= 310 (1 + 5) : 2 2 = = = 12 ( 3) ( 5) = = 2 = ( 4) + ( 20) + 3 = = 21

Tamaño: px
Comenzar la demostración a partir de la página:

Download "= 310 (1 + 5) : 2 2 = = = 12 ( 3) ( 5) = = 2 = ( 4) + ( 20) + 3 = = 21"

Transcripción

1 Unidad I, NÚMEROS NATURALES Y ENTEROS A continuación se enuncian las claves de cada pregunta hechas por mí (César Ortiz). Con esto, asumo cualquier responsabilidad, entiéndase por si alguna solución está errada. Si llegase a pasar esto pido por favor que me lo comuniquen a la brevedad al correo: cesarortiz@ug.uchile.cl. A continuación de las claves está cada pregunta detallada, si tiene alguna duda DÍGAMELO. 1. E 26. A 2. B 27. E 3. B 28. D 4. E 29. B 5. B 30. D 6. D 31. A 7. B 32. C 8. C 33. B 9. D 34. C 10. B 35. A 11. B 36. C 12. B 37. B 13. C 38. C 14. A 39. B 15. B 40. C 16. A 41. A 17. A 42. C 18. D 43. D 19. A 44. E 20. A 45. A 21. C 46. B 22. D 47. D 23. A 48. A 24. A 49. E 25. E 50. C 1

2 ( 307) = = (1 + 5) : 2 2 = = =5 recordar que en 8 : 2 2, se opera de izquierda a derecha, es decir, 8 : 2 2 = (8 : 2) 2 = 4 2 = ( 20 : 4) = 7 + ( 5) = ( 10) 2 ( 3) + ( 5) ( 1) ( 2) 2 =6 + ( 20) =14 24 = ( 3) ( 5) = = ( 2) + (5) = (2 ( 2)) + ((5) 4) + 3 = ( 4) + ( 20) + 3 = = Antes de ver cuales de las expresiones son siempre positivas debemos notar que m 2 es siempre positivo, por lo tanto, si m 2 n es negativo n necesariamente es negativo. Con esto en mente: I) m 2 n es negativo, lo dice la hipótesis. Por lo tanto, no es siempre positivo II) m 2 n es siempre positivo. m 2 es positivo y de la hipótesis n es negativo, por lo tanto, n es positivo y la suma de positivos (m 2 + ( n)) es positivo. III) m 2 + n no es siempre positivo. Tomemos m = 1 y n = 4 (recordad que n es siempre negativo). 8. Notemos que el sucesor de n es n + 1 y el sucesor de n + 1 es (n + 1) + 1 = n + 2, por lo tanto, el sucesor del sucesor de n es n

3 9. Si la diferencia de dos números es 2n entonces los números los podemos tomar como: 5n y 3n. Sea 3n el menor de estos dos números, si le sumamos n a este se tendrá: 3n + n = 4n. Luego a 5n se le tendrá que restar n para que sea igual a 4n. 10. Sean 2n, 2n + 2, 2n + 4 un trío cualquiera de pares consecutivos, con 2n el menor de ellos y 2n + 4 el mayor. Luego la diferencia entre el mayor y el menor de ellos será: (2n + 4) (2n) = 4. (fijémonos que no fue necesario usar que su suma es 72). 11. Sean 2n + 1, 2n + 3, 2n + 5 tres números impares consecutivos cualesquiera. Si su suma es 117 entonces: (2n + 1) + (2n + 3) + (2n + 5) =117 2n n n + 5 =117 como n = 18 entonces el menor de los tres impares es 6n + 9 =117 6n = n =108 n =108 : 6 n =18 2n + 1 = 2 (18) + 1 = = Ver que 18 = por lo tanto, los factores primos de 18 son 2 y Ver que de las alternativas sólo 0 y 2 cumplen con la relación (m m = m + m), pero el cero no es natural. 14. (Rcdo: un número entero es primo si es distinto de 1 y es divisible sólo por 1 y por si mismo) Notar que: I) = 17 un número primo. II) = 22 número divisible por 2, por lo tanto, no primo. III) = 187 número divisible por 11, por lo tanto, no primo. 15. Si b es múltiplo de a entonces b = an, para algún n entero. Luego el mínimo común múltiplo entre a y b equivale a encontrar el mcm(a, an) = an = b. 16. Por definición del algoritmo de la división (página 10). p es divisible por q si y sólo si q es divisor de p si y sólo si p = n q. 17. Si 64 es divisor de n, por el ejercicio anterior se tiene n = 64 p, para algún p entero. Luego n = 16 4 p = 16 (4 p) Y la última igualdad quiere decir que 16 es un divisor de n (Nuevamente por el ejercicio anterior). 18. Notar que los divisores de 3 son: {1, 3}. Liego la suma de los divisores de 3 es: x = = 4. Los divisores de doce son: {1, 2, 3, 4, 6, 12} y su suma es = 28. Ahora, dado que 28 = 7 4 = 7 x 3

4 19. Sea A = {n, n + 1, n + 2, n + 3, n + 4, n + 5}. La suma de estos seis enteros consecutivos es 6 n + 15 = 87 resolviendo la ecuación para n obtenemos que n = 17 y ahora podemos tener los números consecutivos, estos serán A = { 17, 16, 15, 14, 13, 12} de los cuales 11 no pertenece al conjunto ( 11 / A). 20. Sean 2n + 1, 2n + 3, 2n + 5 tres impares consecutivos, su suma es: 6n + 9 = 3 (2n + 3), por lo tanto, por el ejercicio 16. 6n + 9 es divisible por 3, es decir, la suma de los tres impares consecutivos es siempre divisible por Sean 6n y (6n + 6) dos múltiplos consecutivos de 6, su suma es: 12n + 6 = 222 resolviendo esta ecuación para n se tiene n = 18 por lo tanto el múltiplo mayor es 6 (18) + 6 = 114 y luego el sucesor de 114 es = Recordar que un número RACIONAL es un cuadrado perfecto si puede expresarse como el cuadrado de un número RACIONAL. Es decir, si x es un cuadrado perfecto, entonces x = y 2, donde x e y son números racionales. Ejemplo de cuadrados perfectos: 4 = =5 2 0, 36 =(0, 6) 2 ( ) = 9 Notar que 5 no es un cuadrado perfecto pues no puede expresar como el cuadrado de ningún número RACIONAL. Luego en el problema se tiene que 0, 10 no es un cuadrado perfecto. 23. Dado que los tres primeros números naturales son: 1, 2 y 3, entonces su suma es = Sean 2 n + 1 y 2 p + 1, con n y p enteros, dos números impares. Su suma es 2 n + 2 p + 2 = 2 (n + p + 1) y por lo visto en el ejercicio 16 se tiene que la suma de dos impares siempre es divisible por Recordar que: par + par = par par + impar = impar impar + impar = par par par =par par impar =par impar impar =impar Con esto en mente, si a es par y b impar entonces: I) 2a + b + 1 = (par par) + impar + impar = par + impar + impar = par II) a + b + 1 = par + impar + impar = par III) a + 2b = par + (par impar) = par + par = par 4

