNOULLI Para el caso de un flujo irracional a régimen permanente de un fluido incompresible no viscoso, es posible caracterizar el fluido en cualquier punto de su movimiento si se especifica su rapidez, presión y elevación. Estas tres variables se relacionan con la ecuación de Bernoulli (700 78). En este caso hay que tener en cuenta dos consideraciones:

18 NÚMERO DE REYNOLDS La distinción entre los dos tipos de flujos fue inicialmente demostrada por Reynold en 883. Reynolds encontró: Para bajas velocidades de flujo (No se Produce mezcla alguna, coloreando el líquido). Entonces el flujo era laminar. Al aumentar la velocidad se alcanza una velocidad crítica(se produce mezcla), se difuminándose la vena coloreada. Esto quiere decir un flujo turbulento.

19 NÚMERO DE REYNOLDS El flujo sea laminar o turbulento a través de un tubo se puede establecer teniendo en cuenta el valor de un parámetro adimensional, el número de Reynolds: Donde: Re = ρvd/u ρ V D u = Densidad del fluido = Velocidad promedio = Diámetro del tubo = viscosidad.

20 El valor del número de Reynolds (Re) es dimensional. Para re < 00 tenemos flujo laminar Para re > 4000 tenemos flujo turbulento. Para 00 < re < 4000 existe una zona de transición, donde el tipo de flujo puede ser tanto laminar como turbulento. Esta ecuación solo debe utilizarse para fluidos de tipo newtoniano, es decir, la mayoría de líquidos y gases. Sin embargo hay fluidos no newtonianos, los cuales no tienen un único valor de la viscosidad independiente del esfuerzo cortante.

21 ECUACIÓN DE BALANCE DE ENERGÍA Ecuación de Bernoulli V, P, y z W E total E P E C E F Energía Potencial: se debe a la elevación E P wz Energía de flujo ó energía de presión: se debe a la presión que se le suministra al fluido E F w p Energía Cinética: se debe a su velocidad donde w = peso del elemento de volumen wv E c g

22 Energía total de un fluido La energía total que tiene un fluido en movimiento es dado por: E total E P E C E F E total wz wv g w p Cada término en esta ecuación tiene las siguiente unidades [N*m/N] es decir [m] o [pie] Por lo que cada termino recibe el nombre de cabeza de energía

23 Energía de un fluido que se transporta en una tubería P, Z, V P, Z, V w P g w v w z E P w g v w z w E P g v z P g v z Restricciones de la ecuación de Bernoulli Solo es valida para fluidos incompresibles w=w No tiene en cuenta dispositivos que agreguen energía al sistema W=0 No hay transferencia de calor Q=0 No hay perdidas por fricción ft =0 Análisis será que esta ecuación es de uso real?

24 SUGERENCIAS PARA LA APLICACIÓN DE LA ECUACIÓN DE BERNOULLI Seleccionar la dirección del flujo (izquierda a derecha de a ) Simplifique la ecuación Las superficies de los fluidos expuestas a la atmósfera tendrán cabeza de presión cero p/ = 0 Para depósitos, tanques de los cuales se puede estar extrayendo algún fluido su área es bastante grande, comparada con la del tubo, la velocidad de flujo en estos tanques o depósitos es pequeña entonces v=q/a=0 entonces v/g=0 v g v g 0

25 SUGERENCIAS PARA LA APLICACIÓN DE LA ECUACIÓN DE BERNOULLI Cuando ambos puntos de referencia están en la misma área de flujo A=A, entonces la cabeza de velocidad son iguales, Cuando la elevación es la misma en ambos puntos de referencia Z=Z, entonces la cabeza de altura es cero Z=0

26 TEOREMA O ECUACIÓN DE TORICELLI h Aplicamos la ecuación de Bernoulli entre los puntos y se obtiene: z v g P consideramos P=P=0 y V=0 según esto se obtiene: z z v g z v g P v ( z z) g Haciendo ahora h = (z-z) entonces v gh Análisis: considere ahora si el tanque esta sellado: v g( h P / )

27 E total E P E C E F z v g P z v g P γ= Pg

28 Fluye agua de una manguera que esta conectada a una tubería principal que está a 400 Kpa de presión manométrica. Un niño coloca un dedo pulgar para cubrir la mayor parte de la salida de la manguera, y hace que salga un chorro delgado de agua a alta velocidad. Si la manguera se sostiene hacia arriba a qué altura máxima podría llegar el chorro?

29 Ejercicios Un tanque grande está abierto a la atmósfera y lleno con agua hasta la altura de 5 m, proveniente desde la toma de salida. Ahora se abre una toma cercana al fondo del tanque y el agua fluye hacia fuera por la salida lisa y redondeada. Determine la velocidad del agua en la salida. h

30 Ejercicios.Se usa una manguera de jardín que tiene una boquilla de riego para llenar una cubeta de 0 gal. El diámetro de la manguera es de 0 cm y se reduce hasta 0.8 cm en la salida de la boquilla. Si transcurren 50 segundos para llenar la cubeta con agua, determine a) las razones de flujo volumétrico y de masa de agua que pasa por la manguera y b) la velocidad promedio del agua a la salida de la boquilla. Densidad del agua 000Kg/m3 = Kg/L gal = L

31 Ejercicio Por un tubo de cm de diámetro está circulando aceite de oliva de gravedad específica 0.9. Calcúlese la velocidad de flujo del aceite de oliva si el tubo se estrecha hasta un diámetro de. cm y la diferencia de presión entre la zona de tubo de cm de diámetro y la del. cm de diámetro es de 8 cm de agua. P -P = P v (A /A -)g c Factor de conversión de unidades g c= 98 cm 5 / s

32 . 000 L/min de agua fluyen a través de una tubería de 300 mm de diámetro que después se reduce a 50 mm, calcule la velocidad del flujo en cada tunería. Realice el esquema. 3.tubería de 50 mm de diámetro conduce 0.07 m 3 /s de agua. La tubería se divide en dos ramales. Si la velocidad en la tubería de 50mm es de m/s, Cuál es la velocidad en la tubería de 00 mm? Realice el esquema.

