MECANICA DE FLUIDOS I. Departamento de Metalurgia Universidad de Atacama

Tamaño: px
Comenzar la demostración a partir de la página:

Download "MECANICA DE FLUIDOS I. Departamento de Metalurgia Universidad de Atacama"

Transcripción

1 MECANICA DE FLUIDOS I Juan Chamorro González Departamento de Metalurgia Universidad de Atacama

2 DINÁMICA ELEMENTAL DE FLUIDOS ECUACIÓN DE BERNOULLI

3 Rapidez de flujo de fluido La cantidad de flujo que fluye en un sistema por unidad de tiempo se puede expresar de las siguientes maneras: Rapidez de flujo de volumen (Q): Es el volumen de flujo de fluido que pasa por una sección por unidad de tiempo (más conocida como CAUDAL). Q = v A v: velocidad promedio del flujo A: área de la sección transversal

4 Rapidez de flujo de fluido Rapidez de flujo de peso (W): Es el peso de fluido que fluye por una sección por unidad de tiempo. W = γ Q γ: peso específico co del fluido Q: rapidez de flujo de volumen o caudal

5 Rapidez de flujo de fluido Rapidez de flujo de masa (M): Es la masa de fluido que fluye por una sección por unidad de tiempo. M = ρ Q ρ: densidad dad del fluido Q: rapidez de flujo de volumen o caudal

6 Unidades de la rapidez de flujo de fluido Símbolo Nombre Definición Unidades Unidades SI S. Inglés Q Rapidez de Q = v A M 3 /s pie 3 /s flujo de volumen W Rapidez de W=γ Q N/s lb f /s flujo de peso =γ v A M Rapidez de M=ρ Q Kg/s slug/s flujo de masa =ρ v A

7 Algunas unidades útiles:,0 L/min = 6, m 3 /s,0 m 3 /s = L/min,0 galón/min = 3,785 L/min,0 galón/min = 6, m 3 /s,0 pie 3 /s = 449 galones/min

8 La ecuación de continuidad La ecuación general de conservación de una propiedad p (Masa, momento, energía, carga eléctrica) está dada por: Propiedadque al volumende control por unidadde tiempo ingresa Propiedadque se genera en el volumende control por unidadde tiempo Propiedadque sale del volumende control por unidadde tiempo = Propiedadque se acumula en el volumende control por unidadde tiempo

9 La ecuación de continuidad Si un fluido fluye desde la sección hacia la sección con rapidez constante, es decir, si la cantidad de fluido que pasa por cualquier sección en un cierto tiempo dado es constante, entonces la masa de fluido que pasa por la sección en un tiempo dado d debe ser la misma que la que fluye por la sección, en el mismo tiempo. Entre las secciones y no hay ni generación ni acumulación de masa por unidad de tiempo, esto es: M = M Como M = ρ v A, A entonces: ρ v A = ρ v A A A Si el fluido que circula entre las secciones y es incompresible (ρ =ρ ), la ecuación de continuidad se expresa por: Q = Q v = v

10 Balance global de masa Si se considera un flujo a régimen permanente y homogéneo a través de una porción de tubería, se cumple: a) en el elemento diferencial : i) el caudal volumétrico dq, será : dq = < v > da ii) el flujo másico dw, será dw = ρ dq = ρ < v > da <v> <v > A b) en el plano : Q w = = < v ρ > A < v > A <v > A da c) en el plano : Q w = = < v ρ < > A v > A

11 Balance global de masa Aplicando la ecuación general de conservación de materia: Masa que ingresa al volumen de control por unidad de tiempo Masa que se genera en el volumen de control por unidad de tiempo Masa que sale del volumen de control por unidad de tiempo = Masa que se acumula en el volumen de control por unidad de tiempo y considerando que no hay generación de masa en el volumen de control, tenemos: { ρ < > A } {} 0 { ρ < v > A } v = dm dt Δw = w - w = dm dt

12 Conservación de la energía Ecuación de Bernoulli Ley de conservación de la energía: la energía no puede ser creada ni destruida, solo se transforma de un tipo en otro. Cuando se analizan problemas de flujo en conductos, es necesario considerar tres formas de energía: Energía de Flujo (llamada también Energía de presión o trabajo de flujo): Representa la cantidad de trabajo necesario para mover el elemento de fluido a través de una cierta sección en contra de la presión p. w p E F = γ Donde: w = peso del fluido, p = presión y γ = peso específico del fluido.