5 26. Sean 2n, 2n + 2, 2n + 4, 2n + 6, 2n + 8 cinco pares consecutivos cualesquiera, si su suma es cero entonces: 2n + (2n + 2) + (2n + 4) + (2n + 6) + (2n + 8) = 0 si resolvemos la ecuación para n se obtiene que n = 2. Luego el menor de ellos es 2n = 2 ( 2) = 4 y el cuadrado de este es El sucesor de 3 (n 5) es: 3 (n 5) + 1 = 3 n 3 ( 5) + 1 = 3n = 3n Notar que si n 1 es un número par, entonces su sucesor (n 1) + 1 = n es un número impar, con esto podemos ver que: I) n + 2 = impar + par = impar II) 3n + 1 = impar impar + impar = par III) 2n + 1 = par impar + impar = impar 29. Notar que los múltiplos de 3 son de la forma 3n y los múltiplos de 6 son de la forma 6m, donde n y m son números naturales cualquiera. Luego podemos ver que los múltiplos de 3 son pares e impares, sin embargo los múltiplos de 6 son siempre pares (si no lo ve PREGUNTEMELO) de esta forma: I) a + b = a + par, que no es siempre un número impar, pues a que es un múltiplo de 3 puede ser par. (Tomar a = 6 y b = 6 como contraejemplo). II) a b = a par esta expresión es siempre par, para cualquier a múltiplo de 3 par o impar. III) (b : a) no es siempre múltiplo de 2 (Tomar b = 6 y a = 6 como contraejemplo. Con esto b : a = 1 que no es! múltiplo de 2) 30. I) Notar que = 2 5 (2 10 1), luego como 2 10 = 1024 se tendrá = 1023 divisible por 3 II) un simple cálculo demuestra que 2 5 = 32 y 1023 = 31 32, por lo tanto, = III) Dado que 2 10 divide a 2 15, pero no a 2 5, entonces no dividirá a la suma ( ) de estos números. 31. Dado que mcm(2, 3, 4) = 12 y mcm(a 2, a 3, a 4 ) = a 4 entonces el mcm(2a 2, 4a 3, 3a 4 ) = 12a I) El mcm(m, n) no es necesariamente m n. Tomar n = 3 y m = 9. II) El MCD(m, n) no es necesariamente n. Tomar n = 3 y m = 2. III) Sólo será primo cuando m = Sólo recordar que para encontrar el mcm entre cantidades expresadas en sus factores primos primero vemos si hay factores comunes (entre ambos números), si los hay se toma el factor primo elevado a su mayor exponente y se realiza el producto de estos con los demás que no son comunes. Y el MCD es el producto de todos los factores primos comunes (que comparten ambos números) elevados a su menor exponente. 34. Por el recuerdo en el ejercicio anterior vemos que mcm(a, B, C) = y MCD(A, B, C) = 2 3. Luego mcm(a, B, C) MCD(A, B, C) = = Como PARTEN JUNTOS los ciclistas, debemos saber que en algún tiempo más adelante SIEMPRE podrán encontrarse nuevamente y este tiempo será el mínimo múltiplo que tengan en común los tiempos que da la vuelta cada uno, es decir, mcm(120, 140, 180) = Lo que se pide aquí es dividir cada uno de estos items en cantidades iguales, es decir, buscar un divisor común entre ellos. Pero además se pide repartir en la MAXIMA cantidad de nios. Es decir debemos encontrar el máximo común divisor entre los tres números. MCD(180, 240, 360) = 60 5

6 37. Dado que el máximo alcanzado es 9 y el mínimo es 3 (cifras bajo cero se denotan con un signo negativo). La variacion fue V = 9 ( 3) = = Recordar que cualquier múltiplo de un entero k está representado como kn, luego un múltiplo consecutivo está dado por k(n + 1), etc. Por lo tanto, enteros consecutivos de k serán: 39. Si m = 7 kn, k(n + 1), k(n + 2), k(n + 3), etc. m m + m = ( 7) = = Si m < n entonces m n < 0 luego m n = (m n) = m + n = n m, por la definición del valor absoluto (página 12 libro). 41. a = 5 = 5, b = ( 3) 2 = 9, c = 5 = 5 y d = 3 2 = 9, entonces a + b c + d = ( 5) + ( 9) = = = Notar que si x < 0 entonces x > 0, luego I) Falso, x = x II) Verdadero x > 0, cierto por hipótesis. III) Falso, x = x, x ES POSITIVO. IV) Falso. Tomar x = 2 para ver que no se cumple. 43. Notar que si a < b entonces a b < 0 y 0 < b a, luego 2 a b 3 b a = 2( (a b)) 3(b a) 2 a b 3 b a = 2(b a) 3(b a) 2 a b 3 b a = 1(b a) 2 a b 3 b a = a b 44. Notar que x = x, para todo x. Luego a b b a = a b (a b) a b b a = a b a b a b b a = Dado que a y b son dos enteros consecutivos con a < b se tiene que b = a + 1. Luego: I) es verdadero : b a = (a + 1) a = 1 II) no es cierto. Tomar a = 1 y b = 2. III) no es cierto. Tomar a = 2 y b = Dado que d > c esto es equivalente a c < d, luego se tiene a < b < 0 < c < d y este orden puede verse en la figura. 47. Ver que a < 0 y a > b, es decir, b < a < 0, de lo último se puede concluir que b < 0 por lo tanto 0 < b. Ahora: I) Verdadero. Como a < 0 y b > 0 entonces a < b y luego a > b. II) Falso. 0 < b. III) Verdadero. a > b es equivalente a: a < b 6

