Implementación de efectos acústicos

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Implementación de efectos acústicos"

Transcripción

1 Práctica 3: Implementación de efectos acústicos Objetivos Al finalizar esta práctica, el alumno debe ser capaz de: Grabar una señal de voz procesarla en Matlab. Añadir un eco, con diferente amplitud retardo a una señal de voz. Representar reproducir, la nueva señal de audio. Explicar el efecto de cada parámetro en la señal con eco. Añadir reverberación, con diferentes amplitudes, retardos, número de ecos a una señal de voz. Representar reproducir, la nueva señal de audio. Explicar el efecto de cada parámetro en la señal con reverberación. Añadir un efecto flanging a una señal de audio. Representar reproducir, la nueva señal de audio. Explicar el efecto de cada parámetro en la señal con flanging Introducción En esta tercera práctica, empezaremos a tratar sistemas o filtros. Estrictamente hablando, un filtro es un sistema diseñado para eliminar o modificar componentes de la señal. Hablaremos de los filtros FIR (Finite Impulse Response). Estos filtros son sistemas para los cuales cada salida es un promedio de un número finito de muestras de la señal de entrada. La expresión general de un filtro FIR es de la forma: M [] n = bk x[ n k] k = 0 Para computar la salida en el instante n, el filtro emplea las M+1 muestras anteriores multiplicándolas por los coeficientes b k. Un filtro FIR está completamente determinado por dichos coeficientes. El orden del filtro es el número de coeficientes-1. Los efectos de audio que vamos a tratar son todos filtros FIR, de la forma anteriormente indicada. 1.1

2 3.2.- Retrasos eco Quizá el más básico de todos los efectos sea el retraso temporal. Este efecto se utilizará luego como base para construir otros efectos más complejos. Un retraso en el tiempo se puede expresar mediante la siguiente ecuación en diferencias: [ n] = x[ n D] donde D es el retardo en número de muestras que experimenta la señal. Así, un eco, que no es mas que la suma a una señal de la misma señal atenuada retardada en el tiempo, quedaría representado por: [ n] = x[ n] + ax[ n D] donde a < 1 representa las pérdidas debidas a las reflexiones durante la transmisión. El diagrama de bloques aparece representado en la Figura 1. x[n] [n] D Retardo a Figura 1: Diagrama de bloques de un sistema con eco. Escribir una función en Matlab que genere un eco de la señal de entrada. Sus parámetros de entrada serán la señal de entrada, el retardo el valor de la atenuación, a, como salida tendrá la señal generada. Recordar que para leer la señal de entrada se debe utilizar el comando [,fs,nbits]=wavread('nombre_archivo.wav') donde será el vector con los datos, fs es la frecuencia de muestreo que se utilizó cuando se generó el fichero '.wav' nbits es el número de bits con que los datos fueron almacenados. Para más detalles utilizar la auda de Matlab. fs es la frecuencia a utilizar cuando reproducimos el sonido utilizando sound. Comprobar que existe un valor mínimo del retardo introducido para que este comience a percibirse. Utilizando Fs calcular el tiempo al que corresponde este retardo Comprobar el efecto del parámetro a, variando su valor. NOTA: Tener en cuenta que la señal retardada tiene una duración D muestras maor que la original. 1.2

3 3.3.- Reverberación Si un número infinito de ecos sucesivos es sumando, obtenemos una reverberación similar a la que experimentan las habitaciones. La reverberación es el resultado de las múltiples reflexiones de un sonido, por ejemplo en una habitación. Desde cualquier fuente de sonido existe un camino directo a nuestros oídos. Además, las ondas de sonido pueden tomar un camino más largo, reflejándose en las paredes, suelo techos de la habitación antes de llegar a nuestros oídos. Una onda reflejada llegará más tarde que la onda directa, a que la distancia que recorre es más larga, es así mismo más débil, a que cada rebote supone una pérdida de energía. La señal de salida puede calcularse recursivamente como: [ n] = x[ n] + a [ n D] El valor inicial de [] n es x [ n] el número de iteraciones será el número de ecos tenidos en cuenta. Así por ejemplo, una iteración nos genera un eco como el que hemos estudiado en el ejercicio anterior. x[n] [n] a D Figura 2: Diagrama de Bloques de un reverberador. Escribir una función en Matlab que genere un efecto de reverberación de la señal de entrada. Sus parámetros de entrada serán la señal de entrada, el retardo, el valor de la atenuación, a, el número de ecos tenidos en cuenta. Como salida tendrá la señal generada. NOTA: Tener en cuenta que cada iteración aumenta el tamaño de la señal en D muestras Flanging El efecto de flanging se puede crear fácilmente haciendo que el retardo varíe periódicamente usando para ello una onda sinusoidal de baja frecuencia. Sin embargo la forma más natural de interpretar el flanging pasa por entenderlo como si fuese un simple eco. Es decir, a cada muestra de la señal original se le suma otra muestra de la misma señal pero atenuada desfasada con respecto a la muestra original. Además el flanging añade la peculiaridad de que este desfase no es fijo, ni aleatorio, sino que se trata de un desfase que viene marcado por una función sinusoidal. 1.3

4 De ahí que el efecto final del flanging sea el de un eco más o menos curioso con reverberaciones que parecen no ajustarse a un patrón determinado, aunque ahora a sepamos de dónde proceden. El efecto de flanging se puede resumir en esta fórmula: [ n] = x[ n] + ax[ n d( n) ] Donde el retardo d[n] realmente varía de igual modo que una sinusoide entre los límites 0 <= d[n] <= D, según cualquiera de las siguientes fórmulas (equivalentes); d[n]= D/2 * ( 1- cos(2*pi*f d *n) ) d[n]= abs( round ( D cos(2*pi*f d *n) ) ) Donde Fd representa una frecuencia baja ( típicamente 1Khz) en unidades de ciclos/muestra. El diagrama de flujo que explica conceptualmente el efecto del flanging es el siguiente: X[n] + Y[n] Z -d a Figura 3: Diagrama de bloques para flanging. El siguiente dibujo ilustra de forma clara como se podría conseguir un flanging en caso de disponer de una pared móvil : 1.4

