1. Traducción al lenguaje algebráico

Tamaño: px
Comenzar la demostración a partir de la página:

Download "1. Traducción al lenguaje algebráico"

Transcripción

1 1. Traducción al lenguaje algebráico Resuelva los siguientes problemas, traduciendo primero al lenguaje algebráico. Esto es, planteando las ecuaciones correctas para cada situación. 1. El mayor de tres números enteros cosecutivos impares menos dos veces el menor, es igual a 13 menos dos veces el de en medio. ¾Quienes son los números impares? Solución. La primera pregunta que tenemos que responder para resolver el problema es: ¾Cómo representamos un número impar? Nosotros representaremos a un número impar como 2n 1 (Algunos utilizan 2n + 1. Sin embargo, de ésta manera no podemos obtener el número 1). Así, podemos tomar a los tres números impares como sigue: 2n 1, 2n + 1 y 2n + 3 Luego, el mayor menos dos veces el menor es: 2n + 3 2(2n 1) y 13 menos dos veces el de en medio es: 13 2(2n + 1). Luego, la ecuación que corresponde al enunciado es la siguiente: Resolvemos la ecuación: 2n + 3 2(2n 1) = 13 2(2n + 3) (1) 2n + 3 2(2n 1) = 13 2(2n + 3) 2n + 3 4n + 2 = 13 4n 6 5 2n = 7 4n 4n 2n = 7 5 2n = 2 n = 1. Por lo tanto, los números que buscamos son: 2(1) 1, 2(1) + 1 y 2(1) + 3, es decir, 1, 3 y La suma de tres números enteros consecutivos es 48. Hallar los tres números. Solución. Representamos tres números consecutivos mediante n, n + 1 y n + 2. De ésta manera, la ecuación correspondiente a éste enunciado es la siguiente: Resolvemos: n + (n + 1) + (n + 2) = 48 (2) n + (n + 1) + (n + 2) = 48 3n + 3 = 48 3n = 45 n = 15 Por lo tanto, los números que buscamos son: 15, y (15, 16 y 17). 3. Demuestre que si un número divide a dos números entonces también divide a su suma. Recordemos que un número a divide a un número b si podemos encontrar un número entero k de manera tal que b = ak. Esto es, dicho de otra manera, que b sea múltiplo de a. Como ejemplo tomemos a 8 y a divide a 24 puesto que 24 = 8( 3). Dicho esto podemos pasar a la solución del problema. Solución. El enunciado del problema queda como sigue: Si b = ar y c = as para algunos números enteros r y s, respectivamente. Entonces: b + c = at para algún número entero t. 1

2 Demostración. Es decir: [b = ar y c = as] entonces [(b + c) = ar + as] b + c = a(r + s) Por último, como r y s son números enteros, por la propiedad de cerradura, el número r + s también es número entero. Así, el número que buscamos es t = r + s. Por lo tanto a divide a b + c. 4. Un coleccionista de sellos tiene un sello de 3c que es 25 años más viejo que un sello de 5c. Dentro de 18 años el sello de 3c será el doble de viejo que el sello de 5c. ¾Cuántos años tiene cada sello? Solución.Notemos que para resolver éste problema es necesario plantear dos ecuaciones. Si x es la edad del sello de 3c y y es la edad del sello de 5c entonces las ecuaciones quedan como siguen: x = y + 25 (3) x + 18 = 2(y + 18) (4) Resolvemos el sistema para obtener: (y + 25) + 18 = 2y + 36, sustituyendo (3) en (4) y = y = 7 Luego, el sello de 5c tiene 7 años. Y, por último, sustituyendo éste valor en la ecuación (3) tenemos que la edad del sello de 3c es de 32 años. 5. Juan tiene 25 años y Javier tiene 15 años. ¾Hace cuantos años Juan tenía el doble de años que Javier? Solución. Éste problema puede ser abordado de varias maneras. Puede plantearse una ecuación en términos de las edades de Juan y Javier. Algunos de ustedes durante la sesión hicieron una tabla de comparación de las edades. Sin embargo, éste último procedimiento no es muy recomendable, pues si en vez de comparar las edades de personas, estuvieramos comparando edades de edicios de 350 y 550 años de antiguedad, hacer una tabla llevaría bastante tiempo. Recordemos que tenemos al álgebra como herramienta. Ahora bien, si x es el número de años que nos pide el problema. Entonces debe ser que: 2(15 x) = 25 x (5) Resolvemos para obtener: 30 2x = 25 x 5 x = 0, sumando x 25 en ambos lados. x = 5. Por lo tanto, hace 5 años Juan tenía el doble de años que Javier. 6. Hallar tres enteros pares consecutivos tales que tres veces el segundo es cuatro más que la suma del primero y el tercero. Solución. En éste caso, el primer paso es representar un número par. En la práctica decimos que un número es par si la cifra de las unidades es un número par, cuando es múltiplo de 2 o bien, cuando es divisible por 2. Nosotros representaremos un número par cómo un número que podemos escribir como 2n para algún número entero n. Por ejemplo, 18 es par puesto que podemos escribirlo como 2(9). De ésta manera podemos representar cualquier número par. 2

3 Así, representamos tres números pares consecutivos mediante: 2n, (2n + 2) y (2n + 4). Luego, la ecuación que nos plantea el problema queda como sigue: Resolvemos para obtener: 3(2n + 2) = 4 + (2n) + (2n + 4) (6) 6n + 6 = 4 + 4n + 4 6n 4n = 8 6 2n = 2 n = 1. Así, los números que buscamos son: 2(1), [2(1) + 2] y [2(1) + 4]. Es decir: 2, 4 y Demuestre que si MCD(a, b) = d. Entonces: ı. MCD ( a d, b d) = 1. ıı. MCD(a, a b) = d. Demostración. ı. Dado que MCD(a, b) = d. Tenemos que: a = dr para algún entero r. (7) b = ds para algún entero s. (8) Además, si x es otro divisor común de a y b, entonces x d. Ahora bien si b = a, entonces d = a y el problema se reduce a ver que MCD(1, 1) = 1 lo cual es cierto. Supongamos entonces que a b. De ésta manera, como d es el máximo común divisor concluimos que r s. Notemos también que r y s no tienen divisores en común pues si tuvieran algún divisor común sería una contradicción al hecho de que d es el MCD. Esto quiere decir que MCD(r, s) = 1. Por último, notemos que: ( a MCD d, b ) d = MCD(r, s) dividiendo por d en (7) y (8) = 1, por la observación que acabamos de hacer. Por lo tanto, MCD ( a d, b d) = 1 y asi, nuestra armación es cierta. ıı. Dado que MCD(a, b) = d sabemos que d divide a b, es decir, b = rs para algún entero s. Notemos que d también divide a b pues b = d( s). De esta manera, se cumple que MCD(a, b) = d. Ahora bien, dado que d divide a a y a b también divide a a + ( b) (esto por lo que hicimos en el ejercicio 3). Además, sabemos que a b = d(r s). Ahora, supongamos que MCD(a, a b) = t y t > d. Es decir, hay un entero t > d tal que t divide a a y a a b. Esto quiere decir que hay números enteros m y n tales que: pero, notemos que: a = tm a b = tn b = a tn,despejando b de la ecuación anterior. = tm tn,sustituyendo el valor de a. = t(m n). 3