13 Conservación de la energía Ecuación de Bernoulli Energía Potencial: Debido a su elevación, la energía potencial del elemento de fluido con respecto a algún nivel de referencia está dada por: E P = w z Energía Cinética: Debido a su velocidad la energía cinética del elemento de fluido es: E K = w v g

14 Conservación de la energía E ió d B lli Ecuación de Bernoulli La cantidad total de energía que posee el elemento de fluido será la La cantidad total de energía que posee el elemento de fluido será la suma de las tres energías anteriores: E E E E K P F = v w z w p w E = g z w γ E =

15 Conservación de la energía E ió d B lli Ecuación de Bernoulli Considere un elemento de fluido que pasa por las secciones y (tal como se muestra en la figura): La energía total en la sección es: g v w z w γ p w E = La energía total en la sección es: g v w z w γ p w E = g γ

16 Conservación de la energía E ió d B lli Ecuación de Bernoulli Si entre las secciones y no se agrega ni se pierde energía, entonces ó í el principio de conservación de la energía establece que: E = E g v w z w γ p w g v w z w γ p w = Simplificando el peso w del elemento de fluido, se obtiene la Ecuación de Bernoulli v z p v z p = Ecuación de Bernoulli g z γ g z γ

17 Ecuación de Bernoulli La Ecuación de Bernoulli se deriva del Principio de Conservación de la Energía Mecánica. p γ = p γ v z = cons tan te g Cabeza de presión p γ z = Cabeza piezométrica i z = Cabeza de elevación V d g = Cabeza de velocidad p γ z v g = Cabeza total

18 Restricciones de la ecuación de Bernoulli Es válida solamente para fluidos incompresibles, puesto que el peso específico del fluido se tomó como el mismo en las dos secciones de interés. No puede haber dispositivos mecánicos entre las dos secciones de interés que pudieran agregar o eliminar energía del sistema, ya que la ecuación establece que la energía total del fluido es constante. No puede haber transferencia de calor hacia adentro o afuera del sistema. No puede haber pérdidas de energía debidas a la fricción.

19

20 Teorema de Torricelli La velocidad de vaciado ( o de llenado) de un estanque depende solamente de la diferencia de elevación entre la superficie libre del fluido y la salida donde se encuentra ubicado el orificio de descarga. Así, entre los puntos y : p γ z v g = p γ z v g Si se asume los hechos que Z = h, Z = O, que el depósito es grande (v = 0) y que las presiones manométricas p y p valen cero (ya que en ambos puntos el fluido está en contacto con la atmósfera, se obtiene la ecuación que Torricelli dedujo en 643: v = g h Teorema de Torricelli

21 Teorema de Torricelli De acuerdo al Teorema de Torricelli, la velocidad d con que un fluido se vacía desde un recipiente abierto a través de un orificio lateral, el proporcional a la raíz cuadrada de la altura del fluido sobre el orificio. A mayor profundidad, mayor será la velocidad de salida del fluido a través del orificio Un comportamiento similar se observa en los flujos de agua, a alta velocidad, de un embalse.

22 El frasco de Mariotte De acuerdo con el teorema de Torricelli, la velocidad de salida de un líquido por un orificio practicado en su fondo es la misma que la que adquiere un cuerpo que cayese libremente en el vacío desde una altura h, siendo h la altura de la columna de fluido v = gh Si S es la sección del orificio, el gasto S v, o volumen de fluido que sale por el orificio en la unidad de tiempo no es constante. Si queremos producir un gasto constante podemos emplear el denominado frasco de Mariotte. Consiste en un frasco lleno de fluido hasta una altura h 0, que está cerrado por un tapón atravesado por un tubo cuyo extremo inferior está sumergido en el líquido. El fluido sale del frasco por un orificio practicado en el fondo del recipiente. En el extremo B la presión es la atmosférica ya que está entrando aire por el tubo, a medida que sale el líquido por el orificio. Si h es la distancia entre el extremo del tubo y el orificio, la velocidad de salida del fluido corresponderá no a la altura h 0 desde el orificio a la superficie libre de fluido en el frasco, sino a la altura h al extremo del tubo. Dado que h permanece constante en tanto que el nivel de líquido esté por encima de B, la velocidad del fluido y por tanto, el gasto se mantendrán constantes. Cuando la altura de fluido en el frasco h 0 es menor que h, la velocidad d de salida v del fluido deja de ser constante t La velocidad de salida v puede modificarse introduciendo más o menos el tubo AB en frasco.