5 Señal + ecos D Señal con flanging Figura 4: Flanging con una pared móvil. Al final la fórmula del flanging quedará así; (i)= x(i)+a*x(i-dela(i)); donde el dela se saca de la señal sinusoidal. Es mu importante que el argumento de la señal eco : [i-dela(i)], tome un valor siempre positivo. Para ello la señal final se construirá en dos pasos: 1. Hacemos que en las D primeras muestras la señal original sea la misma. for i=1:1:d+1 (i)=x(i); end; 2. En las muestras posteriores ( hasta la última muestra de la señal de entrada) a la señal original se le añade el eco. Se trata de diseñar este eco, sabiendo que su amplitud no puede ser maor que D que su frecuencia viene dada en ciclos por muestra. for i=d+1:1:xlen dela(i) = ? (i)= x(i)+a*x(i-dela(i)); 1.5

6 end; Una posible estructura para comenzar el programa sería esta: [x,fs,n]=wavread('dt.wav');%cargamos señal de audio xlen=length(x)%número de muestras en la señal original %constantes a=/****/; % atenuación de la señal de eco D=/****/; % numero de muestras en el retardo =zeros(size(x)); dela = zeros(size(x)); ccle=/****/; % cosntrucción de la señal for i=1:1:d+1 / ******************** / end; for i=d+1:1:xlen dela(i) = / ******************************** / (i)= x(i)+a*x(i-dela(i)); end; sound(,fs); Variar el valor del parámetro a. Qué observas?, Qué efecto tiene esta constante sobre el la señal resultante? Variar el valor del parámetro D. Qué cambios observas?, qué valores de D hacen que el eco se haga notar antes? Quizá esta figura te aude a entenderlo mejor. 1 D.. xlen ( xlen - D ) Figura 5: Vector de salida en efecto flanging. 1.6

Sistemas lineales invariantes en el tiempo

Sistemas lineales invariantes en el tiempo Sistemas lineales invariantes en el tiempo Modulación y Procesamiento de Señales Ernesto López Pablo Zinemanas, Mauricio Ramos {pzinemanas, mramos}@fing.edu.uy Centro Universitario Regional Este Sede Rocha

Más detalles

Análisis de Sistema FIR - IIR en TD

Análisis de Sistema FIR - IIR en TD Análisis de Sistema FIR - IIR en TD Gloria Mata Hernández 7 de marzo de 2017 Índice general 1.1. Objetivo de aprendizaje..................................... 2 1.2. Introducción............................................

Más detalles

Figura 1. Espectro de la señal x(t) FPBanda π/3 -- 2π/3 (ideal) T Figura 2. Diagrama de bloques del sistema discreto

Figura 1. Espectro de la señal x(t) FPBanda π/3 -- 2π/3 (ideal) T Figura 2. Diagrama de bloques del sistema discreto EXAMEN DE PROCESADO DIGITAL DE LA SEÑAL EXAMEN DE PROCESADO DE LA SEÑAL AUDIOVISUAL Universidad Politécnica de Madrid. E.U.I.T. Telecomunicación Departamento de Ingeniería Audiovisual y Comunicaciones

Más detalles

PROBLEMAS TEMA 2 TEORÍA DE LA APROXIMACIÓN

PROBLEMAS TEMA 2 TEORÍA DE LA APROXIMACIÓN PROBLEMAS TEMA TEORÍA DE LA APROXIMACIÓN PROBLEMA : Determinar la función de transferencia de un filtro paso bajo máximamente plano que cumplan las especificaciones de la figura: a) Determinar el orden

Más detalles

Problemas de Estructuras de Filtros Digitales.

Problemas de Estructuras de Filtros Digitales. Problemas de Estructuras de Filtros Digitales. Estructuras de Filtros Digitales 1.- En la figura siguiente se representa una realización en la forma acoplada de una función del sistema que presenta una

Más detalles

Seminario de Procesamiento Digital de Señales

Seminario de Procesamiento Digital de Señales Seminario de Procesamiento Digital de Señales Unidad 5: Diseño de Filtros Digitales - Parte I Marcelo A. Pérez Departamento Electrónica Universidad Técnica Federico Santa María Contenidos 1 Conceptos Básicos

Más detalles

Sistemas Lineales e Invariantes PRÁCTICA 2

Sistemas Lineales e Invariantes PRÁCTICA 2 Sistemas Lineales e Invariantes PRÁCTICA 2 (1 sesión) Laboratorio de Señales y Comunicaciones PRÁCTICA 2 Sistemas Lineales e Invariantes 1. Objetivo Los objetivos de esta práctica son: Revisar los sistemas

Más detalles

Señales: Tiempo y Frecuencia PRÁCTICA 1

Señales: Tiempo y Frecuencia PRÁCTICA 1 Señales: Tiempo y Frecuencia PRÁCTICA 1 (1 sesión) Laboratorio de Señales y Comunicaciones PRÁCTICA 1 Señales: Tiempo y Frecuencia 1. Objetivo El objetivo de esta primera práctica es revisar: las principales

Más detalles

ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 4: Filtros digitales Parte I

ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 4: Filtros digitales Parte I 1 ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 4: Filtros digitales Parte I 0. Introducción Este laboratorio está compuesto por dos sesiones en la cuales se estudiarán filtros digitales.

Más detalles

GUÍA DE LABORATORIO 2 FILTROS DIGITALES FILTROS FIR E IIR

GUÍA DE LABORATORIO 2 FILTROS DIGITALES FILTROS FIR E IIR UNIVERSIDAD TÉCNICA FEDERICO SANTA MARÍA Departamento de Electrónica GUÍA DE LABORATORIO 2 FILTROS DIGITALES FILTROS FIR E IIR CURSO LABORATORIO DE PROCESAMIENTO DIGITAL DE SEÑALES SIGLA ELO 385 PROFESOR

Más detalles

SOLUCIONES. 2 Xm 2 n ,953mv W, determinar la relación señal a ruido de

SOLUCIONES. 2 Xm 2 n ,953mv W, determinar la relación señal a ruido de PROCESADO DIGITAL DE SEÑAL (Sonido e Imagen) Universidad Politécnica de Madrid. E.U.I.T. Telecomunicación Departamento de Ingeniería Audiovisual y Comunicaciones Examen de teoría, Plan 000 15 de Junio