7 48. I) Falso. 2 3 = 2 3 < 3 4 = 3 4 II) Verdadero. III) Verdadero. 49. Queremos ver si b es un divisor de 2a, es decir, si 2a = bp, para algún p. (1) si b es un múltiplo de a no tenemos necesariamente la proposición. Tome como contraejemplo b = 9 y a = 3. (2) Si 2a + 2 es un múltiplo de b no se tiene la proposición. Tome como contraejemplo b = 4 y a = 3. (1) y (2) Esto es a, b enteros positivos, b múltiplo de a y 2a + 2 múltiplo de b. Tampoco podemos afirmar que b divide (o es un divisor) a 2a. Tomar a = 2 y b = 6. (1) ó (2) Esta opción sólo es válida cuando (1) y (2) satisfacen por si solas la afirmación. 50. (1) m y n son naturales consecutivos. Esta información es escasa, pues no sabemos nada de m. (2) m es impar. Nuevamente tenemos esta información incompleta, no se relaciona con n. (1) y (2) Acá si podemos afirmar que n es par, pues si m es impar y n y m son consecutivos, n es el sucesor o antecesor de m, es decir, es necesariamente par. 7

NÚMEROS ENTEROS. OBSERVACION: En la división se cumple la regla de los signos de la multiplicación.

NÚMEROS ENTEROS. OBSERVACION: En la división se cumple la regla de los signos de la multiplicación. NÚMEROS ENTEROS Los elementos del conjunto = {, -3,-2,-1, 0, 1, 2, } se denominan Números Enteros. OPERATORIA EN ADICIÓN Al sumar números de igual signo, se suman los valores absolutos de ellos conservando

Más detalles

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca

Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca Tema Autor: Antonio Rivero Cuesta, Tutor C.A. Palma de Mallorca.1 De las siguientes operaciones, cuál no permite operar cualquier par de números naturales para obtener un resultado natural? a) La suma.

Más detalles

UNIDAD: NÚMEROS Y PROPORCIONALIDAD. Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números

UNIDAD: NÚMEROS Y PROPORCIONALIDAD. Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números GUÍA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS NÚMEROS NATURALES (ln) Los elementos del conjunto IN = {1, 2, 3, 4, 5, 6, 7,...} se denominan números naturales NÚMEROS ENTEROS (Z) Los elementos

Más detalles

SGUICES020MT21-A16V1. SOLUCIONARIO Generalidades de números reales

SGUICES020MT21-A16V1. SOLUCIONARIO Generalidades de números reales SGUICES020MT21-A16V1 SOLUCIONARIO Generalidades de números reales 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA GENERALIDADES DE NÚMEROS REALES Ítem Alternativa 1 D 2 C 3 C 4 E 5 E 6 A 7 D 8 D 9 A 10 D 11 C 12 B

Más detalles

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta

Centro Asociado Palma de Mallorca. Tutor: Antonio Rivero Cuesta Centro Asociado Palma de Mallorca Tutor: Antonio Rivero Cuesta 2.1 De las siguientes operaciones, cuál no permite operar cualquier par de números naturales para obtener un resultado natural? a) La suma.

Más detalles

Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas

Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas Teoría de Números Divisibilidad Olimpiada de Matemáticas en Tamaulipas 1. Introducción Divisibilidad es una herramienta de la aritmética que nos permite conocer un poco más la naturaleza de un número,

Más detalles

Ejemplos: a) 15 si es múltiplo de 5 ; 15 si contiene a 5 tres veces. b) 20 no es múltiplo de 7 ; 20 no contiene a 7 un número entero de veces.

Ejemplos: a) 15 si es múltiplo de 5 ; 15 si contiene a 5 tres veces. b) 20 no es múltiplo de 7 ; 20 no contiene a 7 un número entero de veces. Clase-02 Continuación Números Naturales: Múltiplos: Si n IN ; múltiplo de un número n es todo número natural que contiene a n un número entero de veces. Ejemplos: a) 15 si es múltiplo de 5 ; 15 si contiene

Más detalles

Introducción a la Teoría de Números

Introducción a la Teoría de Números Introducción a la Teoría de Números La Teoría de Números es un área de las matemáticas que se encarga de los números primos, factorizaciones, de qué números son múltiplos de otros, etc. Aunque se inventó

Más detalles

open green road Guía Matemática MÚLTIPLOS Y DIVISORES profesor: Nicolás Melgarejo .cl

open green road Guía Matemática MÚLTIPLOS Y DIVISORES profesor: Nicolás Melgarejo .cl Guía Matemática MÚLTIPLOS Y DIVISORES profesor: Nicolás Melgarejo.cl 1. Múltiplos y divisibilidad Se dice que un número a es divisible por otro b si al dividir a con b, el residuo o resto es cero, dicho

Más detalles

Continuación Números Naturales:

Continuación Números Naturales: Continuación Números Naturales: Múltiplos y divisores de un número natural. Reglas de divisibilidad. Mínimo común múltiplo y Máximo común divisor. Ejercicios de aplicación. Continuación Números Naturales:

Más detalles

C U R S O : MATEMÁTICA

C U R S O : MATEMÁTICA C U R S O : MATEMÁTICA GUÍA TEÓRICO PRÁCTICA Nº 1 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NATURALES Y ENTEROS NÚMEROS NATURALES Y CARDINALES ( IN, IN 0 ) Los elementos del conjunto ln = {1, 2, 3, } se denominan

Más detalles

Números enteros. Dado cualquier número natural, éste siempre será menor que su sucesor, luego los naturales son ordenados.