33 Investigar Líneas de cargas piezométricas y cargas totales. Potencia al fluido y potencia al freno Realizar un ensayo sobre la importancia de la mecánica de fluidos en su carrera y aplicaciones de la ecuación de continuidad y Bernoulli. Entregar el viernes

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Contenido Fluidos incompresibles Ecuación de continuidad Ecuación de Bernoulli y aplicaciones Líneas de cargas piezométricas

Más detalles

Dinámica de Fluidos. Mecánica y Fluidos VERANO

Dinámica de Fluidos. Mecánica y Fluidos VERANO Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo

Más detalles

Flujo estacionario laminar

Flujo estacionario laminar HIDRODINÁMICA Hidrodinámica Es una disciplina parte de la física cuyo objetivo es explicar el comportamiento de los fluidos en movimiento, para lo cual se hace necesario definir algunos conceptos importantes:

Más detalles

DINÁMICA DE FLUIDOS ÍNDICE

DINÁMICA DE FLUIDOS ÍNDICE DINÁMICA DE FLUIDOS ÍNDICE. Tipos de flujo. Ecuación de continuidad 3. Ecuación de Bernouilli 4. Aplicaciones de la ecuación de Bernouilli 5. Efecto Magnus 6. Viscosidad BIBLIOGRAFÍA: Cap. 3 del Tipler

Más detalles

HIDRÁULICA Ingeniería en Acuicultura.

HIDRÁULICA Ingeniería en Acuicultura. HIDRÁULICA Ingeniería en Acuicultura. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Hidráulica

Más detalles

HIDRÁULICA Ingeniería en Acuicultura.

HIDRÁULICA Ingeniería en Acuicultura. HIDRÁULICA Ingeniería en Acuicultura. Omar Jiménez Henríquez Departamento de Física, Universidad de Antofagasta, Antofagasta, Chile, I semestre 2011. Omar Jiménez. Universidad de Antofagasta. Chile Hidráulica

Más detalles

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica HIDRAULICA DE POTENCIA Unidad 1. Bases físicas de la hidráulica Presión Este término se refiere a los efectos de una fuerza que actúa distribuida sobre una superficie. La fuerza causante de la presión

Más detalles

DINAMICA DE FLUIDOS O HIDRODINAMICA.

DINAMICA DE FLUIDOS O HIDRODINAMICA. DINAMICA DE FLUIDOS O HIDRODINAMICA. Es la rama de la mecánica de fluidos que se ocupa de las leyes de los fluidos en movimientos; estas leyes son enormemente complejas, y aunque la hidrodinámica tiene

Más detalles

Física 1 (Paleontólogos) Curso de Verano Guía 1 - Hidrodinámica: fluidos ideales, ecuación de Bernoulli

Física 1 (Paleontólogos) Curso de Verano Guía 1 - Hidrodinámica: fluidos ideales, ecuación de Bernoulli Guía 1 - Hidrodinámica: fluidos ideales, ecuación de Bernoulli 1. Un túnel de agua tiene una sección transversal circular que pasa un diámetro de 3.6 m a un diámetro de 1.2 m en la sección de prueba. Si

Más detalles

Guía 2 - Hidrodinámica: fluidos ideales, ecuación de Bernoulli

Guía 2 - Hidrodinámica: fluidos ideales, ecuación de Bernoulli Física (Paleontólogos) - do Cuatrimestre 05 Guía - Hidrodinámica: fluidos ideales, ecuación de Bernoulli. Un túnel de agua tiene una sección transversal circular que pasa un diámetro de 3.6 m a un diámetro

Más detalles

Unidad 5. Fluidos (Dinámica)

Unidad 5. Fluidos (Dinámica) Unidad 5 Fluidos (Dinámica) Tipos de Movimiento (Flujos) Flujo Laminar o aerodinámico: el fluido se mueve de forma ordenada y suave, de manera que las capas vecinas se deslizan entre si, y cada partícula

Más detalles

Nombre: Cédula: Sección: SEGUNDO PARCIAL TEORÍA 1. Mencione los supuestos necesarios para que sea válida la ecuación de Bernoulli.

Nombre: Cédula: Sección: SEGUNDO PARCIAL TEORÍA 1. Mencione los supuestos necesarios para que sea válida la ecuación de Bernoulli. U.L.A. FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA MECÁNICA MECÁNICA DE FLUIDOS Mérida, 05/02/2009 Nombre: Cédula: Sección: SEGUNDO PARCIAL TEORÍA 1. Mencione los supuestos necesarios para que sea válida

Más detalles

INDICE Capitulo 1. Introducción Capitulo 2. Propiedades de los Fluidos Capitulo 3. Estática de Fluidos

INDICE Capitulo 1. Introducción Capitulo 2. Propiedades de los Fluidos Capitulo 3. Estática de Fluidos INDICE Prólogo XV Lista de Símbolos XVII Lista de abreviaturas XXI Capitulo 1. Introducción 1 1.1. Ámbito de la mecánica de fluidos 1 1.2. Esquemas históricos del desarrollo de la mecánica de fluidos 2

Más detalles

(a) El número de capilares y el caudal en cada uno de ellos. (b) La velocidad de la sangre en la aorta y en cada uno de los capilares.