Más detalles

Práctica 3: Convolución

Práctica 3: Convolución Práctica 3: Convolución Grupo Puesto Apellidos, nombre SOLUCIÓN Fecha Apellidos, nombre SOLUCIÓN El objetivo de esta práctica es familiarizar al alumno con la suma de convolución, fundamental en el estudio

Más detalles

Práctica 1: Perturbaciones: distorsión y ruido

Práctica 1: Perturbaciones: distorsión y ruido Apellidos, nombre Apellidos, nombre TEORÍA DE LA COMUNICACIÓN 009/010 Práctica 1: Perturbaciones: distorsión y ruido Grupo Puesto Fecha El objetivo de esta práctica es familiarizar al alumno con los efectos

Más detalles

46º CONGRESO ESPAÑOL DE ACÚSTICA ENCUENTRO IBÉRICO DE ACÚSTICA EUROPEAN SYMPOSIUM ON VIRTUAL ACOUSTICS AND AMBISONICS

46º CONGRESO ESPAÑOL DE ACÚSTICA ENCUENTRO IBÉRICO DE ACÚSTICA EUROPEAN SYMPOSIUM ON VIRTUAL ACOUSTICS AND AMBISONICS DISEÑO Y CONSTRUCCIÓN DE UN ECUALIZADOR GRÁFICO DE 8 BANDAS PACS: 43.38.-p Romo, William; Herrera Martínez, Marcelo Universidad de San Buenaventura, Carrera 8 H n. 172-20 PBX: (57) 1-667 1090 Bogotá, Colombia

Más detalles

Taller de Filtros Digitales 2016 Práctica 2

Taller de Filtros Digitales 2016 Práctica 2 Taller de Filtros Digitales 2016 Práctica 2 1. Objetivo Familiarizarse con distintas técnicas de diseño de filtros digitales. 2. FIR - Diseño por ventanas Se desea diseñar un filtro pasabanda de fase lineal

Más detalles

1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100

1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100 ONDAS 1. Una onda sonora armónica tiene una frecuencia de 1 Hz y una amplitud de 100 Å. a) Calcular la longitud de onda; b) Escribir la ecuación de onda correspondiente. (1 Å = 10-10 m; v sonido = 340

Más detalles

FISICA APLICADA. A. Preguntas: Leer el material bibliográfico para responder las siguientes preguntas.

FISICA APLICADA. A. Preguntas: Leer el material bibliográfico para responder las siguientes preguntas. TRABAJO PRACTICO UNIDAD 3 SONIDO A. Preguntas: Leer el material bibliográfico para responder las siguientes preguntas. 1. Qué es una onda? 2. Qué tipo de perturbación produce el sonido sobre el medio?

Más detalles

transmisión de señales

transmisión de señales Introducción al análisis y transmisión de señales La transmisión de información La información se puede transmitir por medio físico al variar alguna de sus propiedad, como el voltaje o la corriente. Este

Más detalles

Vídeo Digital Examen de Junio de 2002

Vídeo Digital Examen de Junio de 2002 UNIVERSIDAD DE CASTILLA LA MANCHA Escuela Universitaria Politécnica de Cuenca Ingeniería Técnica de Telecomunicación (Especialidad de Sonido e Imagen) Vídeo Digital Examen de Junio de 2002 1.- En la siguiente

Más detalles

En la Clase 3, se demostró que cualquier señal discreta x[n] puede escribirse en términos de impulsos como sigue:

En la Clase 3, se demostró que cualquier señal discreta x[n] puede escribirse en términos de impulsos como sigue: SISTEMAS LINEALES INVARIANTES EN EL TIEMPO (SISTEMAS LTI) Un sistema lineal invariante en el tiempo, el cual será referido en adelante por la abreviatura en inglés de Linear Time Invariant Systems como

Más detalles

Filtrado Digital. Lectura 2: Estructuras Básicas de Filtros Digitales

Filtrado Digital. Lectura 2: Estructuras Básicas de Filtros Digitales Lectura 2: Estructuras Básicas de Filtros Digitales Filtros FIR sencillos Filtro de promedio móvil de 2 puntos (M=1 1er orden): Es el filtro FIR más simple. Note que H(z) tiene un cero en z=-1, y un polo

Más detalles

Práctica 3. Nombre del curso: Teoría Moderna de la Detección y Estimación. Autores: Emilio Parrado Hernández

Práctica 3. Nombre del curso: Teoría Moderna de la Detección y Estimación. Autores: Emilio Parrado Hernández Práctica 3 Nombre del curso: Teoría Moderna de la Detección y Estimación Autores: Emilio Parrado Hernández Práctica 3: Cancelación de ruido mediante filtrado. Teoría Moderna de la Detección y la Estimación

Más detalles

PROBLEMAS TEMA 1 INTRODUCCIÓN. DEFINICIONES BÁSICAS

PROBLEMAS TEMA 1 INTRODUCCIÓN. DEFINICIONES BÁSICAS INTRODUCCIÓN. DEFINICIONES BÁSICAS PROBLEMA 1 Se desea obtener un filtro paso banda que cumpla las especificaciones indicadas en la plantilla de atenuación de la figura a partir de un filtro paso bajo

Más detalles

Problemas de Filtros Digitales FIR. VENTANAS

Problemas de Filtros Digitales FIR. VENTANAS Problemas de Filtros Digitales FIR. VENTANAS Síntesis de Filtros Digitales FIR. Ventanas 1.- Se pretende diseñar un filtro FIR de fase lineal tipo II (número de coeficientes par y simetría par en la respuesta

Más detalles

Reverberación y Espacialización

Reverberación y Espacialización Reverberación y Espacialización Juan-Pablo Cáceres CCRMA Stanford University Agosto, 2007 Contenidos Acústica Efecto Doppler Acústica de Cuartos Reverberación JCRev Otros Modelos Un Modelo Simple de Transmisión

Más detalles

Fundamentos de los Computadores Grado en Ingeniería Informática

Fundamentos de los Computadores Grado en Ingeniería Informática 3.1 Circuitos aritmético-lógicos Fundamentos de los Computadores Grado en Ingeniería Informática Introducción La realización de operaciones aritméticas y lógicas es una de las principales i razones de