Números enteros. Dado cualquier número natural, éste siempre será menor que su sucesor, luego los naturales son ordenados. Números naturales y cardinales Números enteros Los elementos del conjunto N = {1,2,3, } se denominan números naturales. Si a este conjunto le unimos el conjunto formado por el cero, obtenemos N 0 = {0,1,2,

Más detalles

UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS

UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS C u r s o : Matemática Material N 02 GUÍA TEÓRICO PRÁCTICA Nº 2 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS ENTEROS NÚMEROS ENTEROS ( ) Los elementos del conjunto enteros. OPERATORIA EN ADICIÓN = {, -3,

Más detalles

MINI ENSAYO DE MATEMÁTICA Nº 1

MINI ENSAYO DE MATEMÁTICA Nº 1 MINI ENSAYO DE MATEMÁTICA Nº 1 1. Si 25 = k, entonces 2k = A) 5 B) 10 C) 50 D) 625 E) 1.250 2. El número 3, puede obtenerse operando solamente el dígito 3. La opción correcta es A) (3 3) : 3 3 : 3 B) (3

Más detalles

OLIMPIADA MEXICANA DE MATEMÁTICAS Mayo 2016 TEORÍA DE NÚMEROS

OLIMPIADA MEXICANA DE MATEMÁTICAS Mayo 2016 TEORÍA DE NÚMEROS OLIMPIADA MEXICANA DE MATEMÁTICAS Mayo 016 TEORÍA DE NÚMEROS 1. El conjunto de los números reales Dígitos:1,,3,4...,9,0. Naturales:1,,3,4,5,... Enteros:..., 5, 4, 3,, 1,0,1,,3,4,5,... Racionales: Los números

Más detalles

UNIDAD 1 CONCEPTOS BÁSICOS. Números naturales, Números enteros, Números racionales, números irracionales y números reales. Dr. Daniel Tapia Sánchez

UNIDAD 1 CONCEPTOS BÁSICOS. Números naturales, Números enteros, Números racionales, números irracionales y números reales. Dr. Daniel Tapia Sánchez UNIDAD 1 CONCEPTOS BÁSICOS Números naturales, Números enteros, Números racionales, números irracionales y números reales Dr. Daniel Tapia Sánchez 1.1 Números Naturales (N) 1.1.1 Consecutividad numérica

Más detalles

TEMA Nº 1. Conjuntos numéricos

TEMA Nº 1. Conjuntos numéricos TEMA Nº 1 Conjuntos numéricos Aprendizajes esperados: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto en las ciencias exactas como en las ciencias sociales

Más detalles

RESUMEN DE CONCEPTOS

RESUMEN DE CONCEPTOS RESUMEN DE CONCEPTOS 1º ESO MATEMÁTICAS NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número exacto de veces. Ejemplo: 16 es múltiplo

Más detalles

TEMA 1. Los números enteros. Matemáticas

TEMA 1. Los números enteros. Matemáticas 1 Introducción En esta unidad veremos propiedades de los números enteros, como se opera con ellos (con y sin calculadora), los números primos, máximo común divisor y mínimo común múltiplo y por últimos

Más detalles

SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números

SCUACAC026MT22-A16V1. SOLUCIONARIO Ejercitación Generalidades de números SCUACAC026MT22-A16V1 0 SOLUCIONARIO Ejercitación Generalidades de números 1 TABLA DE CORRECCIÓN GUÍA PRÁCTICA EJERCITACIÓN GENERALIDADES DE NÚMEROS Ítem Alternativa 1 E 2 D 3 B 4 E 5 A 6 E 7 B 8 D 9 D

Más detalles

Divisibilidad I. Nombre Curso Fecha

Divisibilidad I. Nombre Curso Fecha Matemáticas 2.º ESO Unidad 1 Ficha 1 Divisibilidad I Un número b es divisor de otro número a si al dividir a entre b la división es exacta. Se dice también que a es múltiplo de b. 1. Completa con la palabra

Más detalles

Números primos y compuestos

Números primos y compuestos Números primos y compuestos Jorge Tipe Villanueva Sabemos que cualquier entero positivo n tiene como divisores a 1 y n. Si asumimos que n > 1 entonces n tendrá al menos dos divisores pues 1 y n son diferentes.

Más detalles

Introducción a la Teoría de Números

Introducción a la Teoría de Números Introducción a la Teoría de Números Elaborado por: Jeff Maynard Guillén Eliminatoria II Julio, 2011 Introducción a la Teoría de Números A manera de repaso vamos a recordar algunos conjuntos N = {1, 2,

Más detalles

Plan de Animación para la enseñanza de las Matemáticas

Plan de Animación para la enseñanza de las Matemáticas DIVISIBILIDAD NUMERICA Criterios de divisibilidad por 2, 3 y 5 (5 y 6 grado de primaria y educación media general) Los criterios o caracteres de divisibilidad son ciertas señales de los números que nos

Más detalles

Teoría de Números. Orlando Ochoa Castillo 25 de septiembre de 2011

Teoría de Números. Orlando Ochoa Castillo 25 de septiembre de 2011 Teoría de Números Orlando Ochoa Castillo 25 de septiembre de 2011 1. Divisibilidad La Teoría de Números es un tema muy importante en las Olimpiadas de Matemáticas, esta área estudia el comportamiento de

Más detalles

MÉTODOS DE DEMOSTRACIÓN

MÉTODOS DE DEMOSTRACIÓN 2016-1 1 Presentación 2 Métodos de Demostración Sobre métodos de demostración algunas preguntas de interés 1 Qué es una demostración? Sobre métodos de demostración algunas preguntas de interés 1 Qué es

Más detalles

Desafío. Propiedades de los números racionales GUÍA DE EJERCITACIÓN AVANZADA GUICEN038MT21-A17V1

Desafío. Propiedades de los números racionales GUÍA DE EJERCITACIÓN AVANZADA GUICEN038MT21-A17V1 PROGRAMA ENTRENAMIENTO Propiedades de los números racionales Desafío Un número n, en los enteros positivos, tiene un total de p divisores positivos distintos. Luego, es correcto afirmar que si GUÍA DE

Más detalles

Teorema (TFA): Todo número natural diferente de 1 puede ser representado de manera única (salvo por el orden) como un producto de primos.

Teorema (TFA): Todo número natural diferente de 1 puede ser representado de manera única (salvo por el orden) como un producto de primos. Erick Luna, Teresa Uscanga Repaso TFA y Descomposición Exponencial En la clase anterior se enunció el TFA (Teorema Fundamental de la Aritmética) y se probó la primera parte Como es muy importante, la volveremos

Más detalles

Matemática Conjuntos Numéricos I CUADERNILLO N 1

Matemática Conjuntos Numéricos I CUADERNILLO N 1 Matemática Conjuntos Numéricos I CUADERNILLO N 1 Contenidos - Números Naturales, Cardinales, Enteros, Primos, Pares e Impares. - Notación sucesor y antecesor. - Descomposición en Factores Primos. - Múltiplos,

Más detalles

Operaciones de números racionales

Operaciones de números racionales Operaciones de números racionales Yuitza T. Humarán Martínez Adapatado por Caroline Rodriguez Departamento de Matemáticas Universidad de Puerto Rico en Arecibo El conjunto de los números racionales consiste