(a) El número de capilares y el caudal en cada uno de ellos. (b) La velocidad de la sangre en la aorta y en cada uno de los capilares. Guía - Hidrodinámica. Conservación del caudal. Un túnel de agua tiene una sección transversal circular que pasa un diámetro de 3.6 m a un diámetro de. m en la sección de prueba. Si la velocidad del agua

Más detalles

Fluidodinámica: Estudio de los fluidos en movimiento

Fluidodinámica: Estudio de los fluidos en movimiento Universidad Tecnológica Nacional Facultad Regional Rosario Curso Promoción Directa Física I Año 013 Fluidodinámica: Estudio de los fluidos en movimiento Ecuaciones unitarias en el flujo de fluidos Ecuación

Más detalles

3.- Una fórmula para estimar la velocidad de flujo, G, que fluye en una presa de longitud B está dada por

3.- Una fórmula para estimar la velocidad de flujo, G, que fluye en una presa de longitud B está dada por Problemario 1.- De acuerdo con un viejo libro de hidráulica, la pérdida de energía por unidad de peso de fluido que fluye a través de una boquilla conectada a una manguera puede estimarse por medio de

Más detalles

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios Departamento de Física Universidad de Sonora

FÍSICA GENERAL. MC Beatriz Gpe. Zaragoza Palacios Departamento de Física Universidad de Sonora FÍSICA GENERAL MC Beatriz Gpe. Zaragoza Palacios Departamento de Física Universidad de Sonora TEMARIO 0. Presentación 1. Mediciones y vectores 2. Equilibrio traslacional 3. Movimiento uniformemente acelerado

Más detalles

Hidrodinámica. Gasto o caudal (Q) se define como el volumen de fluido que pasa a través de cierta sección transversal en la unidad de tiempo.

Hidrodinámica. Gasto o caudal (Q) se define como el volumen de fluido que pasa a través de cierta sección transversal en la unidad de tiempo. C U R S O: FÍSICA MENCIÓN MATERIAL: FM-5 Hidrodinámica Hasta ahora, nuestro estudio se ha restringido a condiciones de reposo, que son considerablemente más sencillas que el estudio de fluidos en movimiento.

Más detalles

U.L.A. FACULTAD DE INGENIERIA. Mérida, 02/10/2008 ESCUELA DE MECANICA. MECANICA DE FLUIDOS. Sección 01 y 02. TERCER EXAMEN PARCIAL

U.L.A. FACULTAD DE INGENIERIA. Mérida, 02/10/2008 ESCUELA DE MECANICA. MECANICA DE FLUIDOS. Sección 01 y 02. TERCER EXAMEN PARCIAL U.L.A. FACULTAD DE INGENIERIA. Mérida, 02/10/2008 ESCUELA DE MECANICA. MECANICA DE FLUIDOS. Sección 01 y 02. TERCER EXAMEN PARCIAL Problema 1 Para construir una bomba grande que debe suministrar 2 m 3

Más detalles

UNIVERSIDAD FRANCISCO GAVIDIA FACULTAD DE INGENIERÍA Y ARQUITECTURA UNIDAD DE CIENCIAS BÁSICAS. GUÍA DE EJERCICIOS No. 2 DINÁMICA DE FLUIDOS

UNIVERSIDAD FRANCISCO GAVIDIA FACULTAD DE INGENIERÍA Y ARQUITECTURA UNIDAD DE CIENCIAS BÁSICAS. GUÍA DE EJERCICIOS No. 2 DINÁMICA DE FLUIDOS UNIVERSIDAD FRANCISCO GAVIDIA FACULTAD DE INGENIERÍA Y ARQUITECTURA UNIDAD DE CIENCIAS BÁSICAS INDICACIONES GENERALES: GUÍA DE EJERCICIOS No. 2 DINÁMICA DE FLUIDOS FÍSICA III (FIS3) FÍSICA II (FCA2) GRUPO

Más detalles

Ayudantía 7 - Solucionario Física General III (FIS130) Hidrodinámica

Ayudantía 7 - Solucionario Física General III (FIS130) Hidrodinámica Ayudantía 7 - Solucionario Física General III (FIS130) Hidrodinámica Pregunta 1 Considere el agua que fluye con rapidez de 3 [m/s] sometida a una presión de 00 [KPa], por una cañería horizontal que más

Más detalles

Contenido CAPÍTULO 1 LA DE DE LOS FLUIDOS Y EL CAPÍTULO 2 DE

Contenido CAPÍTULO 1 LA DE DE LOS FLUIDOS Y EL CAPÍTULO 2 DE t CAPÍTULO LA DE..2.3.4.5.6.7.8.9.0..2 DE LOS FLUIDOS Y EL Panorama Objetivos 3 Conceptos fundamentales introductorios 3 El sistema internacional de unidades (SI) 4 El sistema tradicional de unidades de

Más detalles

Física I. Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos Dr. Ezequiel Rodríguez Jáuregui Dr. Santos Jesús Castillo

Física I. Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos Dr. Ezequiel Rodríguez Jáuregui Dr. Santos Jesús Castillo Física I Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos Dr. Ezequiel Rodríguez Jáuregui Dr. Santos Jesús Castillo Webpage: http://paginas.fisica.uson.mx/qb 2016 Departamento

Más detalles

R para el aire es 53.3 lb-ft/lb R en el sistema inglés, o 29.2 N m/n K.

R para el aire es 53.3 lb-ft/lb R en el sistema inglés, o 29.2 N m/n K. Flujo de gases Si el cambio en la presión es menor a aproximadamente el 10% de la presión de entrada, las variaciones en peso específico tendrán un efecto insignificante. Cuando la caída de presión se

Más detalles

TECNOLOGIA APLICADA TEMA 1. Fundamentos de Mecánica de los Fluidos

TECNOLOGIA APLICADA TEMA 1. Fundamentos de Mecánica de los Fluidos TECNOLOGIA APLICADA TEMA 1 Fundamentos de Mecánica de los Fluidos Naturaleza de los fluidos, estática, presión, viscosidad. Movimiento de fluidos, caudal, regímenes de flujo. Teorema de Bernoulli, línea

Más detalles

FUNDACIÓN EDUCACIONAL DE CHUQUICAMATA COLEGIO CHUQUICAMATA

FUNDACIÓN EDUCACIONAL DE CHUQUICAMATA COLEGIO CHUQUICAMATA FUNDACIÓN EDUCACIONAL DE CHUQUICAMATA COLEGIO CHUQUICAMATA INSTRUMENTO : GUIA DE APRENDIZAJE N 1 NIVEL (O CURSO) : CUARTO AÑO MEDIO PLAN : COMÚN UNIDAD (O EJE) : FUERZA Y MOVIMIENTO CONTENIDO(S) : ECUACIÓN