Más detalles

CAPÍTULO V: IMPLEMENTACIÓN FILTROS DIGITALES EN FPGA's IMPLEMENTACIÓN DE FILTROS DIGITALES EN FPGA'S IEC FRANCISCO JAVIER TORRES VALLE

CAPÍTULO V: IMPLEMENTACIÓN FILTROS DIGITALES EN FPGA's IMPLEMENTACIÓN DE FILTROS DIGITALES EN FPGA'S IEC FRANCISCO JAVIER TORRES VALLE V IMPLEMENTACIÓN DE FILTROS DIGITALES EN FPGA'S 83 5.1 INTRODUCCIÓN Un FPGA es un dispositivo cuyas características pueden ser modificadas, manipuladas o almacenadas mediante programación. La arquitectura

Más detalles

Ayudantía Análisis de Señales. Transformada Z

Ayudantía Análisis de Señales. Transformada Z Pontificia Universidad Católica de Chile Escuela de Ingeniería Ayudantía Análisis de Señales Fabián Cádi Transformada Z Consideremos un sistema discreto lineal e invariante, representado por una respuesta

Más detalles

Vídeo Digital Examen de Junio de 2001

Vídeo Digital Examen de Junio de 2001 UNIVERSIDAD DE CASTILLA LA MANCHA Escuela Universitaria Politécnica de Cuenca Ingeniería Técnica de Telecomunicación (Especialidad de Sonido e Imagen) Vídeo Digital Examen de Junio de 2001 1.- Queremos

Más detalles

Procesamiento digital de señales de audio

Procesamiento digital de señales de audio Procesamiento digital de señales de audio Filtros digitales y aplicaciones en audio Instituto de Ingeniería Eléctrica, Facultad de Ingeniería Universidad de la República, Uruguay Grupo de Procesamiento

Más detalles

Sistemas LTI discretos

Sistemas LTI discretos Procesamiento Digital de Señales Licenciatura en Bioinformática FI-UNER discretos Setiembre de 2010 Procesamiento Digital de Señales discretos Septiembre de 2010 1 / 21 Organización Definición criterios

Más detalles

UNIVERSIDAD DE SONORA

UNIVERSIDAD DE SONORA UNIVERSIDAD DE SONORA INTERFERENCIA INTERSIMBÓLICA Responsable: Dra. Milka del Carmen Acosta Enríquez Colaboradores: Dra. María Elena Zayas S. Dr. Santos Jesús Castillo Debido a la distorsión lineal que

Más detalles

Sistemas LTI discretos

Sistemas LTI discretos Procesamiento Digital de Señales Licenciatura en Bioinformática FI-UNER discretos 15 de setiembre de 2011 Procesamiento Digital de Señales discretos Septiembre de 2011 1 / 21 Organización Definición criterios

Más detalles

Síntesis del sonido I

Síntesis del sonido I Síntesis del sonido I Oscilador Analógico: Voltage Controlled Oscillator Digital: Tabla de onda Síntesis del sonido II Envolventes De amplitud: ADSR (Attack Decay Sustain Release) De frecuencia Tímbrica:

Más detalles

MODELADO DIGITAL DE GUÍAS DE ONDAS PARA SÍNTESIS DE SONIDO

MODELADO DIGITAL DE GUÍAS DE ONDAS PARA SÍNTESIS DE SONIDO UNIVERSIDAD DE AVEIRO MODELADO DIGITAL DE GUÍAS DE ONDAS PARA SÍNTESIS DE SONIDO Proyecto fin de carrera Ingeniería técnica de Telecomunicaciones especialidad sonido e imagen Autor: Noé Martínez Martínez

Más detalles

PRÁCTICA 3. Identificación de un Motor de Corriente Continua. mediante su Respuesta Frecuencial

PRÁCTICA 3. Identificación de un Motor de Corriente Continua. mediante su Respuesta Frecuencial UNIVERSIDAD SIMÓN BOLÍVAR DEPARTAMENTO DE PROCESOS Y SISTEMAS LABORATORIO DE CONTROL AUTOMATICO PRÁCTICA 3 Objetivo Identificación de un Motor de Corriente Continua mediante su Respuesta Frecuencial Al

Más detalles

Estudio De Un Absorbente Electroacústico

Estudio De Un Absorbente Electroacústico Estudio De Un Absorbente Electroacústico Javier Rodríguez De Antonio Junio de 2008 Laboratoire d Electromagnètisme et d Acoustique Asistente: Hervé Lissek JUSTIFICACIÓN DEL TRABAJO Y OBJETIVOS El problema

Más detalles

ELO Procesamiento Digital de Señales Lab. 3 - Parte I: Filtros Digitales en MatLab

ELO Procesamiento Digital de Señales Lab. 3 - Parte I: Filtros Digitales en MatLab ELO 314 - Procesamiento Digital de Señales Lab. 3 - Parte I: Filtros Digitales en MatLab Preparado por Dr. Matías Zañartu, e-mail: Matias.Zanartu@usm.cl Dr. Christian Rojas, e-mail: Christian.Rojas@usm.cl

Más detalles

Muestreo PRÁCTICA 3. Laboratorio de Señales y Comunicaciones. (2 sesiones)

Muestreo PRÁCTICA 3. Laboratorio de Señales y Comunicaciones. (2 sesiones) Muestreo PRÁCTICA 3 (2 sesiones) Laboratorio de Señales y Comunicaciones PRÁCTICA 3 Muestreo 1. Objetivo Se pretende ilustrar el teorema de muestreo, así como la aplicación de las técnicas de interpolación

Más detalles

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo,

2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO. Una señal puede ser definida como una portadora física de información. Por ejemplo, 2. SEÑALES Y SISTEMAS DISCRETOS EN EL TIEMPO Una señal puede ser definida como una portadora física de información. Por ejemplo, las señales de audio son variaciones en la presión del aire llevando consigo

Más detalles

TECNOLOGIAS DE LA VOZ

TECNOLOGIAS DE LA VOZ DEPARTAMENTO DE INGENIERÍA ELECTRÓNICA Y COMUNICACIONES CENTRO POLITÉCNICO SUPERIOR UNIVERSIDAD DE ZARAGOZA TECNOLOGIAS DE LA VOZ 5000 0-5000 señal original 200 250 300 350 Señal sintetizada 10000 5000