Más detalles

1. Traducción al lenguaje algebráico

1. Traducción al lenguaje algebráico 1. Traducción al lenguaje algebráico Resuelva los siguientes problemas, traduciendo primero al lenguaje algebráico. Esto es, planteando las ecuaciones correctas para cada situación. 1. El mayor de tres

Más detalles

Teoría de Números. 1. Introducción. Factorización Algebraica. Olimpiada de Matemáticas en Tamaulipas

Teoría de Números. 1. Introducción. Factorización Algebraica. Olimpiada de Matemáticas en Tamaulipas Teoría de Números Factorización Algebraica Olimpiada de Matemáticas en Tamaulipas 1. Introducción El matemático, físico y astrónomo Carl Friedrich Gauss (1777-1855) fue uno de los más importantes personajes

Más detalles

Olimpiada de Matemáticas en Chiapas

Olimpiada de Matemáticas en Chiapas UNIVERSIDAD AUTÓNOMA DE CHIAPAS FACULTAD DE CIENCIAS EN FÍSICA Y MATEMÁTICAS Divisibilidad, MCD, MCM, Primos y TFA Olimpiada de Matemáticas en Chiapas Julio del 2018 Divisibilidad El conjunto de los números

Más detalles

Las demostraciones de las propiedades (1) y (2) quedan a cargo del estudiante.

Las demostraciones de las propiedades (1) y (2) quedan a cargo del estudiante. Sección II CONCEPTOS PREVIOS.. Definición.. Se dice que un número entero! es divisible por otro entero! (distinto de cero) si existe un tercer entero! tal que! =!!. Se expresa como!!, que se lee! es divisible

Más detalles

UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico.

UNIDAD 1. NÚMEROS. (Página 223 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. UNIDAD 1. NÚMEROS. (Página 22 del libro) Nivel II. Distancia. Ámbito Científico Tecnológico. Clasificación de los números Números naturales son aquellos que utilizamos para contar. N = 0,1,2,,,5,6, Números

Más detalles

Preguntas propuestas. Aptitud Académica Matemática Cultura General Ciencias Naturales

Preguntas propuestas. Aptitud Académica Matemática Cultura General Ciencias Naturales Preguntas propuestas 4 2015 Aptitud Académica Matemática Cultura General Ciencias Naturales NIVEL BÁSICO Clasificación de los Z + III 1. Si 4 2n tiene 81 divisores, halle el valor de n. A) 20 B) 10 C)

Más detalles

TEMA 2. Números racionales. Teoría. Matemáticas

TEMA 2. Números racionales. Teoría. Matemáticas 1 1.- Números racionales Se llama número racional a todo número que puede representarse como el cociente de dos enteros, con denominador distinto de cero. Se representa por Las fracciones también pueden

Más detalles

Ejercicios del tema 7

Ejercicios del tema 7 U N I V E R S I D A D D E M U R C I A Ejercicios del tema 7 DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2013/2014. Ejercicios de aritmética y congruencias 1. Un amigo le pregunta a otro: Cuántos hijos

Más detalles

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. II Nivel I Eliminatoria

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. II Nivel I Eliminatoria OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT Teoría de Números II Nivel I Eliminatoria Abril, 2015 Índice 1. Presentación 2 2. Temario 2 3. Divisibilidad 2 4. Algoritmo de

Más detalles

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I

ESCUELA PREPARATORIA OFICIAL NO.16 MATERÍA: PENSAMIENTO NUMÉRICO Y ALGEBRAICO I ARITMÉTICA 1. Números naturales 2. Divisibilidad 3. Números enteros 4. Números decimales 5. Fracciones y números racionales 6. Proporcionalidad 7. Sistema métrico decimal 8. Sistema sexagesimal 9. Números

Más detalles

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 =

Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 1. NÚMEROS NATURALES POTENCIAS DE UN NÚMERO NATURAL Llamamos potencia a todo producto de factores iguales. Por ejemplo: 3 4 = 3 3 3 3 El factor que se repite es la base, y el número de veces que se repite

Más detalles

4 de Noviembre de 2010 Departamento de Matemáticas

4 de Noviembre de 2010 Departamento de Matemáticas Prototipo de Examen ALM 1er cuatrimestre Universidad de Alcalá 4 de Noviembre de 2010 Departamento de Matemáticas Apellidos, Nombre: NOTA: Durante la prueba no se podra hacer uso de ningún dispositivo

Más detalles

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE AMPLIACIÓN Página 21

1. ESQUEMA - RESUMEN Página EJERCICIOS DE INICIACIÓN Página EJERCICIOS DE DESARROLLO Página EJERCICIOS DE AMPLIACIÓN Página 21 1. ESQUEMA - RESUMEN Página 2 2. EJERCICIOS DE INICIACIÓN Página 7 3. EJERCICIOS DE DESARROLLO Página 19 4. EJERCICIOS DE AMPLIACIÓN Página 21 5. EJERCICIOS DE REFUERZO Página 22 1 1. ESQUEMA - RESUMEN

Más detalles

GUIA DE TRABAJO Nº 1 NÚMEROS - TEORÍA 2017 Nombre alumno:.. Fecha:

GUIA DE TRABAJO Nº 1 NÚMEROS - TEORÍA 2017 Nombre alumno:.. Fecha: GUIA DE TRABAJO Nº 1 NÚMEROS - TEORÍA 2017 Nombre alumno:.. Fecha: Contenidos Números naturales, enteros, racionales, representación en la recta numérica, propiedades. Densidad de Q. Decimales periódicos

Más detalles

Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma

Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma Polinomios Definición 1.1. Un conjunto K junto con dos operaciones definidas en él que denotaremos por + : K K K : K K K para las cuales se cumplen las siguientes propiedades: Asociatividad Conmutatividad

Más detalles

Números Enteros. Introducción

Números Enteros. Introducción Números Enteros Introducción Todos los conjuntos de números fueron de alguna manera "descubiertos" o sugeridos en conexión con problemas planteados en problemas físicos o en el seno de la matemática elemental

Más detalles

Criterios de divisibilidad y Congruencias

Criterios de divisibilidad y Congruencias Criterios de divisibilidad y Congruencias Rafael F. Isaacs G. * Fecha: 9 de marzo de 2007 Cuando tenemos un número muy grande escrito en base 10 y deseamos saber si es múltiplo por ejemplo de 9 no necesitamos