4 Luego, dado que m y n son enteros, por la propiedad de cerradura, m n también es un entero. Por lo cual, hemos demostrado que t divide a b. Así, t es divisor común de a y b. Y, como t > d, entonces MCD(a, b) = t. Lo cual es una contradicción, pues d es el MCD. Luego, el entero t que satisface las condiciones que dimos NO existe. Por lo tanto, MCD(a, b c) = d. Observación 1 Es importante notar que, con argumentos similares a los que dimos para resolver éste par de incisos, podemos demostrar que: M CD( a, b) = M CD(a, b) = MCD( a, b) = MCD(a, a + b). Es un buen ejercicio ver que efectivamente así es. 8. Denición 1 Decimos que dos números enteros a y b son primos relativos si MCD(a, b) = 1. Demuestre que si a y b son primos relativos entonces (a b) y (a + b) también lo son. Contraejemplo. La armación es falsa. Es decir, que no siempre ocurre que si MCD(a, b) = 1, entonces MCD(a b, a + b) = 1. Para ver esto damos el siguiente contraejemplo: MCD(3, 7) = 1, pues son 3 y 7 son primos. 2 = MCD(3 7, 3 + 7). 9. Demuestre que el producto de dos números naturales consecutivos es siempre múltiplo de dos. Demostración. Tenemos que demostrar que dado cualquier número natural n se cumple que: n(n + 1) = 2m para algún número natural m n. Notemos que podemos resolver éste problema rápidamente analizando la paridad de n. Sin embargo, practicaremos la inducción: (BI) La armación se cumple para n = 1 pues: 1(1 + 1) = 2(1). (HI)Supongamos ahora que la armación es cierta para n = k. Esto es, que existe algún entero m k tal que: k(k + 1) = 2m k (PI)Ahora bien, tenemos que encontrar el natural m k+1 tal que (k + 1)(k + 2) = 2m k+1. Para esto, notemos que: k(k + 1) = 2m k por la HI entonces k(k + 1) + 2(k + 1) = 2m k + 2(k + 1) es decir, (k + 1)(k + 2) = 2(m k + k + 1). De aquí que el número m k+1 que buscamos es m k+1 = m k + (k + 1). Así, la armación es cierta para n = k + 1. Por lo tanto, por el PIM, la armaciónn es cierta para todos los números naturales. Observación 2 Nótese que aquí estamos utilizando los subíndices de las m's para indicar que el número m depende del valor de n. De ésta manera, no estamos diciendo que m k y m k+1 sean números consecutivos. 10. Demuestre que el producto de tres números naturales consecutivos es múltiplo de seis. Demostración. El enunciado nos pide demostrar que para cualquier número natural n hay un número m n (que depende del n que tomamos) tal que: n(n + 1)(n + 2) = 6m n (9) Igual que antes, podemos hacer la demostración analizando la divisibilidad por 2 y por 3 de n(n+1)(n+2). Pero, igual que en el ejercicio anterior, aprovecharemos para practicar la inducción: 4

5 B.I. La armación se cumple para n = 1 pues: 1(1 + 1)(1 + 2) = 6(1), aquí m 1 = 1. H.I. Supongamos que la armación se cumple para n = k. Es decir, que hay un número natural m k tal que: k(k + 1)(k + 2) = 6m k P.I Ahora tenemos que ver que existe un número m k+1 tal que (k + 1)(k + 2)(k + 3) = 6m k+1. Para esto, notemos que de la hipótesis de inducción tenemos que: [k(k + 1)(k + 2)] + 3(k + 1)(k + 2) = [6m k ] + 3(k + 1)(k + 2) Lo cual, factorizando (k + 1)(k + 2) del lado derecho de la igualdad, queda como sigue: (k + 1)(k + 2)(k + 3) = 6m k + 3(k + 1)(k + 2) Ahora bien, es claro que 3 divide a 3(k+1)(k+2). Además 2 también divide a 3(k+1)(k+2) pues, por el ejercicio anterior, (k + 1)(k + 2) es par. Por esta razón 6 también divide a 3(k + 1)(k + 2). Así, existe un número j tal que 3(k + 1)(k + 2) = 6j. Por lo tanto: (k + 1)(k + 2)(k + 3) = 6m k + 6j = 6(m k + j) De aquí que el m k+1 que buscamos es m k+1 = m k + j. Así, hemos demostrado que la armación es cierta para n = k + 1. Por lo tanto, por el PIM, la armación es cierta para todos los números naturales. Observación 3 En éste último ejercicio hemos utilizado el hecho de que si p y q son dos números primos tales que ambos dividen a un número a entonces pq también divide a a. 5

Semana 14. Carlos Hernandez. Helena de Oteyza. Alfredo.