23 El frasco de Mariotte

24 Presión estática, de estancamiento, dinámica y total Si la ecuación de Bernoulli se multiplica por el peso específico γ, se tiene: p γ z ρ v = cons tan te Las presiones de estancamiento y dinámica se producen cuando se convierte la energía cinética en un fluido que circula en un aumento de presión a medida que el fluido llega al reposo. El término p, de la ecuación anterior, corresponde a la presión termodinámica real del fluido a medida que éste fluye. Para medirla un espectador tendría que desplazarse junto el fluido, es decir quedar estático con respecto al fluido en movimiento, razón por la cual dicho término se denomina presión estática.

25 Otra forma de medir la presión estática sería perforando un orificio en una superficie plana y ajustando un piezómetro mediante la ubicación en el punto 3 tal como se muestra en la figura: La presión en () del fluido en movimiento es p =p 3 γh 3->, es la misma que si el fluido estuviera estático. Se sabe que p 3 =p o γh 4->3 Por lo tanto p = γh El término γz se llama presión hidrostática y representa el cambio de presión posible debido a variaciones i de energía potencial del fluido como resultado de cambios de elevación. El término ρv / se llama presión dinámica. Se puede observar en la El término ρv / se llama presión dinámica. Se puede observar en la figura en el punto ()

26 El punto (), en el cual v =0, se llama punto de estancamiento. Si se aplica la ecuación de Bernoulli entre los puntos () y () se tiene que: p = p ρ v Por lo tanto, la presión en el punto de estancamiento es mayor que la presión estática p, por una cantidad ρv /, la presión dinámica. Sobre todo cuerpo estacionario colocado en un fluido en movimiento existe un punto de estancamiento. Algunos fluidos circulan sobre y algunos circulan bajo el objeto. La línea divisorias de denomina línea de corriente de estancamiento ento y termina en el punto de estancamiento sobre el cuerpo.

27 Si se ignoran los efectos de elevación, la presión de estancamiento, pρv /, es la mayor presión obtenible a lo largo de una línea de corriente dada. Representa la conversión de toda la energía cínética en un aumento de presión. La suma de la presión estática, la presión hidrostática y la presión dinámica i se denomina presión total, t p T. La Ecuación de Bernoulli es una afirmación de que la presión total permanece constante t a lo largo de una línea de corriente. Esto es: p γ z ρ v = cons tan te a lo largo de una línea de corriente Si se conoce la presión estática y de estancamiento de un fluido, se puede calcular su velocidad (Principio en el cual se basa el Tubo de Pitot)

28 El tubo de Pitot Henri Pitot, t a comienzos de 700, puso a punto una sonda que, dirigida i id en el sentido del flujo, permite medir la presión estática en un fluido (esta sonda fue modificada a mediados de 800 por el científico francés Henry Darcy) El dispositivo iti está perforado con pequeños orificios i laterales l suficientemente i t alejados del punto de parada o estancamiento (punto del flujo donde se anula la velocidad) para que las líneas de corriente sean paralelas a la pared. Esta sonda, combinada con una sonda de presión de impacto (perpendicular p a la dirección de flujo), forma una sonda de presión cinética llamada tubo de Pitot.