Más detalles

FICHAS DE TRABAJO REFUERZO

FICHAS DE TRABAJO REFUERZO FICHAS DE TRABAJO REFUERZO DEPARTAMENTO DE MATEMATICAS CONTENIDO 1. Números naturales a. Leer y escribir números naturales b. Orden de cifras c. Descomposición polinómica d. Operaciones combinadas e. Potencias

Más detalles

Divisibilidad (en N = N {0})

Divisibilidad (en N = N {0}) Divisibilidad (en N = N {0}) Dados dos números naturales a y c, se dice que c es un divisor de a si existe q N tal que a = q c (es decir, si en la división a c el resto es 0). c a significa que c es divisor

Más detalles

UNIDAD DE APRENDIZAJE II

UNIDAD DE APRENDIZAJE II UNIDAD DE APRENDIZAJE II NÚMEROS RACIONALES Jerarquía de Operaciones En matemáticas una operación es una acción realizada sobre un número (en el caso de la raíz y potencia) o donde se involucran dos números

Más detalles

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. II Nivel I Eliminatoria

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. II Nivel I Eliminatoria OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT Teoría de Números II Nivel I Eliminatoria Abril, 2015 Índice 1. Presentación 2 2. Temario 2 3. Divisibilidad 2 4. Algoritmo de

Más detalles

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO

RECONOCER EL GRADO, EL TÉRMINO Y LOS COEFICIENTES DE UN POLINOMIO OBJETIVO RECONOCER EL GRADO, EL TÉRMINO Y LOS COEICIENTES DE UN POLINOMIO NOMBRE: CURSO: ECHA: Un polinomio es una expresión algebraica formada por la suma de monomios, que son los términos del polinomio.

Más detalles

DIVISIBILIDAD CIENTÍFICO, MAT. 2

DIVISIBILIDAD CIENTÍFICO, MAT. 2 DIVISIBILIDAD CIENTÍFICO, MAT. 2 DIVISIÓN ENTERA Dados an, bn, b 0, existen y son únicos los números naturales q y r tales 1) q + r que: 2) r b a = dividendo b = divisor q = cociente r = resto Ejercicio

Más detalles

C u r s o : Matemática. Material N 04 GUÍA TEÓRICO PRÁCTICA Nº 4 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS REALES

C u r s o : Matemática. Material N 04 GUÍA TEÓRICO PRÁCTICA Nº 4 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS REALES C u r s o : Matemática Material N 04 UNIDAD: NÚMEROS Y PROPORCIONALIDAD NÚMEROS REALES GUÍA TEÓRICO PRÁCTICA Nº 4 POTENCIAS EN DEFINICIONES a a a a a a a a = a n, con a {0} y n n factores a 0 =, a 0 a

Más detalles

Conjuntos Numéricos I

Conjuntos Numéricos I Conjuntos Numéricos I En el pasado las matemáticas eran consideradas como la ciencia de la cantidad, referida a las magnitudes (como en la geometría), a los números (como en la aritmética), o a la generalización

Más detalles

Gu ıa Departamento. Matem aticas U.V.

Gu ıa Departamento. Matem aticas U.V. Universidad de Valparaíso Instituto de Matemáticas 1. Determinar el cociente y el residuo de 541 y de -541al dividir por 17 391 y -391 al dividir por 17 Guía de Teoría de Números 2. Sea a Z,n N comparar

Más detalles

NÚMEROS REALES---AGUERRERO

NÚMEROS REALES---AGUERRERO Contenido NÚMEROS REALES... 2 IGUALDAD Y SUS PROPIEDADES... 4 NÚMEROS MÚLTIPLOS, COMPUESTOS Y PRIMOS... 4 NÚMEROS PRIMOS... 5 DESCOMPOSICIÓN DE UN NÚMERO EN SUS FACTORES PRIMOS... 7 MÁXIMO COMÚN DIVISOR...

Más detalles

UNIDAD 2.- Polinomios (tema 2 del libro)

UNIDAD 2.- Polinomios (tema 2 del libro) UNIDAD.- Polinomios tema del libro). OPERACIONES CON POLINOMIOS n Un monomio en la indeterminada es toda epresión de la forma a donde a se llama coeficiente y n grado del monomio. Dos monomios se dicen

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

Aritmética. 7. Si MCD(a; ab)=b, cuántos valores toma ab? 8. Si el MCD(abaa; ac(a 1)(a+2))=28, además MCM(abaa; ac(a 1)(a+2))=...

Aritmética. 7. Si MCD(a; ab)=b, cuántos valores toma ab? 8. Si el MCD(abaa; ac(a 1)(a+2))=28, además MCM(abaa; ac(a 1)(a+2))=... MCD - MCM I 1. Si MCD(360; abc)=18, calcule la cantidad de los posibles valores que toma abc. A) 18 B) 16 C) 20 D) 21 E) 30 2. Se cumple que MCD(k 2 ; mn)=16 y MCM(k 2 ; mn)=a9(a+1) Halle el valor de k+m+n.

Más detalles

open green road Guía Matemática INECUACIONES profesor: Nicolás Melgarejo .cl

open green road Guía Matemática INECUACIONES profesor: Nicolás Melgarejo .cl Guía Matemática INECUACIONES profesor: Nicolás Melgarejo.cl 1. Orden en R Consideremos un conjunto compuesto por símbolos no numéricos como el siguiente: A = {Œ, Ø,!, #, Æ, ø} No es posible ordenar el

Más detalles

FUNCIONES REALES DE UNA VARIABLE CONCEPTOS FUNDAMENTALES

FUNCIONES REALES DE UNA VARIABLE CONCEPTOS FUNDAMENTALES FUNCIONES REALES DE UNA VARIABLE Índice Presentación... 3 Conjunto de los números reales... 4 Los intervalos... 6 Las potencias... 7 Los polinomios... 8 La factorización de polinomios (I)... 9 La factorización

Más detalles

INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS

INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS INSTITUTO TECNOLÓGICO METROPOLITANO DECANATURA DE CIENCIAS JEFATURA DE CIENCIAS BÁSICAS NIVELATORIO DE MATEMÁTICAS BÁSICAS Guía 3 Números Naturales y Enteros COMPETENCIA Reconoce operaciones. los conjuntos

Más detalles

EJERCICIOS MATEMÁTICAS 1º F.P.B.