Semana 14. Carlos Hernandez. Helena de Oteyza. Alfredo. Semana 4 Carlos Hernandez Los apuntes los encuentran en: http://wwwcimatmx/especialidadseg/documentos/algoritmospdf Helena de Oteyza http://wwwcimatmx/especialidadseg/documentos/desigualdadespdf Alfredo

Más detalles

Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma

Definición 1.2. Sea (K, +, ) un dominio de integridad. Un polinomio de grado n sobre K es una expresión de la forma Polinomios Definición 1.1. Un conjunto K junto con dos operaciones definidas en él que denotaremos por + : K K K : K K K para las cuales se cumplen las siguientes propiedades: Asociatividad Conmutatividad

Más detalles

= 310 (1 + 5) : 2 2 = = = 12 ( 3) ( 5) = = 2 = ( 4) + ( 20) + 3 = = 21

= 310 (1 + 5) : 2 2 = = = 12 ( 3) ( 5) = = 2 = ( 4) + ( 20) + 3 = = 21 Unidad I, NÚMEROS NATURALES Y ENTEROS A continuación se enuncian las claves de cada pregunta hechas por mí (César Ortiz). Con esto, asumo cualquier responsabilidad, entiéndase por si alguna solución está

Más detalles

Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas

Teoría de Números. Divisibilidad. Olimpiada de Matemáticas en Tamaulipas Teoría de Números Divisibilidad Olimpiada de Matemáticas en Tamaulipas 1. Introducción Divisibilidad es una herramienta de la aritmética que nos permite conocer un poco más la naturaleza de un número,

Más detalles

INDUCCIÓN MATEMÁTICA 1. INTRODUCCIÓN

INDUCCIÓN MATEMÁTICA 1. INTRODUCCIÓN INDUCCIÓN MATEMÁTICA EDUARDO SÁEZ, IVÁN SZÁNTÓ DEPARTAMENTO DE MATEMÁTICA UNIVERSIDAD TECNICA FEDERICO SANTA MARIA. INTRODUCCIÓN El método deductivo, muy usado en matemática, obedece a la siguiente idea:

Más detalles

Teoría de Números. 1. Introducción. Factorización Algebraica. Olimpiada de Matemáticas en Tamaulipas

Teoría de Números. 1. Introducción. Factorización Algebraica. Olimpiada de Matemáticas en Tamaulipas Teoría de Números Factorización Algebraica Olimpiada de Matemáticas en Tamaulipas 1. Introducción El matemático, físico y astrónomo Carl Friedrich Gauss (1777-1855) fue uno de los más importantes personajes

Más detalles

CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960

CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960 universidad de san carlos Facultad de Ingeniería Escuela de Ciencias Departamento de Matemática clave-960-1-m-2-00-2012 CLAVE DE EXAMEN Matemática para computación 1 código de curso: 960 Datos de la clave

Más detalles

Introducción a la Teoría de Números

Introducción a la Teoría de Números Introducción a la Teoría de Números La Teoría de Números es un área de las matemáticas que se encarga de los números primos, factorizaciones, de qué números son múltiplos de otros, etc. Aunque se inventó

Más detalles

Capítulo II. Pruebas en Matemáticas

Capítulo II. Pruebas en Matemáticas Capítulo II Pruebas en Matemáticas Ahora nos concentramos en afirmaciones matemáticas y sus pruebas. Se encuentra que tratar de escribir pruebas justificando cada paso se vuelve rápidamente inmanejable,

Más detalles

TRABAJO PRÁCTICO Nº 4: POLINOMIOS

TRABAJO PRÁCTICO Nº 4: POLINOMIOS TRABAJO PRÁCTICO Nº : POLINOMIOS EJERCICIOS A DESARROLLAR Clase ) Dados los polinomios reales P(x) =.x ; Q(x) = 3x3 x + y los polinomios complejos R(x) = i.x ; S(x) = x + ( + i).x i, calcular: a) 3x. P(x)

Más detalles

Propiedades de números enteros (lista de problemas para examen)

Propiedades de números enteros (lista de problemas para examen) Propiedades de números enteros (lista de problemas para examen) Denotamos por Z al conjunto de los números enteros y por N al conjunto de los números enteros positivos: N = 1, 2, 3,...}. Valor absoluto

Más detalles

Algoritmo de Euclides

Algoritmo de Euclides Algoritmo de Euclides Melanie Sclar Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires AED III Melanie Sclar (UBA) Algoritmo de Euclides AED III 1 / 21 Ejercicio 2.8 de la práctica Ejercicio

Más detalles

Demostración Contraejemplo. Métodos Indirectos

Demostración Contraejemplo. Métodos Indirectos DEMOSTRACION Una demostración de un teorema es una verificación escrita que muestra que el teorema es verdadero. Informalmente, desde el punto de vista de la lógica, una demostración de un teorema es un

Más detalles

Capítulo 1. Desigualdades

Capítulo 1. Desigualdades Capítulo 1 Desigualdades 1 Desigualdades Elordenenlosnúmerosreales Cuando discutimos sobre la belleza de dos artistas de cine, no siempre llegamos a un acuerdo, en gustos se rompen géneros ; en cambio,

Más detalles

Introducción a la Teoría de Números

Introducción a la Teoría de Números Introducción a la Teoría de Números Elaborado por: Jeff Maynard Guillén Eliminatoria II Julio, 2011 Introducción a la Teoría de Números A manera de repaso vamos a recordar algunos conjuntos N = {1, 2,

Más detalles

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009

Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 2009 Soluciones oficiales de los problemas de la Final de la XXI Olimpiada Nacional de Matemática 009 Comisión Académica 1 Nivel Menor Problema 1. Considere un triángulo cuyos lados miden 1, r y r. Determine

Más detalles

Enunciados de los problemas (1)

Enunciados de los problemas (1) Enunciados de los problemas (1) Problema 1. El peso de tres manzanas y dos naranjas es de 255 gramos. El peso de dos manzanas y tres naranjas es de 285 gramos. Si todas las manzanas son del mismo peso

Más detalles

Clase 2: Algoritmo de Euclídes

Clase 2: Algoritmo de Euclídes Clase 2: Algoritmo de Euclídes Dr. Daniel A. Jaume, * 8 de agosto de 2011 1. Máximo común divisor Para entender que es el máximo común divisor de un par de enteros (no simultáneamente nulos). Lidearemos

Más detalles

Euclides Extendido y Teorema Chino del Resto

Euclides Extendido y Teorema Chino del Resto Euclides Extendido y Teorema Chino del Resto Taller de Álgebra I Segundo cuatrimestre de 2013 Lema de Bézout Recordemos este lema: Lema (Étienne Bézout) Sean a, b Z, alguno distinto de 0. Entonces existen

Más detalles

ALGUNOS TÓPICOS EN TEORÍA DE NÚMEROS: NÚMEROS MERSENNE, TEOREMA DIRICHLET, NÚMEROS FERMAT.