29 Tal como se muestra en la figura, dos tubos concéntricos están conectados a dos manómetros o a un manómetro diferencial, de modo que se puede calcular la diferencia p 3 -p 4. El tubo central mide la presión de estancamiento ento en su punta abierta. Si los cambios de elevación son insignificantes, p3 = p ρ v Donde ρ y v son las presión y velocidad del fluido corriente arriba del punto () El tubo exterior r tiene varios orificios pequeños a una distancia apropiada de la punta, de modo que mide la presión estática. Si la diferencia de elevación entre () y (4) es insignificante, entonces p 4 =p =p. Al reemplazarla en la ecuación anterior y ordenando, se obtiene: v = (p p )/ ρ 3 4

30 Este dispositivo se emplea a menudo en aeronáutica: situado en un lugar de poca turbulencia, permite medir la velocidad de avance de un avión con respecto al aire. Conectado a un transductor diferencial de presión puede medir directamente v /g. También se usa en la medición del flujo de líquidos y gases en tuberías

31 Medición del caudal Una forma eficiente de medir el caudal a través de una tubería es poniendo una restricción en el interior de la tubería y medir la diferencia de presión entre la sección () corriente arriba (de baja velocidad y alta presión) y la sección () corriente abajo (de alta velocidad y baja presión. Si se supone que el flujo es horizontal, estable, no viscoso e incompresible entre los puntos () y (), la ecuación de Bernoulli se convierte en: p ρ v = p ρ v Si los perfiles de velocidad son uniformes entre las secciones () y (), la ecuación de continuidad puede escribirse como : Q = A v =A v Combinando estas dos ecuaciones se obtiene el caudal teórico: Q = A (p p ) A ρ ( A )

32 El Efecto Venturi Tal como lo predice la Ecuación de Continuidad, la velocidad de un fluido aumenta porque el área del conducto se reduce y, según la ecuación de Bernoulli, una aumento de velocidad producirá una disminución i ió de la presión. El efecto Venturi consiste en que la corriente de un fluido dentro de un conducto cerrado disminuye la presión del fluido al aumentar la velocidad cuando pasa por una zona de sección menor. Si en este punto del conducto se introduce el extremo de otro conducto, se produce una aspiración del fluido contenido en este segundo conducto. Este efecto recibe su nombre del físico italiano Giovanni Battista Venturi (746-8).

33 Aplicaciones del Efecto Venturi Motor: el carburador aspira el carburante por efecto Venturi, mezclándolo con el aire (fluido del conducto principal), al pasar por un estrangulamiento. Hogar: En los equipos ozonificadores de agua, se utiliza un pequeño tubo Venturi para efectuar una succión del ozono que se produce en un depósito de vidrio, y así mezclarlo con el flujo de agua que va saliendo del equipo con la idea de destruir las posibles bacterias patógenas y de desactivar los virus y otros microorganismos que no son sensibles a la desinfección con cloro. Tubos de Venturi: Medida de velocidad de fluidos en conducciones y aceleración de fluidos.

34 Algunas otras aplicaciones del Efecto Venturi son: En los capilares del sistema circulatorio humano. En dispositivos que mezclan el aire con un gas inflamable (ej: Quemador Bunsen) Atomizadores que dispersan el perfume o en pistola spray para pintar. Boquilla de los extinguidores (para apagar con espuma el fuego) Barril de los clarinetes modernos, que al hacer pasar el aire producen un mejor tono. Compresores de aire de limpieza industrial Venturi Scrubbers usados para limpiar emisiones de flujo de gases. Injectores que se usan para agregar gas cloro en los sistemas de tratamiento de agua por cloración.

35

36 Ejercicios

37 Ejercicio ) A través de la contracción de la tubería que se muestra en la figura fluye agua. Para la diferencia dada de 0, m en el nivel del manómetro, determinar el caudal en función del diámetro de la tubería pequeña, D. Respuesta: Q =,56 D m s 3

38 Ejercicio ) A través de la contracción de la tubería que se muestra en la figura fluye agua. Para la diferencia dada de 0, m en el nivel del manómetro, determinar el caudal en función del diámetro de la tubería pequeña, D. Respuesta: Q = 0,056 D (0,) 4 D 4 m s 3

39 Ejercicio 3) A través de la contracción de la tubería que se muestra en la figura fluye agua. Para la diferencia dada de 0, m en el nivel del manómetro, determinar el caudal en función del diámetro de la tubería pequeña, D. Respuesta: Q = 0,056 para cualquier D. m s 3