Más detalles

ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII

ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII - 07 SEMANA : FLUJO DE LOS FLUIDOS LIQUIDOS Inst. Ing. Luis Gomez Quispe OBJETIVO GENERAL Al término de

Más detalles

en otro. Ya que el flujo a través de A 1 se tiene Q A 1 y 1 y 2 A 2 y A 2

en otro. Ya que el flujo a través de A 1 se tiene Q A 1 y 1 y 2 A 2 y A 2 142 FÍSICA GENERAL FLUIDOS EN MOVIMIENTO 14 FLUJO O DESCARGA DE UN FLUIDO (Q): Cuando un fluido que llena un tubo corre a lo largo de este tubo con rapidez promedio y, el fl ujo o descarga Q es Q Ay donde

Más detalles

EJERCICIOS DE FÍSICA II Profesor: José Fernando Pinto Parra

EJERCICIOS DE FÍSICA II Profesor: José Fernando Pinto Parra Ejercicios de Dinámica de los Fluidos: REPÚBLICA BOLIVARIANA DE VENEZUELA EJERCICIOS DE FÍSICA II Profesor: José Fernando Pinto Parra. Entre dos líneas de corriente bidimensionales de un escurrimiento

Más detalles

HIDRÁULICA GENERAL GUÍA DE TRABAJOS PRÁCTICOS UNIDAD VII UNIDAD VII:

HIDRÁULICA GENERAL GUÍA DE TRABAJOS PRÁCTICOS UNIDAD VII UNIDAD VII: UNIA VII: Acción dinámica de los fluidos. Generalidades. Ecuación de la cantidad de movimiento. Coeficiente de oussinesq. Ecuación de la cantidad de movimiento aplicada a un tubo de corriente. Escurrimiento

Más detalles

Física I. Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador)

Física I. Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Física I Dr. Roberto Pedro Duarte Zamorano (Responsable) Dr. Mario Enrique Álvarez Ramos (Colaborador) Dr. Ezequiel Rodríguez Jáuregui (Colaborador) Webpage: http://paginas.fisica.uson.mx/qb 2015 Departamento

Más detalles

HIDRODINAMICA Fluidos en movimiento

HIDRODINAMICA Fluidos en movimiento HIDRODINAMICA Fluidos en movimiento Principio de la conservación de la masa y de continuidad. Ecuación de Bernoulli. 3/0/0 Yovany Londoño Flujo de fluidos Un fluido ideal es o o Incompresible si su densidad

Más detalles

PROBLEMAS TEMA I: ESTÁTICA DE FLUIDOS Y FENÓMENOS DE SUPERFICIE

PROBLEMAS TEMA I: ESTÁTICA DE FLUIDOS Y FENÓMENOS DE SUPERFICIE PROBLEMAS TEMA I: ESTÁTICA DE FLUIDOS Y FENÓMENOS DE SUPERFICIE Curso 2016-2017 1. Desde una bolsa de goteo colocada 1.6 m por encima del brazo de un paciente fluye plasma de 1.06 g/cm 3 de densidad por

Más detalles

Numero de Reynolds y Radio Hidráulico.

Numero de Reynolds y Radio Hidráulico. UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA ÀREA DE TECNOLOGÌA PROGRAMA DE INGENIERÍA QUÌMICA CATEDRA: FENÒMENOS DE TRANSPORTE PROFESOR: Ing. Alejandro Proaño Numero de Reynolds y Radio Hidráulico.

Más detalles

BOMBAS SELECCIÓN Y APLICACIÓN

BOMBAS SELECCIÓN Y APLICACIÓN BOMBAS SELECCIÓN Y APLICACIÓN Parámetros de selección de una bomba Naturaleza del líquido a bombear. Capacidad requerida Condiciones en el lado de succión Condiciones en el lado de la descarga La carga

Más detalles

Guía de estudio 3. Ecuación de Bernoulli (sin interacciones). Programa de Ing. Pesquera. Unefm

Guía de estudio 3. Ecuación de Bernoulli (sin interacciones). Programa de Ing. Pesquera. Unefm PARTE I: ECUACIÓN DE BERNOULLI (SIN INTERACCIONES ENERGÉTICAS) OBJETIVOS Los objetivos de estas clases son: CONSIDERACIONES TEÓRICAS DE LA ECUACIÓN DE BERNOULLI La ecuación de Bernoulli es la siguiente:

Más detalles

1.1.ECUACION FUNDAMENTAL DE LA DINÁMICA DE FLUIDOS.

1.1.ECUACION FUNDAMENTAL DE LA DINÁMICA DE FLUIDOS. INTRODUCCIÓN Los principios físicos más útiles en las aplicaciones de la mecánica de fluidos son el balance de materia, o ecuación de continuidad, las ecuaciones del balance de cantidad de movimiento y

Más detalles

Física General II. Guía N 2: Hidrodinámica y Viscosidad

Física General II. Guía N 2: Hidrodinámica y Viscosidad Física General II Guía N 2: Hidrodinámica y Viscosidad Problema 1: Ley de Torricelli. La figura muestra un líquido que está siendo descargado de un tanque a través de un orificio que se encuentra a una

Más detalles

PRÁCTICA 2: DETERMINACIÓN DE PÉRDIDAS POR FRICCIÓN EN UN SISTEMA DE TUBERÍAS

PRÁCTICA 2: DETERMINACIÓN DE PÉRDIDAS POR FRICCIÓN EN UN SISTEMA DE TUBERÍAS Universidad Nacional Experimental Francisco de Miranda Área de Tecnología Programa de Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA : DETERMINACIÓN DE PÉRDIDAS

Más detalles

Enunciados Lista 3. Nota: Realizar diagrama P-v del proceso.