ALGUNOS TÓPICOS EN TEORÍA DE NÚMEROS: NÚMEROS MERSENNE, TEOREMA DIRICHLET, NÚMEROS FERMAT. Scientia et Technica Año XVI, No 48, Agosto de 2011. Universidad Tecnológica de Pereira. ISSN 0122-1701 185 ALGUNOS TÓPICOS EN TEORÍA DE NÚMEROS: NÚMEROS MERSENNE, TEOREMA DIRICHLET, NÚMEROS FERMAT. Some

Más detalles

Ejercicios del tema 7

Ejercicios del tema 7 U N I V E R S I D A D D E M U R C I A Ejercicios del tema 7 DEPARTAMENTO DE MATEMÁTICAS CONJUNTOS Y NÚMEROS 2013/2014. Ejercicios de aritmética y congruencias 1. Un amigo le pregunta a otro: Cuántos hijos

Más detalles

a. no (si A entonces B)

a. no (si A entonces B) Una tabla de verdad es una tabla que despliega el valor de verdad de una proposición compuesta, para cada combinación de valores de verdad que se pueda asignar a sus componentes. Las tablas de verdad son

Más detalles

UN PAQUETE DE PROBLEMAS DE DIVISIBILIDAD

UN PAQUETE DE PROBLEMAS DE DIVISIBILIDAD UN PAQUETE DE PROBLEMAS DE DIVISIBILIDAD AUTORAS: PATRICIA CUELLO Y ADRIANA RABINO 1. Múltiplo de 7 A una persona cuya edad oscila entre 9 y 100 años se le pide que escriba su edad 3 veces consecutivas,

Más detalles

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. II Nivel I Eliminatoria

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. II Nivel I Eliminatoria OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT Teoría de Números II Nivel I Eliminatoria Abril, 2015 Índice 1. Presentación 2 2. Temario 2 3. Divisibilidad 2 4. Algoritmo de

Más detalles

ECUACIONES EN N (NÚMEROS NATURALES)

ECUACIONES EN N (NÚMEROS NATURALES) ECUACIONES EN N (NÚMEROS NATURALES) Una ecuación es una igualdad en la que aparecen constantes y variables ligadas mediante operaciones, la cual se satisface para determinados valores de las variables

Más detalles

LAS MATEMÁTICAS Y SU LENGUAJE. Entender, demostrar y resolver matemáticas

LAS MATEMÁTICAS Y SU LENGUAJE. Entender, demostrar y resolver matemáticas LAS MATEMÁTICAS Y SU LENGUAJE Entender, demostrar y resolver matemáticas El trabajo matemático Utilización de un lenguaje peculiar de significados precisos. Cuidado! A veces similar al cotidiano pero con

Más detalles

Ejercicios Resueltos 1 / Algebra / 2008

Ejercicios Resueltos 1 / Algebra / 2008 Ejercicios Resueltos 1 / Algebra / 008 Profesora: María Leonor Varas (Sección 4) Auxiliares: Sebastián Astroza & Diego Morán A continuación veremos un ejemplo de un tipo de problemas de inducción, los

Más detalles

Clase 1 Números Reales. Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales

Clase 1 Números Reales. Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Clase 1 Instituto de Ciencias Básicas Facultad de Ingeniería Universidad Diego Portales Introducción Muchas veces, en actividades cotidianas, es necesario dar respuesta a preguntas relacionadas con números,

Más detalles

Solución Primer Parcial Matemática

Solución Primer Parcial Matemática Solución Primer Parcial Matemática 1-01 1 Dados los puntos P 1 (5, 4) y P (, 4) hallar: (a) Ecuación, elementos y gráfico de la parábola con vértice en P 1 y foco en P. El eje de la parábola es paralelo

Más detalles

Teoría de números. Herbert Kanarek Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre

Teoría de números. Herbert Kanarek Universidad de Guanajuato Enero Junio Eugenio Daniel Flores Alatorre Teoría de números Herbert Kanarek Universidad de Guanajuato Enero Junio 2012 Eugenio Daniel Flores Alatorre Bibliografía The theory of numbers Ivan Nivan H. Zuckerman H. Montgomery Temario I. Divisibilidad

Más detalles

MÉTODOS DE DEMOSTRACIÓN

MÉTODOS DE DEMOSTRACIÓN 2016-1 1 Presentación 2 Métodos de Demostración Sobre métodos de demostración algunas preguntas de interés 1 Qué es una demostración? Sobre métodos de demostración algunas preguntas de interés 1 Qué es

Más detalles

1. NÚMEROS PRIMOS Y COMPUESTOS.

1. NÚMEROS PRIMOS Y COMPUESTOS. . NÚMEROS PRIMOS Y COMPUESTOS. De acuerdo a las propiedades ya vistas de los divisores, sabemos que: todo natural no nulo es divisor de sí mismo es divisor de todo número natural. Ahora: el natural tiene

Más detalles

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia

Scientia Et Technica ISSN: Universidad Tecnológica de Pereira Colombia Scientia Et Technica ISSN: 0122-1701 scientia@utp.edu.co Colombia GONZALEZ PINEDA, CAMPO ELIAS; GARCIA, SANDRA MILENA ALGUNOS TÓPICOS EN TEORÍA DE NÚMEROS: NÚMEROS MERSENNE, TEOREMA DIRICHLET, NÚMEROS

Más detalles

Sección III CRITERIOS DE DIVISIBILIDAD I (Criterios Habituales)

Sección III CRITERIOS DE DIVISIBILIDAD I (Criterios Habituales) Sección III CRITERIOS DE I (Criterios Habituales) Las reglas de divisibilidad son criterios que sirven para saber si un número es divisible por otro sin necesidad de realizar la división. Llamaremos criterio

Más detalles

Raíces de polinomios

Raíces de polinomios Raíces de polinomios En ésta página podrás conocer las herramientas necesarias para poder encontrar las raíces de polinomios de una variable con coeficientes enteros. Para ello hemos dividido esta página

Más detalles

Proceso Selectivo para la XXII IMC, Bulgaria

Proceso Selectivo para la XXII IMC, Bulgaria Proceso Selectivo para la XXII IMC, Bulgaria Facultad de Ciencias UNAM Instituto de Matemáticas UNAM SUMEM Indicaciones Espera la indicación para voltear esta hoja. Mientras tanto, lee estas instrucciones