Más detalles

Escuela Politécnica Superior 3º Ingeniería Informática. Laboratorio TAAO1. Curso 2004/2005. Autor de la práctica: Prof. Doroteo Torre Toledano

Escuela Politécnica Superior 3º Ingeniería Informática. Laboratorio TAAO1. Curso 2004/2005. Autor de la práctica: Prof. Doroteo Torre Toledano Escuela Politécnica Superior 3º Ingeniería Informática Laboratorio TAAO1 Curso 2004/2005 Autor de la práctica: Prof. Doroteo Torre Toledano Práctica 6 Técnicas de diseño de filtros digitales. Primer Apellido

Más detalles

TEMA 2: MODULACIONES LINEALES

TEMA 2: MODULACIONES LINEALES TEMA 2: MODULACIONES LINEALES PROBLEMA 1 La señal x(, cuyo espectro se muestra en la figura 2.1(a), se pasa a través del sistema de la figura 2.1(b) compuesto por dos moduladores y dos filtros paso alto.

Más detalles

DISEÑO DE UNA INTERFAZ PARA LA SIMULACIÓN DE FILTROS ADAPTATIVOS BASADOS EN EL ALGORITMO LMS

DISEÑO DE UNA INTERFAZ PARA LA SIMULACIÓN DE FILTROS ADAPTATIVOS BASADOS EN EL ALGORITMO LMS DISEÑO DE UNA INTERFAZ PARA LA SIMULACIÓN DE FILTROS ADAPTATIVOS BASADOS EN EL ALGORITMO LMS Fernando Adan Serrano Orozco fserranoo@ipn.mx Xochitl Cabrera Rivas xcabrerarivas@gmail.com Juan Gerardo Ávalos

Más detalles

Análisis de Fourier: efectos de un medio físico ideal en la transmisión de una señal digital

Análisis de Fourier: efectos de un medio físico ideal en la transmisión de una señal digital Análisis de Fourier: efectos de un medio físico ideal en la transmisión de una señal digital Pedro Manuel Díaz Varela Estudiante de Ingeniería en Computación Universidad Nacional del Sur Avda. Alem 153

Más detalles

Procesamiento digital de audio usando Matlab. Laboratorio de procesamiento digital de audio. Disertantes: Pablo R. D Angelo / Agustín M.

Procesamiento digital de audio usando Matlab. Laboratorio de procesamiento digital de audio. Disertantes: Pablo R. D Angelo / Agustín M. Procesamiento digital de audio usando Matlab Laboratorio de procesamiento digital de audio Disertantes: Pablo R. D Angelo / Agustín M. Ortiz AudioDPLab (UTN-FRBA) DSP Audio 15 de Septiembre 2016 1 / 42

Más detalles

TEMA 4: CODIFICACIÓN DE LA VOZ.

TEMA 4: CODIFICACIÓN DE LA VOZ. TEMA 4: CODIFICACIÓN DE LA VOZ. TECNOLOGÍA DEL HABLA. CURSO 2009/10 Frecuencia de muestreo: criterio de Nyquist. Convertir analógica en digital. Fs = 8 KHz x(n) CUANTIFICADOR (n) CODIFICADOR c(n) Ejemplo:

Más detalles

Práctica 4: Series de Fourier

Práctica 4: Series de Fourier Práctica 4: Series de Fourier Apellidos, nombre Apellidos, nombre SOLUCION Grupo Puesto Fecha El objetivo de esta práctica es profundizar en la respuesta de sistemas LTI, comprobar el comportamiento de

Más detalles

Laboratorio de Procesamiento Digital de Voz Practica 1. INTRODUCCION DE MATLAB Y MANEJO DE ARCHIVOS DE VOZ

Laboratorio de Procesamiento Digital de Voz Practica 1. INTRODUCCION DE MATLAB Y MANEJO DE ARCHIVOS DE VOZ Laboratorio de Procesamiento Digital de Voz Practica 1. INTRODUCCION DE MATLAB Y MANEJO DE ARCHIVOS DE VOZ Objetivo: Conocer las formas principales de archivar información correspondiente a señales de

Más detalles

Teoría de la Comunicación

Teoría de la Comunicación Teoría de la Comunicación Práctica 2: Modulación y detección en canales gausianos Curso Académico 10/11 Objetivos En esta práctica el alumno aprenderá los elementos de un sistema básico de comunicación

Más detalles

ANEXO B: TEORÍA UNIFORME DE LA DIFRACCIÓN

ANEXO B: TEORÍA UNIFORME DE LA DIFRACCIÓN ANEXO B: TEORÍA UNIFORME DE LA DIFRACCIÓN La Teoría Geométrica de la Difracción (GTD o Geometric Theory of Diffraction) es una extensión de la Teoría de Óptica Geométrica (GO o Geometric Optics) para predecir

Más detalles

Conversión Analógico/Digital

Conversión Analógico/Digital Capítulo 2 Conversión Analógico/Digital 2.1 Introducción Un Convertidor Analógico-Digital (CA/D) es un circuito electrónico que transforma una señal continua en el tiempo y en amplitud (señal analógica)

Más detalles

SISTEMAS DE CONTROL ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL EN EL DOMINIO DE LA FRECUENCIA. Profesor: Adrián Peidró

SISTEMAS DE CONTROL ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL EN EL DOMINIO DE LA FRECUENCIA. Profesor: Adrián Peidró SISTEMAS DE CONTROL PRÁCTICAS DE SISTEMAS DE CONTROL ANÁLISIS Y DISEÑO DE SISTEMAS DE CONTROL EN EL DOMINIO DE LA FRECUENCIA Profesor: Adrián Peidró (apeidro@umh.es) OBJETIVOS Afianzar los conocimientos

Más detalles

Oliverio J. Santana Jaria. Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso Los objetivos de este tema son:

Oliverio J. Santana Jaria. Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso Los objetivos de este tema son: 3. Circuitos aritméticos ticos Oliverio J. Santana Jaria Sistemas Digitales Ingeniería Técnica en Informática de Sistemas Curso 2006 2007 Introducción La realización de operaciones aritméticas y lógicas

Más detalles

Método Simplex. Ing. Ricardo Fernando Otero, MSc

Método Simplex. Ing. Ricardo Fernando Otero, MSc Método Simplex Ing. Ricardo Fernando Otero, MSc Forma estándar de un modelo de programación lineal Dirección de mejora: Maximizar Todas las restricciones deben ser El lado izquierdo debe contener solo

Más detalles

Objetivo específico: Maneja los elementos básicos de algoritmos utilizados para resolver un problema por computadora.