40 Ejercicio 4) En la figura se muestra un sistema de tubos que lleva agua. La velocidad en el plano es de 4 [m/s] y el diámetro es de 5 cm. En el plano el diámetro es de 0 cm. Encuentre el caudal y la velocidad de la sección. v,a,ρ v,a,ρ

41 Ejercicio 5) Se descarga metal líquido desde un recipiente cilíndrico a través de un orificio situado en el fondo. a) Cuál es la altura del estanque después de 5 minutos de vaciado? b) Cuál es la velocidad de bajada del nivel del estanque después de 0 minutos? c) Calcular el tiempo que se requiere para vaciar el recipiente D D = 3 m Φ ρ orificio = metal g = h = = 7, 9,8 m s 3,5 m 7,5 cm 0 3 kg m 3 h metal

42 Ejercicio 6) Hacia dentro de un estanque cilíndrico fluye agua a través de un tubo con una velocidad de 0 pies/s y sale a través de los tubos y 3 con velocidades d de 8 y 0 pies/s respectivamente. En la parte superior hay una válvula abierta a la atmósfera. Suponiendo que el flujo es incompresible, cuál es la velocidad promedio del flujo de aire a través orificio?. D 4 = h D = 3 D 3 =,5 D =

43 Ejercicio 7) De un depósito fluye aire en forma estable a través de una manguera de diámetro D=0,03 m y sale a la atmósfera por un boquilla de diámetro d=0,0 0 m. La presión en el depósito permanece constante en 3 kpa manométrica. Las condiciones atmosféricas del aire son 5 ºC y tmósfera (0 kn/m ) de presión. Determine el caudal y la presión en la manguera. R = 86,9 N m/(kgºk) Respuesta: Q = 0, p = 963 m s 3 N m

44 Ejercicio 8) Del grifo que está en el primer piso del edificio fluye agua con una velocidad máxima de 0 pies/s. Para flujo estable no viscoso, determine la velocidad d máxima del agua desde d el grifo del sótano y desde d el grifo en el segundo piso (suponer que cada piso mide pies de alto) (3) Respuesta: () v = 34, pies / s v 3 = 373 Im posible!!! El agua no llega al segundo piso () 3 pies

45 Ejercicio 9) Para el estanque que se muestra en la figura, calcule el tiempo requerido para vaciarlo desde un nivel de 3,0 m hasta 0,5 m. El tanque tiene un diámetro de,5 m y la boquilla un diámetro de 50 mm. Respuesta: 6 min y 57 s.

46 Ejercicio 0) Para cortar varios materiales se pueden usar chorros líquidos de diámetro pequeño y alta presión. Si se ignoran los efectos viscosos, calcular l la presión para producir un chorro de agua de 0, mm de diámetro con una velocidad de 700 m/s. Determinar el caudal. Respuesta:, kn/m, 5, m 3 /s

47 Ejercicio ) Para el sistema mostrado en la figura, calcule la presión de aire requerida por encima del agua para hacer que el chorro suba 40 pies desde d la boquilla. La profundidad d h es de 6,0 pies. Respuesta: 4,73 psi g

48 Ejercicio ) Un envase de plástico de una bebida gaseosa contiene agua, que fluye a través de tres orificios, tal como se muestra en la figura. El diámetro de cada orificio i es de 0,5 pulgadas y la distancia i entre ellos es de pulgadas. Si se desprecia los efectos viscosos y se considera una condición cuasi-estacionaria, determine el tiempo que el orificio superior deja de drenar. Asuma que la superficie del agua se encuentra a pulgadas sobre el orificio superior cuando t = 0. Respuesta: 0,7 segundos

49 Ejercicio 3) Un estanque grande contiene una capa de aceite que flota sobre agua. Si el flujo es estacionario y no viscoso, calcule: (a) la altura h que alcanzará el chorro de agua (b) la velocidad del agua en la tubería (c) la presión en la tubería horizontal Respuesta: (a),80 m (b),85 m/s (c) 35,5 kpa