Más detalles

Sección V EVALUACIONES

Sección V EVALUACIONES Sección V EVALUACIONES 5.1. EVALUACIÓN I 1. Indicar cuál de los números de la columna de la izquierda, cumple los criterios de divisibilidad de la tabla (algunos números pueden serlo de varios): Divisible

Más detalles

Matemática Discreta. Números, inducción y recursión. Números, inducción y recursión: principio de inducción

Matemática Discreta. Números, inducción y recursión. Números, inducción y recursión: principio de inducción Matemática Discreta Números, inducción y recursión: principio de inducción Números, inducción y recursión 1. Sistemas numéricos 2. Principio de inducción 3. Definiciones recursivas 4. División entera y

Más detalles

Teoria de Números. 1. Introducción. Residuos. Olimpiada de Matemáticas en Tamaulipas

Teoria de Números. 1. Introducción. Residuos. Olimpiada de Matemáticas en Tamaulipas Teoria de Números Residuos Olimpiada de Matemáticas en Tamaulipas 1. Introducción Hasta ahora, al trabajar con números enteros siempre nos hemos estado preguntando divide el número a al número b? Al mantenernos

Más detalles

Polinomios y fracciones algebraicas

Polinomios y fracciones algebraicas Polinomios y fracciones algebraicas LITERATURA Y MATEMÁTICAS La máquina de leer los pensamientos Dumoulin, conoce usted al profesor Windbag? Vagamente... Sólo le vi el día que le devolvimos la visita...

Más detalles

Gu ıa Departamento. Matem aticas U.V.

Gu ıa Departamento. Matem aticas U.V. Universidad de Valparaíso Instituto de Matemáticas 1. Determinar el cociente y el residuo de 541 y de -541al dividir por 17 391 y -391 al dividir por 17 Guía de Teoría de Números 2. Sea a Z,n N comparar

Más detalles

Olimpiadas Matemáticas. Universidad de Antioquia Soluciones Prueba Clasificatoria 2015 Nivel 3: 10-11

Olimpiadas Matemáticas. Universidad de Antioquia  Soluciones Prueba Clasificatoria 2015 Nivel 3: 10-11 Olimpiadas Matemáticas Universidad de Antioquia www.gkmath.com Soluciones Prueba Clasificatoria 2015 Nivel 3: 10-11 AVISO: Los textos aquí publicados son responsabilidad total de sus creadores. Estos son

Más detalles

PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02

PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES. Problemas 02 PROBLEMAS RESUELTOS DE PREPARACIÓN PARA OPOSICIONES Problemas 0 Salvador Pérez Gómez pies3coma14@hotmail.com 4 de abril de 007 PROBLEMA 1 Sea n un número natural. Sea A n = n + n + 3n. a) Demostrar que

Más detalles

TRABAJO PRÁCTICO Nº 4 FUNCIONES POLINÓMICAS

TRABAJO PRÁCTICO Nº 4 FUNCIONES POLINÓMICAS TRABAJO PRÁCTICO Nº 4 FUNCIONES POLINÓMICAS En este eje intentaremos continuar desarrollando en los estudiantes la competencia básica de Resolución de Problemas y además las siguientes competencias específicas

Más detalles

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. II Nivel I Eliminatoria

OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT. Teoría de Números. II Nivel I Eliminatoria OLIMPIADA COSTARRICENSE DE MATEMÁTICA UNA - UCR - TEC - UNED - MEP - MICIT Teoría de Números II Nivel I Eliminatoria Abril, 2015 Índice 1. Presentación 2 2. Temario 2 3. Divisibilidad 2 4. Algoritmo de

Más detalles

LA CONJETURA DE GOLDBACH Y SU RELACIÓN CON EL TEOREMA DE DIRICHLET CAMPO ELÍAS GONZALEZ PINEDA.

LA CONJETURA DE GOLDBACH Y SU RELACIÓN CON EL TEOREMA DE DIRICHLET CAMPO ELÍAS GONZALEZ PINEDA. LA CONJETURA DE GOLDBACH Y SU RELACIÓN CON EL TEOREMA DE DIRICHLET CAMPO ELÍAS GONZALEZ PINEDA. La Conjetura de Goldbach cegp@utp.edu.co La Conjetura de Goldbach afirma que todo número par mayor o igual

Más detalles

DE LOS NÚMEROS NATURALES Y ENTEROS

DE LOS NÚMEROS NATURALES Y ENTEROS Capítulo 2 DE LOS NÚMEROS NATURALES Y ENTEROS Objetivo general Presentar y afianzar algunos conceptos de los números naturales y números enteros relacionados con el estudio de la matemática discreta. Objetivos

Más detalles

Departamento de Ingeniería Matemática - Universidad de Chile

Departamento de Ingeniería Matemática - Universidad de Chile 5. Principio de inducción Ingeniería Matemática FACULTAD DE CIENCIAS FÍSICAS Y MATEMÁTICAS UNIVERSIDAD DE CHILE Introducción al Álgebra 08-1 5.1. Principio de inducción: Primera forma Importante: Visita

Más detalles

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros

ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Enteros Resumen teoría Prof. Alcón ALGEBRA 1- GRUPO CIENCIAS- TURNO TARDE- Z = N {0} N Enteros Las operaciones + y. son cerradas en Z, es decir la suma de dos números enteros es un número entero y el producto

Más detalles

Sección IV CRITERIOS DE DIVISIBILIDAD (Menos usuales)

Sección IV CRITERIOS DE DIVISIBILIDAD (Menos usuales) Sección IV CRITERIOS DE (Menos usuales) Los criterios que se presentan a continuación también cuentan con la regla que los define y su correspondiente demostración, no obstante, son reglas que en general

Más detalles

Ecuación de segundo grado

Ecuación de segundo grado UNEFA C.I.N.U. Matemáticas 0 Material adaptado con fines instruccionales por Teresa Gómez, de: Ochoa, A., González N., Lorenzo J. y Gómez T. (008) Fundamentos de Matemáticas, Unidad 5 Ecuaciones e Inecuaciones,

Más detalles

C. Ecuaciones e inecuaciones

C. Ecuaciones e inecuaciones C. Ecuaciones e inecuaciones C. Conceptos básicos La resolución de ecuaciones es el ejemplo más práctico de cómo el álgebra nos ayuda a resolver problemas. Mediante las ecuaciones será posible encontrar

Más detalles

k(2k 1)(2k + 1) = + (2k + 1) 2 = (k + 1)(2k + 3)(2k + 1) (H.I)

k(2k 1)(2k + 1) = + (2k + 1) 2 = (k + 1)(2k + 3)(2k + 1) (H.I) Matemática Discreta I: Ejercicios resueltos Temas 2- GRUPO: 1M1S-MI Ejercicio 1. Demuestra por induccin, que para todo n N, 1 2 + 2 + + (2n 1) 2 = n(2n 1)(2n + 1). k = 1: 1 2 1(2 1 1)(2 1 + 1) = (se cumple).