Objetivo específico: Maneja los elementos básicos de algoritmos utilizados para resolver un problema por computadora. Objetivo específico: Maneja los elementos básicos de algoritmos utilizados para resolver un problema por computadora. La palabra algoritmo se deriva de la traducción al latín de la palabra árabe alkhowarizmi,

Más detalles

Práctica 1 INTRODUCCIÓN A MATLAB

Práctica 1 INTRODUCCIÓN A MATLAB UNIVERSIDAD AUTÓNOMA DE BAJA CALIFORNIA FACULTAD DE INGENIERÍA, ARQUITECTURA Y DISEÑO Laboratorio de Procesamiento Digital de Señales Práctica 1 INTRODUCCIÓN A MATLAB OBJETIVO: Que el alumno realice gráficos

Más detalles

Prof. Víctor J. Avilés Franco. ONDAS SINUSOIDALES, 2 da Parte

Prof. Víctor J. Avilés Franco. ONDAS SINUSOIDALES, 2 da Parte 2 TELE 1003 ONDAS SINUSOIDALES, 2 da Parte Ecuación de una onda sinusoidal: La ecuación de la onda seno tiene la siguiente forma: = A sin( ± ). El coeficiente A es la amplitud (también llamado valor pico

Más detalles

ONDAS Y SONIDO JUNIO 1997: 1.- SEPTIEMBRE

ONDAS Y SONIDO JUNIO 1997: 1.- SEPTIEMBRE ONDAS Y SONIDO JUNIO 1997: 1.- Explica el efecto Doppler. SEPTIEMBRE 1997: 2.- La ecuación de una onda que se propaga por una cuerda es y(x,t) = 5 sen (0.628t 2.2x), donde x e y vienen dados en metros

Más detalles

Sistemas Electrónicos Digitales. Práctica 2 Implementación de un filtro FIR basado en estructura MAC

Sistemas Electrónicos Digitales. Práctica 2 Implementación de un filtro FIR basado en estructura MAC Sistemas Electrónicos igitales 2 o Ing. Telecomunicación Práctica 2 Implementación de un filtro FIR basado en estructura MAC Javier Toledo Moreo pto. Electrónica, Tecnología de Computadoras y Proyectos

Más detalles

Las señales y sus clasificaciones

Las señales y sus clasificaciones Las señales y sus clasificaciones La transmisión de datos entre un emisor y un receptor se realiza a través de un medio de transmisión los cuales pueden ser guiados (pares trenzados, cables coaxiales y

Más detalles

3) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro.

3) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro. Movimiento ondulatorio Cuestiones 1) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda, se propaga por una

Más detalles

Creación de modelos matemáticos para representar los acordes musicales mediante ondas sinusoidales

Creación de modelos matemáticos para representar los acordes musicales mediante ondas sinusoidales Creación de modelos matemáticos para representar los acordes musicales mediante ondas sinusoidales Introducción Partiendo de la palabra-estímulo Armonía, decidí estudiar la propagación de las ondas de

Más detalles

Materia: Análisis de sistemas y señales

Materia: Análisis de sistemas y señales Materia: Análisis de sistemas y señales El objetivo del análisis de sistemas y señales es predecir el comportamiento del sistema si se conoce la interconexión de los diversos componentes físicos o abstractos

Más detalles

Práctica 6: Aplicaciones de la TF

Práctica 6: Aplicaciones de la TF Práctica 6: Aplicaciones de la TF Apellidos, nombre Apellidos, nombre Grupo Puesto Fecha El objetivo de esta práctica es mostrar al alumno diversas aplicaciones básicas de la Transformada de Fourier en

Más detalles

Pràctica 3: Síntesis por modulación

Pràctica 3: Síntesis por modulación Pràctica 3: Síntesis por modulación Emilia Gómez 9 d octubre de 2009 Índex 1 Objetivos de la práctica 1 2 Modulación en anillo: RM 1 3 Modulación de amplitud: AM 2 4 Modulación de frecuencia: FM 3 4.1

Más detalles

INTRODUCCION- FILTRO DE WIENER

INTRODUCCION- FILTRO DE WIENER FILTRO LMS INTRODUCCION- FILTRO DE WIENER Es un sistema al que le llegan dos señales: x(n) y e(n). A los coeficientes del filtro se les llama w(n), que son los que multiplican a la entrada x(n) para obtener

Más detalles

TEORÍA DE SISTEMAS PRÁCTICA 7 SISTEMAS. SISTEMAS DISCRETOS Y MUESTREADOS 1. INTRODUCCIÓN DE SISTEMAS DISCRETOS EN SIMULINK

TEORÍA DE SISTEMAS PRÁCTICA 7 SISTEMAS. SISTEMAS DISCRETOS Y MUESTREADOS 1. INTRODUCCIÓN DE SISTEMAS DISCRETOS EN SIMULINK TEORÍA DE SISTEMAS PRÁCTICA 7 SISTEMAS. SISTEMAS DISCRETOS Y MUESTREADOS OBJETIVOS DE LA PRÁCTICA Estudiar las funciones disponibles en Matlab y Simulink para el modelado y simulación de sistemas discretos

Más detalles

Muestreo y Procesamiento Digital

Muestreo y Procesamiento Digital Muestreo y Procesamiento Digital Práctico N+ Problemas surtidos El propósito de este repartido de ejercicios es ayudar en la preparación del examen. Dadas las variadas fuentes de los ejercicios aquí propuestos,

Más detalles

Departamento de Matemática Aplicada Universidade de Santiago de Compostela MANUAL DE USO DEL PROGRAMA PAMM

Departamento de Matemática Aplicada Universidade de Santiago de Compostela MANUAL DE USO DEL PROGRAMA PAMM Departamento de Matemática Aplicada Universidade de Santiago de Compostela Alfredo Bermúdez de Castro, Andrés Prieto Aneiros MANUAL DE USO DEL PROGRAMA PAMM 2 1. Introducción El programa PAMM (Propagación

Más detalles

Contenido. XVII Introducción. Prefacio

Contenido. XVII Introducción. Prefacio Contenido Prefacio XVII Introducción XIX Capítulo 1. Introducción a MATLAB 1.1. Introducción................................. 2 1.2. Instrucciones for, while, if......................... 3 1.2.1. For..................................