EJERCICIOS MATEMÁTICAS 1º F.P.B. EJERCICIOS MATEMÁTICAS 1º F.P.B. U3 DIVISIBILIDAD 1. MÚLTIPLOS Y DIVISORES Decimos que un número es múltiplo de otro si lo contiene un número entero de veces. El número 0 solamente tiene un múltiplo, que

Más detalles

Instrucciones. 1. Revisión de conceptos asociados a los números enteros. 2. Desarrollo de ejemplos en pizarra.

Instrucciones. 1. Revisión de conceptos asociados a los números enteros. 2. Desarrollo de ejemplos en pizarra. Colegio Antil Mawida Departamento de Matemática Profesora: Nathalie Sepúlveda Guía nº1 Taller PSU Refuerzo Contenido y Aprendizaje N Fecha Tiempo 2 Horas Nombre: Unidad Nº Núcleos temáticos de la Guía

Más detalles

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Propiedades y operatoria de números enteros GUICEN023MT21-A16V1

Matemática. Desafío. GUÍA DE EJERCITACIÓN AVANZADA Propiedades y operatoria de números enteros GUICEN023MT21-A16V1 GUÍA DE EJERCITACIÓN AVANZADA Propiedades y operatoria de números enteros Programa Entrenamiento Desafío Un número n, en los enteros positivos, tiene un total de p divisores positivos distintos. Luego,

Más detalles

Ampliación Tema 3: Múltiplo y divisores

Ampliación Tema 3: Múltiplo y divisores - Múltiplo. Divisible. Divisor Ampliación Tema 3: Múltiplo y divisores 56 8 56 es divisible por 8 0 7 56 es múltiplo de 8 Para indicar que 56 es múltiplo de 8 se escribe sobre el divisor 8 un punto :(8)

Más detalles

Números enteros. Los números enteros son los formados por los números naturales (1), sus opuestos (2) y el número 0

Números enteros. Los números enteros son los formados por los números naturales (1), sus opuestos (2) y el número 0 Los números enteros son los formados por los números naturales, sus opuestos (2) y el número 0 Números enteros Los números naturales son aquellos que nos permiten contar las cosas. Ej. 2 sillas, 4 patas,

Más detalles

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto.

Unidad 1 Números. Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. Unidad 1 Números 1.- Números Naturales Los números naturales son aquellos que se utilizan para contar los elementos de un conjunto. El conjunto de números naturales se representa por la letra N Operaciones

Más detalles

Hallar las raíces enteras de los siguientes polinomios:

Hallar las raíces enteras de los siguientes polinomios: Hallar las raíces enteras de los siguientes polinomios: 1) x 3 + 2x 2 - x - 2 Las raíces enteras se encuentran entre los divisores del término independiente del polinomio: ±1 y ±2. P(1) = 1 3 + 2 1 2-1

Más detalles

Sección IV CRITERIOS DE DIVISIBILIDAD (Menos usuales)

Sección IV CRITERIOS DE DIVISIBILIDAD (Menos usuales) Sección IV CRITERIOS DE (Menos usuales) Los criterios que se presentan a continuación también cuentan con la regla que los define y su correspondiente demostración, no obstante, son reglas que en general

Más detalles

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5

Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1. x 5x 2 6 5 Matemáticas B 4º E.S.O. Polinomios y fracciones algebraicas. 1 POLINOMIOS Y FRACCIONES ALGEBRAICAS.1 COCIENTE DE POLINOMIOS COCIENTE DE MONOMIOS El cociente de un monomio entre otro monomio de grado igual

Más detalles

Aritmética Entera y Modular.

Aritmética Entera y Modular. Tema 5 Aritmética Entera y Modular. 5.1 Divisibilidad en Z. Definición 1. Si a, b Z, a 0, se dice que a divide a b, y se indica por a b, si existe k Z, tal que b = ak. También se dice que a es un divisor

Más detalles

Recuperado de FRACCIONES

Recuperado de  FRACCIONES Recuperado de http://es.wikipedia.org/wiki/fracci%c%bn FRACCIONES F r a c c i o n e s P á g i n a abril 06. Este Módulo Educativo fue preparado por la Prof. Ileana Vallejo y autorizado por Huertas College.

Más detalles

DIVISIBILIDAD NÚMEROS NATURALES

DIVISIBILIDAD NÚMEROS NATURALES DIVISIBILIDAD NÚMEROS NATURALES MÚLTIPLOS Un número a es múltiplo de otro b cuando es el resultado de multiplicarlo por otro número c. a = b c Ejemplo: 12 es múltiplo de 2, ya que resulta de multiplicar

Más detalles

INSTITUTO DE ESTUDIOS BANCARIOS GUILLERMO SUBERCASEAUX Fundado en Matemáticas I. Técnico Financiero Semestre CONJUNTOS NUMERICOS

INSTITUTO DE ESTUDIOS BANCARIOS GUILLERMO SUBERCASEAUX Fundado en Matemáticas I. Técnico Financiero Semestre CONJUNTOS NUMERICOS Matemáticas I Técnico Financiero Semestre 1-2008 CONJUNTOS NUMERICOS I. Números naturales El conjunto de los números naturales se representa por IN y corresponde al siguiente conjunto numérico: IN = {1,

Más detalles

TEMA 1: LOS NÚMEROS ENTEROS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León.

TEMA 1: LOS NÚMEROS ENTEROS. Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. TEMA 1: LOS NÚMEROS ENTEROS Segundo Curso de Educación Secundaria Obligatoria. I.E.S de Fuentesaúco. Manuel González de León. CURSO 2011-2012 1. Los Números Enteros. 2. Suma y resta de números enteros.