Más detalles

Principio de inducción y Sumatorias

Principio de inducción y Sumatorias Semana06[1/14] 3 de abril de 007 Principio de inducción: Primera forma Semana06[/14] Una categoría importante de proposiciones y teoremas es la de las propiedades de los números naturales. Aquí tenemos,

Más detalles

IDENTIFICAR Y RESOLVER ECUACIONES DE SEGUNDO GRADO

IDENTIFICAR Y RESOLVER ECUACIONES DE SEGUNDO GRADO IDENTIFICAR Y RESOLVER ECUACIONES DE SEGUNDO GRADO OBJETIVO Una ecuación de segundo grado con una incógnita es una ecuación que se epresa de la forma: a + b + c = 0 donde a, b y c son números reales y

Más detalles

El ejercicio de la demostración en matemáticas

El ejercicio de la demostración en matemáticas El ejercicio de la demostración en matemáticas Demostración directa En el tipo de demostración conocido como demostración directa(hacia adelante) se trata de demostrar que A B partiendo de A y deduciendo

Más detalles

EJERCICIOS Y PROBLEMAS RESUELTOS

EJERCICIOS Y PROBLEMAS RESUELTOS Ecuaciones de Segundo Grado -- página 1 EJERCICIOS Y PROBLEMAS RESUELTOS Ejercicio 1: Indica si son ecuaciones de segundo grado las siguientes ecuaciones: a) 5 + 8 + b) + + ( )( + ) c) + 1 a) El primer

Más detalles

CONJUNTO DE LOS NÚMEROS NATURALES

CONJUNTO DE LOS NÚMEROS NATURALES CONJUNTO DE LOS NÚMEROS NATURALES 1.- DEFINICIÓN DEL CONJUNTO DE LOS NÚMEROS NATURALES (Conjunto N): Un número natural es cualquier número que se puede usar para contar los elementos de un conjunto finito.

Más detalles

Relaciones de orden. Definición 1. Llamamos conjunto ordenado a un par (E, ) donde E es un conjunto y es un orden definido en E

Relaciones de orden. Definición 1. Llamamos conjunto ordenado a un par (E, ) donde E es un conjunto y es un orden definido en E Relaciones de orden Diremos que una relación R es de orden si verifica las propiedades reflexiva, antisimétrica y transitiva. Generalmente usaremos la notación en lugar de R para expresar relaciones de

Más detalles

Departamento de Matemáticas

Departamento de Matemáticas MA5 Clase : Series de números reales Definición de Serie Elaborado por los profesores Edgar Cabello y Marcos González Definicion Dada una sucesión de escalares (a n ), definimos su sucesión de sumas parciales

Más detalles

TEMA 2: DIVISIBILIDAD

TEMA 2: DIVISIBILIDAD TEMA 2: DIVISIBILIDAD Conceptos de múltiplo y divisor (ejemplos): Del 2 2,4,6,8,10,12,14,16, Del 3 3,6,9,12,15,18,21,24, Por ejemplo: Diremos que 8 es múltiplo de 2 o que 2 es divisor de 8 Conceptos de

Más detalles

Especialidad La enseñanza de las matemáticas en secundaria Grupo B: Celaya. Inducción. 1. Principio de Inducción

Especialidad La enseñanza de las matemáticas en secundaria Grupo B: Celaya. Inducción. 1. Principio de Inducción Especialidad La enseñanza de las matemáticas en secundaria Grupo B: Celaya Inducción 1. Principio de Inducción La inducción matemática es un método muy útil en algunas demostraciones. Se emplea generalmente

Más detalles

Divisibilidad y congruencia

Divisibilidad y congruencia de los ejercicios de la clase 8 Divisibilidad y congruencia Taller de Álgebra I Segundo cuatrimestre de 2016 Introducción A continuación les presentamos algunas soluciones para los ejercicios de la clase

Más detalles

UNIDAD 1 NUMEROS COMPLEJOS

UNIDAD 1 NUMEROS COMPLEJOS UNIDAD 1 NUMEROS COMPLEJOS El conjunto de los números complejos fue creado para poder resolver algunos problemas matemáticos que no tienen solución dentro del conjunto de los números reales. Por ejemplo

Más detalles

El polinomio. es divisible por x + 1, y. Comprobar utilizando el valor numérico, que el polinomio calcula con una división otro factor del polinomio.

El polinomio. es divisible por x + 1, y. Comprobar utilizando el valor numérico, que el polinomio calcula con una división otro factor del polinomio. 1 P() 8 El polinomio es el producto de tres factores, siendo dos de ellos los correspondientes a las raíces =1 = - Halla mediante dos divisiones consecutivas por el método de Ruffini el tercer factor Comprobar

Más detalles

Módulo 10 Postulados de campo

Módulo 10 Postulados de campo Módulo 10 Postulados de campo OBJETIVO: Conocerá los postulados de campo y su aplicación; utilizara postulados de campo en proposiciones de números reales Ahora, estamos interesados en ver el comportamiento

Más detalles

TEMA 3. ECUACIONES DE 1 er GRADO CON UNA INCÓGNITA.

TEMA 3. ECUACIONES DE 1 er GRADO CON UNA INCÓGNITA. TEMA 3. ECUACIONES DE 1 er GRADO CON UNA INCÓGNITA. 3.1 ECUACIONES Una ecuación es una epresión algebraica relacionada mediante el signo =, en la que las variables se denominan incógnitas. Llamamos primer

Más detalles

Números naturales y recursividad

Números naturales y recursividad Números naturales y recursividad Rafael F. Isaacs G. * Fecha: 12 de abril de 2004 Números naturales Cuál es el primer conjunto de números que estudiamos desde la escuela primaria? Se sabe que los números

Más detalles

V F F V V V F F F F V F F F V V F F F F V F F V. Este método de demostración esta basado en la equivalencia lógica

V F F V V V F F F F V F F F V V F F F F V F F V. Este método de demostración esta basado en la equivalencia lógica por Reducción al absurdo Observa las siguientes tablas de verdad Q Q V V V F V V Q Q V V V F F F V V V F F F Este método de demostración esta basado en la equivalencia lógica Absurdo Q Q Un absurdo es

Más detalles

Cuatro Problemas de Algebra en la IMO.