50 Ejercicio 4) En un túnel de viento se usa aire para probar automóviles. (a) Determine la lectura h del manómetro cuando en la zona de prueba la velocidad es de 60 millas/hora. Note que en el manómetro existe una columna de pulg de aceite sobre el agua. (b) Determine la diferencia entre la presión de estancamiento frente al vehículo y la presión en la zona donde se realiza la prueba. ρ aire = 0,0038 slug/pie 3 γ agua = 6,4 lb/pie 3 Respuesta: (a) h = 0,3 pies (b) 9, lb/pie

51 Ejercicio 5) Qué presión p se requiere para obtener un gasto de 0,09 pies 3 /s del depósito que se muestra en la figura? γ gasolina = 4,5 lb/pie 3 Respuesta: p = 5,8 psi

52 Ejercicio 6) Para vaciar una piscina de poca profundidad se usa una manguera que mide 0 m de largo y 5 mm de diámetro interior. Si se ignoran los efectos viscosos, cuál es el caudal que sale de la piscina? i Respuesta: Q = 9, 0-4 m 3 /s

53 Ejercicio 7) Aceite de gravedad específica 0,83 fluye a través de una tubería. Si se desprecian los efectos viscosos, determine el caudal. Respuesta: Q = 0,83 pies 3 /s

54 Ejercicio 8) A través de los grandes depósitos que se muestran en la figura fluye agua de manera estable. Determinar la profundidad del agua, h A. Respuesta: (a) h A = 5,4 m

55 Ejercicio 9) De un gran depósito fluye agua a través de un gran tubo que se divide en dos tubos más pequeños, tal como se muestra en la figura. Si se ignoran los efectos viscosos, determinar el caudal que sale del depósito y la presión en el punto (). Respuesta: Q = 9,0 0-3 m 3 /s, p = 57,9 kpa

56 Ejercicio 0) La densidad relativa del fluido en el manómetro que se muestra en la figura es,07. Determine el caudal, Q, si el fluido es no viscoso e incompresible ibl y el fluido que circula es: (a) Agua, γ = 9,80 kn/m 3 (b) Gasolina, γ = 6,67 kn/m 3 (c) Aire en condiciones normales, γ = 0-3 kn/m 3. Respuesta: (a), m 3 /s, (b) 3,0 0-3 m 3 /s, (c) 0,8 m 3 /s

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica

HIDRAULICA DE POTENCIA. Unidad 1. Bases físicas de la hidráulica HIDRAULICA DE POTENCIA Unidad 1. Bases físicas de la hidráulica Presión Este término se refiere a los efectos de una fuerza que actúa distribuida sobre una superficie. La fuerza causante de la presión

Más detalles

Dinámica de Fluidos. Mecánica y Fluidos VERANO

Dinámica de Fluidos. Mecánica y Fluidos VERANO Dinámica de Fluidos Mecánica y Fluidos VERANO 1 Temas Tipos de Movimiento Ecuación de Continuidad Ecuación de Bernouilli Circulación de Fluidos Viscosos 2 TIPOS DE MOVIMIENTO Régimen Laminar: El flujo

Más detalles

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS

Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS Problemas de Estática y Dinámica DINÁMICA DE FLUIDOS (1 er Q.:prob pares, 2 ndo Q.:prob impares) 1. En el esquema adjunto las secciones de la tubería son 40 y 12 cm 2, y la velocidad del agua en la primera

Más detalles

COLEGIO DE BACHILLERES DEL ESTADO DE QUERÉTARO Plantel No. 7 El Marqués GUIA DE REGULARIZACIÓN DE FÍSICA II UNIDAD 1

COLEGIO DE BACHILLERES DEL ESTADO DE QUERÉTARO Plantel No. 7 El Marqués GUIA DE REGULARIZACIÓN DE FÍSICA II UNIDAD 1 UNIDAD 1 I. INTRODUCCIÓN 1. Investiga y resume los siguientes conceptos: a. HIDRODINÁMICA: b. HIDROSTÁTICA: c. HIDRÁULICA 2. Investiga y resume en qué consiste cada una de las características de los fluidos

Más detalles

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS

TUTORIAL BÁSICO DE MECÁNICA FLUIDOS TUTORIAL BÁSICO DE MECÁNICA FLUIDOS El tutorial es básico pues como habréis visto en muchos de ellos es haceros entender no sólo la aplicación práctica de cada teoría sino su propia existencia y justificación.