Más detalles

TEMA 2 DIVISIBILIDAD 1º ESO

TEMA 2 DIVISIBILIDAD 1º ESO Alumno Fecha TEMA 2 DIVISIBILIDAD 1º ESO Si la división de un número A entre otro número B, es exacta, entonces decimos que: - El número A es divisible por el número B. Ej.: 12 : 4 = 3 12 divisible por

Más detalles

Orden de los números enteros

Orden de los números enteros Números enteros Orden de los números enteros Podemos colocar los números enteros, positivos y negativos, en una recta cuyo centro es el 0. NEGATIVOS POSITIVOS -10-5 0 1-1 3 8 A la derecha del 0 van colocados

Más detalles

Blog de matemáticas realizado por José Mª Moya Medina ( MATEMATICASIESPTH.BLOGSPOT.COM )

Blog de matemáticas realizado por José Mª Moya Medina ( MATEMATICASIESPTH.BLOGSPOT.COM ) RESUMEN DEL TEMA 1- MÚLTIPLO Y DIVISOR Canción Definición Ejemplo Trucos PROPIEDADES Un nº a es divisor de 5 es divisor de 15? Para que un nº sea divisor otro nº b, si la división Sí porque la división

Más detalles

Unidad didáctica 1. Operaciones básicas con números enteros

Unidad didáctica 1. Operaciones básicas con números enteros Unidad didáctica 1 Operaciones básicas con números enteros 1.- Representación y ordenación de números enteros Para representar números enteros en una recta hay que seguir estos pasos: a) Se dibuja una

Más detalles

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS

TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS TEMA 1.- POLINOMIOS Y FRACCIONES ALGEBRAICAS 1.- POLINOMIOS Recordemos que un monomio es una expresión algebraica (combinación de letras y números) en la que las únicas operaciones que aparecen entre las

Más detalles

Divisibilidad en Z. Apéndice A. A.0 Subgrupos de Z

Divisibilidad en Z. Apéndice A. A.0 Subgrupos de Z Apéndice A Divisibilidad en Z Todo número compuesto es medido por algún número primo. Todo número o bien es número primo o es medido por algún número primo. Euclides, Elementos, Libro VII Cualquier número

Más detalles

DISTINGUIR E IDENTIFICAR ECUACIONES E IDENTIDADES

DISTINGUIR E IDENTIFICAR ECUACIONES E IDENTIDADES REPASO Y APOYO OBJETIVO 1 DISTINGUIR E IDENTIFICAR ECUACIONES E IDENTIDADES IDENTIDADES Y ECUACIONES Una igualdad algebraica está formada por dos expresiones algebraicas separadas por el signo igual (=).

Más detalles

El coeficiente del monomio es el número que aparece multiplicando a las variables. PARTE LITERAL

El coeficiente del monomio es el número que aparece multiplicando a las variables. PARTE LITERAL TEMA 0 ÁLGEBRA Y FRACCIONES ALGEBRAICAS - 1. MONOMIO Un monomio es una expresión algebraica en la que las únicas operaciones que aparecen entre las variables son el producto y la potencia de exponente

Más detalles

primarios = 3; 5 4 = 1; 2(3) = 6; 3. Observa todos los valores usados en

primarios = 3; 5 4 = 1; 2(3) = 6; 3. Observa todos los valores usados en Unidad 1. Conjuntos de números II. Operaciones y expresiones 1. Operaciones con números racionales. Las operaciones con números racionales las estamos realizando desde los grados 12 primarios. 1 + 2 =

Más detalles

ALGEBRA I - Práctica N 4 (Primera parte) - Primer cuatrimestre de Números enteros

ALGEBRA I - Práctica N 4 (Primera parte) - Primer cuatrimestre de Números enteros ALGEBRA I - Práctica N 4 (Primera parte) - Primer cuatrimestre de 2002 Números enteros Ejercicio. Dados a, b y c números enteros, decidir cuáles de las siguientes afirmaciones son verdaderas y cuáles son

Más detalles

T. P. Números Racionales: Q. a es igual a 1?, cuándo es menor?, cuándo es mayor?

T. P. Números Racionales: Q. a es igual a 1?, cuándo es menor?, cuándo es mayor? T P Números Racionales Q Si a b pertenecen a los enteros, a b SIEMPRE pertenece a los enteros? Exploren las distintas posibilidades Den ejemplos de acuerdo con cada caso posible Qué indica la expresión

Más detalles

Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO. Nombre: Curso: Fecha: F Cómo es el polinomio, completo o incompleto?

Y LOS ELEMENTOS QUE FORMAN UN POLINOMIO. Nombre: Curso: Fecha: F Cómo es el polinomio, completo o incompleto? REPASO Y APOYO OBJETIVO 1 3 RECONOCER EL GRADO Y LOS ELEMENTOS QUE ORMAN UN POLINOMIO Nombre: Curso: echa: Un polinomio es una expresión algebraica formada por la suma algebraica de monomios, que son los

Más detalles

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO

RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO RESUMEN DE CONCEPTOS TEÓRICOS MATEMÁTICAS 1º ESO. CURSO 2015-2016 UNIDAD 1: NÚMEROS NATURALES (1) Múltiplo de un número: Un número es múltiplo de otro si el segundo está contenido en el primero un número

Más detalles

5 REPASO Y APOYO OBJETIVO 1

5 REPASO Y APOYO OBJETIVO 1 5 REPASO Y APOYO OBJETIVO 1 RECONOCER EL GRADO, LOS TÉRMINOS Y EL TÉRMINO INDEPENDIENTE DE UN POLINOMIO Nombre: Curso: echa: Un monomio es una expresión algebraica formada por el producto de un número,

Más detalles

Demostración Contraejemplo. Métodos Indirectos

Demostración Contraejemplo. Métodos Indirectos DEMOSTRACION Una demostración de un teorema es una verificación escrita que muestra que el teorema es verdadero. Informalmente, desde el punto de vista de la lógica, una demostración de un teorema es un

Más detalles

Instituto Superior de Formación Técnica Nº 177

Instituto Superior de Formación Técnica Nº 177 Instituto Superior de Formación Técnica Nº 177 Ciudad de Libertad (Merlo) Curso de Ingreso Matemática Página 1 Los números naturales también sirven para ordenar. Así, decimos que la Tierra es el tercer

Más detalles

GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA

GUÍA NÚMERO 1. Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA Saint Gaspar College MISIONEROS DE LA PRECIOSA SANGRE Formando Personas Íntegras Departamento de Matemática RESUMEN PSU MATEMATICA GUÍA NÚMERO 1 NÚMEROS NATURALES Y CARDINALES ( IN, IN 0 ) Los elementos

Más detalles

SOLUCIONARIO GUÍA A

SOLUCIONARIO GUÍA A SOLUCIONARIO GUÍA A-1 2008 1 Estimado alumno: Aquí encontrarás las claves de corrección, las habilidades y los procedimientos de resolución asociados a cada pregunta, no obstante, para reforzar tu aprendizaje

Más detalles

Página 3. Página 4. Página 5

Página 3. Página 4. Página 5 Soluciones de las actividades Página 3. El menor de los conjuntos al que pertenecen estos números son: a) Entero b) Entero c) Racional d) Natural e) Racional. Cualquier fracción irreducible puede expresarse

Más detalles