Cuatro Problemas de Algebra en la IMO. Cuatro Problemas de Algebra en la IMO. Rafael Sánchez Lamoneda UCV. Escuela de Matemáticas Barquisimeto, 10 de Marzo de 2008 Introducción. El objetivo de esta conferencia es analizar cuatro problemas de

Más detalles

Instituto Superior de Formación Técnica Nº 177

Instituto Superior de Formación Técnica Nº 177 Instituto Superior de Formación Técnica Nº 177 Ciudad de Libertad (Merlo) Curso de Ingreso Matemática Página 1 Los números naturales también sirven para ordenar. Así, decimos que la Tierra es el tercer

Más detalles

Si a los lados de un cuadrado se les aumenta el 10% de su medida. en qué porcentaje se incrementa su área?

Si a los lados de un cuadrado se les aumenta el 10% de su medida. en qué porcentaje se incrementa su área? Ejercicio 75 Si a los lados de un cuadrado se les aumenta el 10% de su medida. en qué porcentaje se incrementa su área? Respuesta Si el lado del cuadrado es x Area= lado por lado El área del nuevo cuadrado

Más detalles

Demostraciones con números primos (ejercicios)

Demostraciones con números primos (ejercicios) Demostraciones con números primos (ejercicios) Objetivos. Acostumbrarse a la definición de número primo, aprender a usarla en demostraciones simples. Requisitos. Propiedades de divisibilidad, máximo común

Más detalles

Introducción a la Matemática Discreta

Introducción a la Matemática Discreta Introducción a la Matemática Discreta Aritmética Entera Luisa María Camacho Camacho Introd. a la Matemática Discreta 1 / 36 Introducción a la Matemática Discreta Temario Tema 1. Teoría de Conjuntos. Tema

Más detalles

sup si A no es acotado.

sup si A no es acotado. Capítulo 6 Espacios completos 1. El teorema de Cantor En este capítulo estudiaremos más a fondo los espacios métricos completos. Lo primero que haremos es establecer la equivalencia entre completitud y

Más detalles

Ecuaciones de Primer Grado

Ecuaciones de Primer Grado Ecuaciones de Primer Grado Juan José Cervilla Sáez 1 o ESO Nombre: Objetivos: 1. Conocer qué es una ecuación de primer grado. 2. Conocer y aplicar las distintas etapas para resolver una ecuación de primer

Más detalles

Divisibilidad y congruencia

Divisibilidad y congruencia Divisibilidad y congruencia Taller de Álgebra I Verano 2017 Algoritmo de la división Teorema Dados a, d Z, d 0, existen únicos q, r Z tales que a = qd + r, 0 r < d. Idea de la demostración: (caso a 0,

Más detalles

TEMA Nº 1. Conjuntos numéricos

TEMA Nº 1. Conjuntos numéricos TEMA Nº 1 Conjuntos numéricos Aprendizajes esperados: Utilizar y clasificar los distintos conjuntos numéricos en sus diversas formas de expresión, tanto en las ciencias exactas como en las ciencias sociales

Más detalles

Números primos y criterios de divisibilidad

Números primos y criterios de divisibilidad Números primos y criterios de divisibilidad Taller de Álgebra I 1er cuatrimestre de 2014 Verificando si un número es primo Ejercicio: ( para hacer ahora!) Escribir una función que determine si un número

Más detalles

Criterios de divisibilidad

Criterios de divisibilidad ENCUENTRO # 2 TEMA: Criterios de Divisibilidad. CONTENIDOS: 1. Criterios de divisibilidad, múltiplos y divisores de un número dado. 2. Principios Fundamentales de la Divisibilidad. DESARROLLO Criterios

Más detalles

Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011

Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011 Especialidad La enseñanza de las matemáticas en secundaria Grupo B: Celaya Sesión del día 11 de Marzo del 2011 y tutoría del día 12 de Marzo del 2011 Álgebra Resumen de la sesión anterior. Se añadió que

Más detalles

Es aquel formado por todos los elementos involucrados en el problema.

Es aquel formado por todos los elementos involucrados en el problema. 1. TEORÍA DE CONJUNTOS CONCEPTO DE PERTENENCIA: "ð" Sea el conjunto A = ða, bð ð a ð A ð b ð A ð c ð A CONCEPTO DE SUBCONJUNTO: "ð" A ð B ð ð x ð A ð x ð B, ð x ð ð ð A, ð A A ð A, ð A CONJUNTOS ESPECIALES

Más detalles

1. Lenguaje algebraico

1. Lenguaje algebraico 1. Lenguaje algebraico El lenguaje algebraico permite epresar mediante símbolos matemáticos enunciados de situaciones de la vida diaria. En el álgebra se presentan problemas planteados en palabras que

Más detalles

Los Números Enteros. 1.1 Introducción. 1.2 Definiciones Básicas. Capítulo

Los Números Enteros. 1.1 Introducción. 1.2 Definiciones Básicas. Capítulo Los Números Enteros Capítulo 1 1.1 Introducción En este capítulo nos dedicaremos al estudio de los números enteros los cuales son el punto de partida de toda la teoría de números. Estudiaremos una serie

Más detalles

Prácticas para Resolver PROBLEMAS MATEMÁTICOS

Prácticas para Resolver PROBLEMAS MATEMÁTICOS Prácticas para Resolver PROBLEMAS MATEMÁTICOS 1 Prólogo El presente manual está dirigido a los estudiantes de las facultades de físico matemáticas de las Escuelas Normales Superiores que estudian la especialidad

Más detalles

XIII OLIMPIADA HONDUREÑA DE MATEMÁTICAS Gracias, Lempira, 31 de octubre de 2015

XIII OLIMPIADA HONDUREÑA DE MATEMÁTICAS Gracias, Lempira, 31 de octubre de 2015 XIII OLIMPIADA HONDUREÑA DE MATEMÁTICAS Gracias, Lempira, 31 de octubre de 2015 SOLUCIONES DEL NIVEL I Problema 1. Encuentre un número de dos cifras, tal que al intercambiar sus cifras se forma un nuevo

Más detalles

Seminario de problemas ESO. Curso Hoja 10

Seminario de problemas ESO. Curso Hoja 10 Seminario de problemas ESO. urso 014-1. Hoja 10 64. Iván escribe los números del 1 al 0 en orden y, puesto que los números del 10 al 0 tienen cifras, se da cuenta de que en total ha escrito 31 cifras.