Más detalles

HIDRODINÁMICA. Profesor: Robinson Pino H.

HIDRODINÁMICA. Profesor: Robinson Pino H. HIDRODINÁMICA Profesor: Robinson Pino H. 1 CARACTERÍSTICAS DEL MOVIMIENTO DE LOS FLUIDOS Flujo laminar: Ocurre cuando las moléculas de un fluido en movimiento siguen trayectorias paralelas. Flujo turbulento:

Más detalles

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales

Mecánica de Fluidos. Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Docente: Ing. Alba V. Díaz Corrales Mecánica de Fluidos Contenido Fluidos incompresibles Ecuación de continuidad Ecuación de Bernoulli y aplicaciones Líneas de cargas piezométricas

Más detalles

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile

Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES. Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Mecánica II GONZALO GUTÍERREZ FRANCISCA GUZMÁN GIANINA MENESES Universidad de Chile, Facultad de Ciencias, Departamento de Física, Santiago, Chile Guía 4: Mecánica de fluidos Martes 25 de Septiembre, 2007

Más detalles

MECANICA DE LOS FLUIDOS

MECANICA DE LOS FLUIDOS MECANICA DE LOS FLUIDOS 7 FUNDAMENTOS DEL FLUJO DE FLUIDOS Ing. Alejandro Mayori Flujo de Fluidos o Hidrodinámica es el estudio de los Fluidos en Movimiento Principios Fundamentales: 1. Conservación de

Más detalles

FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN

FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN FUNDAMENTOS DE FÍSICA TEMA II GRADIENTE DE PRESIÓN 1. Se tiene un manómetro diferencial que está cerrado en una de sus ramas como lo muestra la figura. Con base en ello, determine: a) La presión absoluta

Más detalles

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE:

UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE: UNIVERSIDAD POLITÉCNICA DE EL SALVADOR ESCUELA DE FORMACIÓN BÁSICA. FÍSICA II PRÁCTICA 38 PRINCIPIO DE PASCAL. OBJETIVOS DEL APRENDIZAJE: ESTUDIAR LAS APLICACIONES DEL PRINCIPIO DE PASCAL. OBSERVAR LA

Más detalles

Problemas de Practica: Fluidos AP Física B de PSI. Preguntas de Multiopción

Problemas de Practica: Fluidos AP Física B de PSI. Preguntas de Multiopción Problemas de Practica: Fluidos AP Física B de PSI Nombre Preguntas de Multiopción 1. Dos sustancias; mercurio con una densidad de 13600 kg/m 3 y alcohol con una densidad de 0,8kg/m 3 son seleccionados

Más detalles

Mediciones en Mecánica de Fluidos

Mediciones en Mecánica de Fluidos Mediciones en Mecánica de Fluidos En el laboratorio de ingeniería y en muchas situaciones industriales es importante medir las propiedades de fluidos y diversos parámetros de flujo, como presión, velocidad

Más detalles

Hidrodinámica. Conceptos

Hidrodinámica. Conceptos Conceptos Hidrostática tica Caudal Es la cantidad de líquido que pasa en un cierto tiempo. Concretamente, el caudal sería el volumen de líquido que circula dividido el tiempo: Sus unidades son volumen

Más detalles

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes

Física de fluidos. Densidad. kg/m. kg/m = S. kg/m. Principio de Arquímedes Física de fluidos Densidad ρ V dv 3 σ S ds L dl λ Principio de Arquímedes Principio de Arquímedes: todo cuerpo sumergido en un fluido eperimenta un empuje vertical y hacia arriba igual al peso de fluido

Más detalles

Mecánica de fluidos. Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016

Mecánica de fluidos. Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016 Mecánica de fluidos Fis 018- Ref. Capitulo 10 Giancoli Vol II. 6ta ed. 23 de octubre de 2016 ESTATICA DE FLUIDOS 1. Estados de la materia 2. Propiedades de los fluidos 3. Volumen, densidad y peso específico,

Más detalles

2 La densidad de una sustancia es ρ, el volumen es V, y la masa es m. Si el volumen se triplica y la densidad no cambia Cuál es la masa?