Más detalles

SIMULACIÓN ACÚSTICA DE RECINTOS BASADA EN DSP

SIMULACIÓN ACÚSTICA DE RECINTOS BASADA EN DSP UNIVERSIDAD DE VALLADOLID ESCUELA DE INGENIERÍAS INDUSTRIALES INGENIERO TÉCNICO DE TELECOMUNICACIONES, ESPECIALIDAD EN SISTEMAS ELECTRÓNICOS PROYECTO FIN DE CARRERA SIMULACIÓN ACÚSTICA DE RECINTOS BASADA

Más detalles

ESTADÍSTICA BIDIMENSIONAL

ESTADÍSTICA BIDIMENSIONAL ESTADÍSTICA BIDIMENSIONAL 0. REPASO DE ESTADÍSTICA La estadística es la parte de las Matemática que estudia los fenómenos que se prestan a cuantificación, que generan conjunto de datos. La misión del estadístico

Más detalles

Distribuciones Bidimensionales.

Distribuciones Bidimensionales. Distribuciones Bidimensionales. 1.- Variables Estadísticas Bidimensionales. Las variables estadísticas bidimensionales se representan por el par (X, Y) donde, X es una variable unidimensional, e Y es otra

Más detalles

Departamento de Matemática Aplicada CÁLCULO COMPUTACIONAL. Licenciatura en Química (Curso ) Archivos de órdenes. Programación.

Departamento de Matemática Aplicada CÁLCULO COMPUTACIONAL. Licenciatura en Química (Curso ) Archivos de órdenes. Programación. Departamento de Matemática Aplicada CÁLCULO COMPUTACIONAL. Licenciatura en Química (Curso 2005-06) Archivos de órdenes. Programación. Práctica 8 1. Introducción Hasta ahora, todos los comandos que hemos

Más detalles

Primera parte (2.5 puntos, 20 minutos):

Primera parte (2.5 puntos, 20 minutos): TRATAMIENTO DIGITAL DE SEÑALES EXAMEN FINAL 24/06/2013 APELLIDOS NOMBRE DNI NO DE LA VUELTA A ESTA HOJA HASTA QUE SE LO INDIQUE EL PROFESOR MIENTRAS TANTO, LEA ATENTAMENTE LAS INSTRUCCIONES PARA LA REALIZACIÓN

Más detalles

Primera parte (2.5 puntos, 20 minutos):

Primera parte (2.5 puntos, 20 minutos): TRATAMIENTO DIGITAL DE SEÑALES EXAMEN FINAL 24/06/2013 APELLIDOS NOMBRE DNI NO DE LA VUELTA A ESTA HOJA HASTA QUE SE LO INDIQUE EL PROFESOR MIENTRAS TANTO, LEA ATENTAMENTE LAS INSTRUCCIONES PARA LA REALIZACIÓN

Más detalles

LABORATORIO DE TEORÍA DE COMUNICACIONES MARZO SEPTIEMBRE PRACTICA No. 3

LABORATORIO DE TEORÍA DE COMUNICACIONES MARZO SEPTIEMBRE PRACTICA No. 3 PRACTICA No. 3 TEMA: ANÁLISIS ESPECTRAL EN MATLAB Y SIMULINK 1. OBJETIVO Aplicar los conceptos relacionados a la teoría de análisis de señal en el dominio del tiempo y la frecuencia. Utilizar SIMULINK

Más detalles

Práctica 1: Operaciones de Pretratamiento

Práctica 1: Operaciones de Pretratamiento Prácticas de laboratorio Práctica 1: Operaciones de Pretratamiento 1. INTRODUCCIÓN Los objetivos de esta práctica son tres. El primero, aprender a manejar y desarrollar programas dentro del entorno LTVWin.

Más detalles

Ejemplos usando la Carta de Smith. Ejemplo 1.

Ejemplos usando la Carta de Smith. Ejemplo 1. Ejemplos usando la Carta de Smith Ejemplo 1 Si el coeficiente de reflexión efectiva en una ubicación en la línea de transmisón es =04 j 02, use la carta de Smith para determinar la impedancia de entrada

Más detalles

ANALISIS DE CIRCUITOS DE CORRIENTE ALTERNA

ANALISIS DE CIRCUITOS DE CORRIENTE ALTERNA ANALISIS DE CIRCUITOS DE CORRIENTE ALTERNA FORMAS DE ONDAS PERIÓDICAS Además de la corriente directa, existen muchas formas de onda generadas y utilizadas en fuentes de voltaje y de corriente de circuitos

Más detalles

Aplicaciones del Tratamiento de Señales. Parte 1: Grabación y Reproducción de Señales de Voz

Aplicaciones del Tratamiento de Señales. Parte 1: Grabación y Reproducción de Señales de Voz Aplicaciones del Tratamiento de Señales Curso 2004-2005 Herramientas Básicas de Análisis de Voz y Audio Parte 1: Grabación y Reproducción de Señales de Voz INTRODUCCIÓN Se pretende en esta parte que el

Más detalles

Programación Estructurada

Programación Estructurada Programación Estructurada Técnica de programación que consiste en construir programas de fácil comprensión. Es mucho más sencillo entender la codificación del programa, que se habrá hecho en diferentes

Más detalles

DEMODULACIÓN AM. - El detector de envolvente es un método muy simple de demodulación que consta de un rectificador y un filtro paso bajo.