Más detalles

Ejemplos: a) 15 si es múltiplo de 5 ; 15 si contiene a 5 tres veces. b) 20 no es múltiplo de 7 ; 20 no contiene a 7 un número entero de veces.

Ejemplos: a) 15 si es múltiplo de 5 ; 15 si contiene a 5 tres veces. b) 20 no es múltiplo de 7 ; 20 no contiene a 7 un número entero de veces. Clase-02 Continuación Números Naturales: Múltiplos: Si n IN ; múltiplo de un número n es todo número natural que contiene a n un número entero de veces. Ejemplos: a) 15 si es múltiplo de 5 ; 15 si contiene

Más detalles

Divisibilidad y congruencias

Divisibilidad y congruencias Divisibilidad y congruencias Ana Rechtman Bulajich y Carlos Jacob Rubio Barrios Revista Tzaloa, año 1, número 2 Empecemos por explicar el significado de la palabra divisibilidad. En este texto vamos a

Más detalles

Matemáticas I: Hoja 1

Matemáticas I: Hoja 1 Matemáticas I: Hoja 1 1. Números complejos Hasta ahora, hemos visto que los números reales son aquellos que poseen una expresión decimal y que podemos representar en una recta infinita. No obstante, para

Más detalles

Soluciones Fase Local Viernes 13 y sábado 14 de enero de m 7 = n 2

Soluciones Fase Local Viernes 13 y sábado 14 de enero de m 7 = n 2 LIII Olimpiada Matemática Española Soluciones Fase Local Viernes 3 y sábado 4 de enero de 07 Olimpiada Matemática Española RSME. Describir todas las soluciones enteras positivas (m, n) de la ecuación 8m

Más detalles

Relación de ejercicios. 1.1 Números reales. Ejercicio 1.1. Calcular para qué valores de x se verifica que 2x 3

Relación de ejercicios. 1.1 Números reales. Ejercicio 1.1. Calcular para qué valores de x se verifica que 2x 3 Números reales. Números reales Ejercicio.. Calcular para qué valores de se verifica que 3 + < 3. Solución.. Para quitar denominadores tenemos que multiplicar por +. a) Si >, entonces + > 0 y 3 + < 3 6

Más detalles

El Conjunto de los Números Naturales

El Conjunto de los Números Naturales Objetivos El Conjunto de los Carlos A. Rivera-Morales Álgebra Objetivos Tabla de Contenido Objetivos 1 Propiedades de los Objetivos Objetivos: Discutiremos: el conjunto de los números naturales Objetivos

Más detalles

Univ. Nacional de Colombia, Medellín Escuela de Matemáticas Matemáticas Discretas Marzo 8, Soluciones Taller 3

Univ. Nacional de Colombia, Medellín Escuela de Matemáticas Matemáticas Discretas Marzo 8, Soluciones Taller 3 Univ. Nacional de Colombia, Medellín Escuela de Matemáticas Matemáticas Discretas Marzo 8, 010 Soluciones Taller 3 1. Pruebe usando contradicción que: + 6 < 15. (Sin usar calculadora, sólo operaciones

Más detalles

ÁREA: MATEMÁTICAS NIVEL: 6º

ÁREA: MATEMÁTICAS NIVEL: 6º ÁREA: MATEMÁTICAS NIVEL: 6º Temporalización: 14-10/8-11 Nombre:... TEMAS : 3-4 C.R.A. Los Fresnos Matemáticas 6º Curso 2013-14 LO QUE VAS A APRENDER EN ESTA UNIDAD VAS A APRENDER: Reconocer y utilizar

Más detalles

EJERCICIOS. 7.3 Valor de un polinomio para x = a. Por lo tanto: para determinar expresiones

EJERCICIOS. 7.3 Valor de un polinomio para x = a. Por lo tanto: para determinar expresiones or lo tanto: para determinar epresiones a que sean divisores de un polinomio con coeficientes enteros, se deben asignar valores al número a que dividan al término independiente. Apliquemos este resultado

Más detalles

OLIMPIADA MEXICANA DE MATEMÁTICAS Mayo 2016 TEORÍA DE NÚMEROS

OLIMPIADA MEXICANA DE MATEMÁTICAS Mayo 2016 TEORÍA DE NÚMEROS OLIMPIADA MEXICANA DE MATEMÁTICAS Mayo 016 TEORÍA DE NÚMEROS 1. El conjunto de los números reales Dígitos:1,,3,4...,9,0. Naturales:1,,3,4,5,... Enteros:..., 5, 4, 3,, 1,0,1,,3,4,5,... Racionales: Los números

Más detalles

4 de Noviembre de 2010 Departamento de Matemáticas

4 de Noviembre de 2010 Departamento de Matemáticas Prototipo de Examen ALM 1er cuatrimestre Universidad de Alcalá 4 de Noviembre de 2010 Departamento de Matemáticas Apellidos, Nombre: NOTA: Durante la prueba no se podra hacer uso de ningún dispositivo

Más detalles

Material educativo. Uso no comercial 1.4 MÉTODOS DE DEMOSTRACIÓN Método directo o Método de la hipótesis auxiliar

Material educativo. Uso no comercial 1.4 MÉTODOS DE DEMOSTRACIÓN Método directo o Método de la hipótesis auxiliar 1.4 MÉTODOS DE DEMOSTRACIÓN Designamos en esta forma las estrategias o esquemas más generales que identificamos en los procesos deductivos. Estos modelos están fundamentados lógicamente en teoremas o reglas

Más detalles

CONJUNTO DE LOS NÚMEROS NATURALES

CONJUNTO DE LOS NÚMEROS NATURALES República Bolivariana de Venezuela Ministerio de la Defensa Universidad Nacional Experimental de las Fuerzas Armadas Curso de Inducción Universitaria CIU Cátedra: Razonamiento Matemático CONJUNTO DE LOS

Más detalles