Enunciados Lista 3. Nota: Realizar diagrama P-v del proceso. 5.9 El agua en un depósito rígido cerrado de 150 lt se encuentra a 100 ºC con 90% de calidad. El depósito se enfría a -10 ºC. Calcule la transferencia de calor durante el proceso. 5.14 Considere un Dewar

Más detalles

Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes:

Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes: Hidrodinámica Para el estudio de la hidrodinámica normalmente se consideran tres aproximaciones importantes: Que el fluido es un líquido incompresible, es decir, que su densidad no varía con el cambio

Más detalles

Válvulas de Control AADECA. Ing. Eduardo Néstor Álvarez Pérdidas de Carga

Válvulas de Control AADECA. Ing. Eduardo Néstor Álvarez Pérdidas de Carga Válvulas de Control AADECA Ing. Eduardo Néstor Álvarez Pérdidas de Carga LA VÁLVULA DE CONTROL ESTRANGULA EL PASO DE FLUIDO, PROVOCA UNA PÉRDIDA DE PRESION. DARCY ' P = )*f * (L/D)*( V 2 /2g) f = factor

Más detalles

2do cuatrimestre 2005 Turno FLUIDOS * Hidrostática. , con ρ 1

2do cuatrimestre 2005 Turno FLUIDOS * Hidrostática. , con ρ 1 Teorema Fundamental FLUIDOS * Hidrostática 1. En un tubo en U, hay dos líquidos inmiscibles (no se mezclan) de densidades ρ 1 y ρ 2, con ρ 1 > ρ 2. Si el nivel del punto B, respecto a la superficie que

Más detalles

Bases Físicas de la Hemodinamia

Bases Físicas de la Hemodinamia Bases Físicas de la Hemodinamia ESFUNO UTI: Cardiovascular - Respiratorio Biofísica Facultad de Enfermería 1 Sistema Cardiovascular Bomba Energía Tubuladuras Colección Tubuladuras Distribución Vasos finos

Más detalles

MECÁNICA DE LOS FLUIDOS

MECÁNICA DE LOS FLUIDOS Dinámica de los Fluidos MECÁNICA DE LOS FLUIDOS Ing. Rubén Marcano PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA la energía ni se crea ni se destruye solo se transforma, y es una propiedad ligada a la masa para

Más detalles

Guía de Trabajo. Presión, Arquímedes, Bernoulli. Resolver de manera clara y ordenada cada uno de los ejercicios en hojas blancas tamaño carta.

Guía de Trabajo. Presión, Arquímedes, Bernoulli. Resolver de manera clara y ordenada cada uno de los ejercicios en hojas blancas tamaño carta. Guía de Trabajo Presión, Arquímedes, Bernoulli Resolver de manera clara y ordenada cada uno de los ejercicios en hojas blancas tamaño carta. 1._Una rana en una vaina hemisferica descubre que flota sin

Más detalles

ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII

ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII ADMINISTRACION DE EMPRESA OPERACIONES INDUSTRIALES Instructor: Ing. Luis Gomez Quispe SEMESTREIII - 017 SEMANA 11 : FLUJO DE LOS FLUIDOS LIQUIDOS Inst. Ing. Luis Gomez Quispe 1 OBJETIVO GENERAL Al término

Más detalles

Estimación de la viscosidad de un líquido

Estimación de la viscosidad de un líquido Estimación de la viscosidad de un líquido Objetivos de la práctica! Estudiar la variación de la altura de un líquido viscoso con el tiempo en el interior de un tanque que descarga a través de un tubo.!

Más detalles

M. EN C. AG. ABILIO MARÍN TELLO

M. EN C. AG. ABILIO MARÍN TELLO M. EN C. AG. ABILIO MARÍN TELLO Perdidas de energía en tuberías y accesorios UNIDAD DE COMPETENCIA IV TUBERÍAS 4.1. Ecuación de Darcy-Weisbach 4.2. Diagrama de Moody 4.3. Pérdidas menores 4.1. Ecuación

Más detalles

Mediciones en Mecánica de Fluidos

Mediciones en Mecánica de Fluidos Mediciones en Mecánica de Fluidos En el laboratorio de ingeniería y en muchas situaciones industriales es importante medir las propiedades de fluidos y diversos parámetros de flujo, como presión, velocidad

Más detalles

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli.

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Presión de un fluido Presión depende de la profundidad P = ρ

Más detalles

UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DE MECÁNICA DE FLUIDOS

UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DE MECÁNICA DE FLUIDOS 1. Objetivos UNIVERSIDAD SIMÓN BOLÍVAR PRÁCTICA ESTUDIO DEL FLUJO TURBULENTO EN TUBERÍAS LISAS Analizar flujo turbulento en un banco de tuberías lisas. Determinar las pérdidas de carga en tuberías lisas..

Más detalles

Balance de energía en un diafragma

Balance de energía en un diafragma Balance de energía en un diafragma Objetivos de la práctica! Estudiar el perfil de presiones que se produce a lo largo de una tubería en la que se encuentra instalado un diafragma.! Determinar el coeficiente

Más detalles

EJERCICIOS NEUMÁTICA/HIDRÁULICA. SELECTIVIDAD

EJERCICIOS NEUMÁTICA/HIDRÁULICA. SELECTIVIDAD EJERCICIOS NEUMÁTICA/HIDRÁULICA. SELECTIVIDAD 83.- Un cilindro neumático tiene las siguientes características: Diámetro del émbolo: 100 mm, diámetro del vástago: 20 mm, carrera: 700 mm, presión de trabajo:

Más detalles

Ing. Eduardo N. Álvarez Sistemas de Control Válvulas de Control AADECA 2003

Ing. Eduardo N. Álvarez Sistemas de Control Válvulas de Control AADECA 2003 Ing. Eduardo N. Álvarez Sistemas de Control Válvulas de Control AADECA 2003 La regulación de Caudal Links Volver a Página Veamos brevemente las alternativas que tenemos en regulación de caudal. Si regulamos

Más detalles

Hidráulica. Temario: Tuberías Hidrostática Hidrodinámica. Energía. Perdidas de Carga Software para diseño Información en la Web