DEMODULACIÓN AM. - El detector de envolvente es un método muy simple de demodulación que consta de un rectificador y un filtro paso bajo. DEMODULACIÓN AM INTRODUCCIÓN Ahora que estamos más familiarizados con el software GNU Radio, en esta práctica realizaremos una demodulación AM. Vamos a recordar primero que la modulación AM, consiste básicamente

Más detalles

Seguimiento de los parámetros del modelo del tracto vocal

Seguimiento de los parámetros del modelo del tracto vocal Algoritmos para el seguimiento de los parámetros del modelo de tracto vocal Monografía de Tratamiento Estadístico de Señales parias@fing.edu.uy Instituto de Ingeniería Eléctrica Facultad de Ingeniería

Más detalles

2 MODELO INTERNO Y MODELO EXTERNO DE UN SISTEMA DE CONTROL

2 MODELO INTERNO Y MODELO EXTERNO DE UN SISTEMA DE CONTROL 2 MODELO INTERNO Y MODELO EXTERNO DE UN SISTEMA DE CONTROL 2.1 El modelo interno: ecuaciones de estado en sistemas continuos Entre las formas de modelar un sistema de forma matemática podemos encontrar

Más detalles

Fecha de creación 07/04/ :38:00 5. EL SUBWOOFER

Fecha de creación 07/04/ :38:00 5. EL SUBWOOFER 5. EL SUBWOOFER El circuito que hemos empleado para la amplificación de sonido del subwoofer está compuesto de los siguientes bloques: Ilustración 5.1: Diagrama de bloques de la placa de Subwoofer Estos

Más detalles

TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO

TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO Alonso Fernández Galián Tema 6: Geometría analítica en el plano TEMA 6: GEOMETRÍA ANALÍTICA EN EL PLANO La geometría analítica es el estudio de objetos geométricos (rectas, circunferencias, ) por medio

Más detalles

Unidad Didáctica 3. Acústica Arquitectónica

Unidad Didáctica 3. Acústica Arquitectónica Unidad Didáctica 3 Acústica Arquitectónica 1. El Campo sonoro - campo libre - campo reverberante - ondas estacionarias 2. Absorción,reflexión y tiempo de reverberación 3. Respuesta en frecuencia de un

Más detalles

Unidad 6. Ficha de trabajo I

Unidad 6. Ficha de trabajo I Unidad 6. Ficha de trabajo I Otras formas de transferirse la energía: la luz y el sonido Nombre y apellidos: EL OJO, UNA CÁMARA FOTOGRÁFICA EXCEPCIONAL A Escribe los nombres de las distintas partes del

Más detalles

Trabajo opcional tema 3: modulación lineal

Trabajo opcional tema 3: modulación lineal Trabajo opcional tema 3: modulación lineal Alberto Mateos Checa I. Telecomunicación 2 Trabajo opcional tema 3: modulación lineal ÍNDICE DE CONTENIDOS: 1. Introducción.... 3 2. Diseño.... 3 2.1. Sistema

Más detalles

Universidad Nacional de La Plata - Facultad de Bellas Artes. Acústica Musical. Guías de Trabajos Prácticos. Primer cuatrimestre - Año 2009

Universidad Nacional de La Plata - Facultad de Bellas Artes. Acústica Musical. Guías de Trabajos Prácticos. Primer cuatrimestre - Año 2009 Universidad Nacional de La Plata - Facultad de Bellas Artes Guías de Trabajos Prácticos Primer cuatrimestre - Año 2009 Ing. Gustavo Basso - Prof. Martín Liut Valeria Cejas - M. Andrea Farina - L. Federico

Más detalles

Objetivo Aprendizaje del uso de osciloscopios, multímetros y generadores de funciones, aplicado al estudio de señales eléctricas en un circuito RC.

Objetivo Aprendizaje del uso de osciloscopios, multímetros y generadores de funciones, aplicado al estudio de señales eléctricas en un circuito RC. Laboratorio de Técnicas Experimentales II - 2º Física Laboratorio L1 - "Osciloscopio" Práctica L1-1 - Estudio de señales eléctricas en un circuito R Objetivo Aprendizaje del uso de osciloscopios, multímetros

Más detalles

Diagramas de flujo El método gráfico.

Diagramas de flujo El método gráfico. Diagramas de flujo El método gráfico. Como se sabe, los parámetros de dispersión describen el flujo de señal. De tal manera los diagramas de flujo pueden mostrar los parámetros de dispersión como elementos

Más detalles

Integral de Fourier y espectros continuos

Integral de Fourier y espectros continuos 9 2 2 2 Esta expresión se denomina forma de Angulo fase (o forma armónica) de la serie de Fourier. Integral de Fourier y espectros continuos Las series de Fourier son una herramienta útil para representar

Más detalles

1. Implementación de filtros IIR: Formas Directas I y II

1. Implementación de filtros IIR: Formas Directas I y II 1 ELO 385 Laboratorio de Procesamiento Digital de Señales Laboratorio 4: Filtros digitales Parte II 1. Implementación de filtros IIR: Formas Directas I y II Existen varios tipos de estructuras para la

Más detalles

Derivadas Parciales (parte 2)

Derivadas Parciales (parte 2) 40 Derivadas Parciales (parte 2) Ejercicio: Si donde y. Determinar Solución: Consideraremos ahora la situación en la que, pero cada una de las variables e es función de dos variables y. En este caso tiene

Más detalles

Ayudantía 1 Fibras Ópticas

Ayudantía 1 Fibras Ópticas Ayudantía 1 Fibras Ópticas Ley de Snell Utilizada básicamente para calcular el ángulo de refracción de la luz cuando cambia la superficie entre dos medios de propagación (con distinto índice de refracción).

Más detalles

INSTITUTO SAN ROQUE GUÍA DE TRABAJOS PRÁCTICOS FÍSICA. 4to. y 5to. AÑO

INSTITUTO SAN ROQUE GUÍA DE TRABAJOS PRÁCTICOS FÍSICA. 4to. y 5to. AÑO INSTITUTO SAN ROQUE GUÍA DE TRABAJOS PRÁCTICOS FÍSICA 4to. y 5to. AÑO ÍNDICE: Cinemática: M. R. U. Cinemática: M. R. U. V. Cinemática: caída libre Ley de Hooke Fuerza de rozamiento estático Integrador

Más detalles