Hidráulica. Temario: Tuberías Hidrostática Hidrodinámica. Energía. Perdidas de Carga Software para diseño Información en la Web Temario: Tuberías Hidrostática Hidrodinámica Hidráulica Flujo laminar intermedio turbulento Energía Bernoulli Torricelli Ec. Gral del gasto Perdidas de Carga Software para diseño Información en la Web

Más detalles

OPERACIONES BÁSICAS I EJERCICIOS DE FLUJO DE FLUIDOS

OPERACIONES BÁSICAS I EJERCICIOS DE FLUJO DE FLUIDOS OPERACIONES BÁSICAS I EJERCICIOS DE FLUJO DE FLUIDOS 1. Por una tubería de 0.15 m de diámetro interno circula un aceite petrolífero de densidad 0.855 g/cm 3 a 20 ºC, a razón de 1.4 L/s. Se ha determinado

Más detalles

EJERCICIOS NEUMÁTICA/HIDRÁULICA. SELECTIVIDAD

EJERCICIOS NEUMÁTICA/HIDRÁULICA. SELECTIVIDAD EJERCICIOS NEUMÁTICA/HIDRÁULICA. SELECTIVIDAD 83.- Un cilindro neumático tiene las siguientes características: Diámetro del émbolo: 100 mm, diámetro del vástago: 20 mm, carrera: 700 mm, presión de trabajo:

Más detalles

FACULTAD: INGENIERIA ESCUELA: CIVIL DEPARTAMENTO: HIDRAULICA ASIGNATURA: MECANICA DE FLUIDOS CODIGO: 1306

FACULTAD: INGENIERIA ESCUELA: CIVIL DEPARTAMENTO: HIDRAULICA ASIGNATURA: MECANICA DE FLUIDOS CODIGO: 1306 ASIGNATURA: MECANICA DE FLUIDOS CODIGO: 1306 PAG. 1 PROPOSITO: La materia Mecánica de Fluidos (1306) tiene como propósito introducir a los estudiantes en el estudio de las propiedades y leyes físicas que

Más detalles

FLUIDOS. sólido líquido gas

FLUIDOS. sólido líquido gas FLUIDOS sólido líquido gas INTRODUCCIÓN La materia puede clasificarse por su forma física como un sólido, un líquido o un gas. Las moléculas de los solidos a temperaturas y presiones ordinarias tienen

Más detalles

Hernán Verdugo Fabiani

Hernán Verdugo Fabiani Hidrodinámica Se estudian fenómenos con fluidos en movimiento 1 Ideas previas Los fluidos que se considerarán son líquidos que cumplen con las siguientes características: Fluidos incompresibles: de densidad

Más detalles

Trabajo Práctico N 6 FLUJO EN CONDUCTOS CERRADOS

Trabajo Práctico N 6 FLUJO EN CONDUCTOS CERRADOS Objetivo del Práctico: Trabajo Práctico N 6 FLUJO EN CONDUCTOS CERRADOS Este práctico está destinado a: - El cálculo de sistemas de tubería con sus correspondientes pérdidas de carga. - Utilizar de diagramas

Más detalles

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)

Más detalles

PROBLEMAS DE NAVIDAD 2003

PROBLEMAS DE NAVIDAD 2003 PROBLEMAS DE NAVIDAD 2003 1 PROBLEMAS DE NAVIDAD 2003 Fig. Navidad 2003-1 Navidad 2003-1. Una conducción de sección cuadrada contiene en su interior un haz de cinco tubos de 5 cm de diámetro cada uno,

Más detalles

UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA DEPARTAMENTO ACADÉMICO DE ENERGÍA Y FÍSICA FÍSICA II FLUIDOS

UNIVERSIDAD NACIONAL DEL SANTA FACULTAD DE INGENIERÍA DEPARTAMENTO ACADÉMICO DE ENERGÍA Y FÍSICA FÍSICA II FLUIDOS UNIVERSIDD NCIONL DEL SNT FCULTD DE INGENIERÍ DEPRTMENTO CDÉMICO DE ENERGÍ Y FÍSIC I FLUIDOS ESCUEL CDÉMIC PROFESIONL INGENIERÍ GROINDUSTRIL CICLO: - III CICLO DOCENTE: - NUEVO CHIMBOTE PERÚ 2 0 1 5 FISIC

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE:

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE: UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS APLICACIONES DEL PRINCIPIO DE PASCAL. OBSERVAR LA

Más detalles

Laboratorio de Mecánica de Fluidos I

Laboratorio de Mecánica de Fluidos I Laboratorio de Mecánica de Fluidos I Práctica # 3: Demostración del Teorema de Bernoulli Objetivo Demostrar el Teorema de Bernoulli y sus limitaciones. Determinar el coeficiente de descarga. En este experimento

Más detalles

Mecánica de fluidos. Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016

Mecánica de fluidos. Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016 Mecánica de fluidos Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016 ESTATICA DE FLUIDOS 1. Estados de la materia 2. Propiedades de los fluidos 3. Volumen, densidad y peso específico,

Más detalles

DINÁMICA DE FLUIDOS REALES. Asignatura: Operaciones Unitarias Profesor: Jimmy Walker Alumnos: Giovanni Ramirez Luis Cabrera Antonio Marín

DINÁMICA DE FLUIDOS REALES. Asignatura: Operaciones Unitarias Profesor: Jimmy Walker Alumnos: Giovanni Ramirez Luis Cabrera Antonio Marín DINÁMICA DE FLUIDOS REALES Asignatura: Operaciones Unitarias Profesor: Jimmy Walker Alumnos: Giovanni Ramirez Luis Cabrera Antonio Marín Viscosidad Consideraciones Fluido ideal Viscosidad =0 Fluido real

Más detalles

Sistemas de unidades

Sistemas de unidades Sistemas de unidades Ejercicios propuestos 1. Realice las siguientes conversiones de unidades: a) Una cantidad X es igual a Y/Z. Las unidades de Y son m 3 s 7 y las de Z son m s 10. Qué unidades tiene

Más detalles

GUIA DE PROBLEMAS Nº6: HIDROSTÁTICA- HIDRODINÁMICA. Premisa de Trabajo:

GUIA DE PROBLEMAS Nº6: HIDROSTÁTICA- HIDRODINÁMICA. Premisa de Trabajo: GUIA DE PROBLEMAS Nº6: HIDROSTÁTICA- HIDRODINÁMICA Premisa de Trabajo: En la resolución de cada ejercicio debe quedar manifiesto: Las características del fluido y del flujo del fluido, la expresión de

Más detalles

LABORATORIO DE FENÓMENOS COLECTIVOS

LABORATORIO DE FENÓMENOS COLECTIVOS LABORATORIO DE FENÓMENOS COLECTIVOS LA VISCOSIDAD DE LOS LÍQUIDOS CRUZ DE SAN PEDRO JULIO CÉSAR RESUMEN La finalidad de esta práctica es la determinación de la viscosidad de diferentes sustancias (agua,

Más detalles

MECÁNICA DE FLUIDOS. Docente: Ing. Alba Díaz Corrales

MECÁNICA DE FLUIDOS. Docente: Ing. Alba Díaz Corrales MECÁNICA DE FLUIDOS Docente: Ing. Alba Díaz Corrales Fecha: 1 de septiembre 2010 Mecánica de Fluidos Tipo de asignatura: Básica Específica Total de horas semanales: 6 Total de horas semestrales: 84 Asignatura

Más detalles

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos).

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). 1) Explique los siguientes conceptos y/o ecuaciones: a) Circulación. B) Volumen de control. B) Teorema

Más detalles

1. 2º EXAMEN. 2. Investigación 11. Fluidos. Contenido:

1. 2º EXAMEN. 2. Investigación 11. Fluidos. Contenido: SESIÓN 21 17 OCTUBRE 1. 2º EXAMEN 2. Investigación 11. Fluidos. Contenido: Estados de la materia. Características moleculares de sólidos, líquidos y gases. Fluido. Concepto de fluido incompresible. Densidad

Más detalles

Tipos de fluidos. Fluido IDEAL. No posee fricción interna. Dinámica de fluidos

Tipos de fluidos. Fluido IDEAL. No posee fricción interna. Dinámica de fluidos Dinámica de fluidos Cátedra de Física- FFyB-UBA Tipos de fluidos Fluido IDEAL Tipos de Fluidos INCOMPRESIBLE No varía su volumen al variar la presión al cual está sometido (δ cte) Según su variación de

Más detalles

Flujo. P 1 P 2 Al manómetro

Flujo. P 1 P 2 Al manómetro Ejercicios Propuestos. Se está laminando acero caliente en una acería. El acero que sale de la maquina laminadora es un 0% más denso que antes de entrar a esta. Si el acero se está alimentando a una velocidad

Más detalles

PRÁCTICA 2: MEDIDORES DE FLUJO

PRÁCTICA 2: MEDIDORES DE FLUJO Universidad Nacional Experimental Francisco De Miranda Área De Tecnología Programa De Ingeniería Química Departamento de Energética Laboratorio de Operaciones Unitarias I PRÁCTICA 2: MEDIDORES DE FLUJO

Más detalles

Prácticas de Laboratorio de Hidráulica

Prácticas de Laboratorio de Hidráulica Universidad Politécnica de Madrid E.T.S. Ingenieros de Caminos, Canales y Puertos Prácticas de Laboratorio de Hidráulica Jaime García Palacios Francisco V. Laguna Peñuelas 2008 Índice general 7. Pérdidas

Más detalles

CINEMÁTICA 3. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA

CINEMÁTICA 3. Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA CINEMÁTICA 3 Mecánica de Fluidos Avanzada UNIVERSIDAD NACIONAL DE INGENIERÍA FACULTAD DE INGENIERÍA CIVIL DEPARTAMENTO DE HIDRÁULICA E HIDROLOGÍA ECUACION DE EULER (1) Para un volumen diferencial de fluido,

Más detalles

HIDRODINAMICA. INTRODUCCIÓN: En un fluido en movimiento, su flujo puede ser estable, caso contrario será no estable o turbulento.

HIDRODINAMICA. INTRODUCCIÓN: En un fluido en movimiento, su flujo puede ser estable, caso contrario será no estable o turbulento. OBJETIVOS ESPECIFICOS HIDRODINAMICA Analizar ciertas características fundamentales de los fluidos en reposo y en movimiento. Relacionar la presión, la velocidad y la altura de un líquido incomprensible.

Más detalles

REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL

REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL REPÚBLICA DE CUBA MINISTERIO DE EDUCACIÓN DIRECCIÓN DE EDUCACIÓN TÉCNICA Y PROFESIONAL CÓDIGO: ESPECIALIDAD: REFRIGERACIÓPROGRAMA: ELEMENTOS DE MECÁNICA DE LOS FLUIDOS. NIVEL MEDIO SUPERIOR TÉCNICO MEDIO.

Más detalles

Nombre de la asignatura: Mecánica de Fluidos II. Carrera : Ingeniería Mecánica. Clave de la asignatura: MCM Clave local:

Nombre de la asignatura: Mecánica de Fluidos II. Carrera : Ingeniería Mecánica. Clave de la asignatura: MCM Clave local: Nombre de la asignatura: Mecánica de Fluidos II. Carrera : Ingeniería Mecánica Clave de la asignatura: MCM-9331 Clave local: Horas teoría horas practicas créditos: 3-2-8 2.- UBICACIÓN DE LA ASIGNATURA

Más detalles

Estructura de Materia 1 Verano Práctica 2 Leyes de conservación

Estructura de Materia 1 Verano Práctica 2 Leyes de conservación Estructura de Materia 1 Verano 2017 Práctica 2 Leyes de conservación Problema 1. Un líquido incompresible de densidad ρ 0 fluye de manera estacionaria por el interior de un conducto de longitud finita

Más detalles

OPERACIONES UNITARIAS

OPERACIONES UNITARIAS OPERACIONES UNITARIAS UNIDAD I: MECÁNICA DE FLUIDOS INTRODUCCIÓN (CLASE TEÓRICA) DOCENTE: ING. PABLO GANDARILLA CLAURE pgandarilla@hotmail.com p.gandarilla@gmail.com Santa Cruz, noviembre de 2009 SUMARIO

Más detalles

Problemas de Mecánica y Ondas II. Boletín nº 2. (Fluidos) Es incompresible? Existe la función de corriente? Determínela en caso afirmativo.

Problemas de Mecánica y Ondas II. Boletín nº 2. (Fluidos) Es incompresible? Existe la función de corriente? Determínela en caso afirmativo. Problemas de Mecánica y Ondas II. oletín nº 2. (Fluidos) 15. Considere un flujo cuyas componentes de la velocidad son 3 2 u = 0 v = y 4 z w=3y z Es incompresible? Existe la función de corriente? Determínela

Más detalles

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes Física de fluidos Densidad ρ V dv 3 σ S ds L dl λ Principio de Arquímedes Principio de Arquímedes: todo cuerpo sumergido en un fluido eperimenta un empuje vertical y hacia arriba igual al peso de fluido

Más detalles

Trabajo Práctico N 4. Dinámica de los Fluidos

Trabajo Práctico N 4. Dinámica de los Fluidos Trabajo Práctico N 4 Dinámica de los Fluidos Objetivo del Práctico: Este práctico está destinado a: - El estudio y la aplicación de la ecuación de Bernoulli - El estudio y aplicación de la ecuación de

Más detalles

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 4: Mecánica de fluidos Martes 25 de Septiembre, 2007

Más detalles

3. Convección interna forzada

3. Convección interna forzada Tubos circulares resisten grandes diferencias de presión dentro y fuera del tubo (Equipos de transferencia) Tubos no circulares costos de fabricación e instalación más bajos (Sistemas de calefacción) Para

Más detalles

INDICE. Capitulo I. Introducción

INDICE. Capitulo I. Introducción INDICE Capitulo I. Introducción I 1.1. La mecánica de fluidos en la ingeniera 1 1.2. Los fluidos y la hipótesis del continuo 22 1.2.1. El modelo del continuo 4 1.3. Propiedades de los fluidos 1.3.1. Densidad,

Más detalles

Ingeniería en Alimentos - Fenómenos de Transporte - Año 2016 SITUACIONES PROBLEMÁTICAS Nº 1

Ingeniería en Alimentos - Fenómenos de Transporte - Año 2016 SITUACIONES PROBLEMÁTICAS Nº 1 Frecuentemente el hombre se convierte en aquello que cree ser. Si persevera afirmando ser incapaz de hacer determinada cosa, puede ser que eso, de hecho, acontezca. Si, al contrario, se considera capaz

Más detalles

Flujo en tuberías. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D.

Flujo en tuberías. Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. Flujo en tuberías Juan Manuel Rodríguez Prieto I.M., M.Sc., Ph.D. La velocidad del fluido en una tubería cambia de cero en la superficie debido a la condición de nodeslizamiento hasta un máximo en el centro

Más detalles

SISTEMAS ABIERTOS BALANCE DE MASA ELABORÓ MSc. EFRÉN GIRALDO TORO.

SISTEMAS ABIERTOS BALANCE DE MASA ELABORÓ MSc. EFRÉN GIRALDO TORO. 1 SISTEMAS ABIERTOS BALANCE DE MASA ELABORÓ MSc. EFRÉN GIRALDO TORO. REVISÓ PhD. CARLOS A. ACEVEDO. PRESENTACIÓN HECHA EXCLUIVAMENTE CON EL FIN DE FACILITAR EL ESTUDIO. MEDELLÍN 2016 2 Contenido Sistemas

Más detalles

UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA UNITARIAS I

UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA UNITARIAS I UNIVERSIDAD DEL ZULIA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA QUÍMICA DEPARTAMENTO DE INGENIERÍA QUÍMICA BÁSICA LABORATORIO DE OPERACIONES UNITARIAS I PÉRDIDAS DE CARGA POR FRICCIÓN Profesora: Marianela

Más detalles

MECANICA DE LOS FLUIDOS

MECANICA DE LOS FLUIDOS MECANICA DE LOS FLUIDOS 7 FUNDAMENTOS DEL FLUJO DE FLUIDOS Ing. Alejandro Mayori Flujo de Fluidos o Hidrodinámica es el estudio de los Fluidos en Movimiento Principios Fundamentales: 1. Conservación de

Más detalles

Lechos empacados, Fluidización

Lechos empacados, Fluidización Lechos empacados, Fluidización El fluido ejerce una fuerza sobre el sólido en la dirección de flujo, conocida como arrastre o rozamiento. Existen una gran cantidad de factores que afectan a los rozamientos

Más detalles

TEMA 3 (Parte II) Dinámica de fluidos viscosos

TEMA 3 (Parte II) Dinámica de fluidos viscosos TEMA 3 (arte II) Dinámica de fluidos viscosos B E db dm de dm e db t C db db r r de r r ( d ) ( ds) e( d ) e( ds) dm dm t S C S rimera ley de la Termodinámica: Energías específicas: de - Energía cinética

Más detalles

Fluidos. Cualquier sustancia que tiene la capacidad de fluir es un fluido. Liquido Gas Plasma

Fluidos. Cualquier sustancia que tiene la capacidad de fluir es un fluido. Liquido Gas Plasma Fluidos Cualquier sustancia que tiene la capacidad de fluir es un fluido. Liquido Gas Plasma Entonces muchos de la teoría se puede aplicar tanto a gases como líquidos. Estados de la materia Sólido Líquido

Más detalles

1. Tipos de flujo. 2. Caudal. 3. Conservación de la energía en fluidos. 4. Roce en fluidos

1. Tipos de flujo. 2. Caudal. 3. Conservación de la energía en fluidos. 4. Roce en fluidos 1. Tipos de flujo. Caudal 3. Conservación de la energía en fluidos 4. Roce en fluidos Tipos de flujos Existen diversos tipos de flujos en donde se distinguen: Flujo laminar: Ocurre cuando las moléculas

Más detalles