2 La densidad de una sustancia es ρ, el volumen es V, y la masa es m. Si el volumen se triplica y la densidad no cambia Cuál es la masa? Slide 1 / 20 1 Dos sustancias, A tiene una densidad de 2000 kg/m 3 y la B tiene una densidad de 3000 kg/m 3 son seleccionadas para realizar un experimento. Si el experimento necesita de igual masa de cada

Más detalles

Laboratorio de Mecánica de Fluidos I

Laboratorio de Mecánica de Fluidos I Laboratorio de Mecánica de Fluidos I Práctica # 3: Demostración del Teorema de Bernoulli Objetivo Demostrar el Teorema de Bernoulli y sus limitaciones. Determinar el coeficiente de descarga. En este experimento

Más detalles

MECANICA DE FLUIDOS [ ] kg m

MECANICA DE FLUIDOS [ ] kg m MECANICA DE FLUIDOS DEFINICIÓN.- Es parte de la física clásica que tiene por objeto el estudio de los fluidos, sus principios y las leyes que lo establecen; la materia se clasifica en sólidos y fluidos,

Más detalles

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos).

Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). Capitulo 4: Dinámica de los fluidos I (Análisis global del comportamiento dinámico de los fluidos). 1) Explique los siguientes conceptos y/o ecuaciones: a) Circulación. B) Volumen de control. B) Teorema

Más detalles

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli.

Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Física para Ciencias: Principio de Arquímedes, Ecuaciones de Continuidad y Bernoulli. Dictado por: Profesor Aldo Valcarce 1 er semestre 2014 Presión de un fluido Presión depende de la profundidad P = ρ

Más detalles

PRESIÓN Y ESTÁTICA DE FLUIDOS

PRESIÓN Y ESTÁTICA DE FLUIDOS La presión se define como una fuerza normal ejercida por un fluido por unidad de área. Se habla de presión sólo cuando se trata de un gas o un líquido. Puesto que la presión se define como fuerza por unidad

Más detalles

COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI

COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Laboratorio de Física de Procesos Biológicos COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Fecha: 13/1/006 1. Obetivo de la práctica Comprobación experimental de la ecuación de Bernoulli de la dinámica de fluidos

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. MF-04 LABORATORIO DE NOMBRE DE LA PRÁCTICA MECÁNICA

Más detalles

PRÁCTICA 3 PRESIÓN. Laboratorio de Principios de Termodinámica y Electromagnetismo

PRÁCTICA 3 PRESIÓN. Laboratorio de Principios de Termodinámica y Electromagnetismo PRÁCTICA 3 PRESIÓN Laboratorio de Principios de Termodinámica y Electromagnetismo M del Carmen Maldonado Susano 2015 Antecedentes Fluido Es aquella sustancia que debido a su poca cohesión intermolecular

Más detalles

El tubo De Vénturi. Introducción

El tubo De Vénturi. Introducción El tubo De Vénturi Recopilado a partir de http://www.monografias.com/trabajos6/tube/tube.shtml por: Jose Carlos Suarez Barbuzano. Técnico Superior Química Ambiental. Técnico del Centro Canario del Agua

Más detalles

Prácticas de Laboratorio de Hidráulica

Prácticas de Laboratorio de Hidráulica Universidad Politécnica de Madrid E.T.S. Ingenieros de Caminos, Canales y Puertos Prácticas de Laboratorio de Hidráulica Jaime García Palacios Francisco V. Laguna Peñuelas 2010 Índice general 3. Venturi

Más detalles

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica]

PROBLEMARIO No. 2. Veinte problemas con respuesta sobre los Temas 3 y 4 [Trabajo y Calor. Primera Ley de la Termodinámica] Universidad Simón olívar Departamento de Termodinámica y Fenómenos de Transferencia -Junio-007 TF - Termodinámica I Prof. Carlos Castillo PROLEMARIO No. Veinte problemas con respuesta sobre los Temas y

Más detalles

COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI

COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Laboratorio de Física General (Fluidos) COMPROBACIÓN DE LA ECUACIÓN DE BERNOULLI Fecha: 0/10/013 1. Obetivo de la práctica Comprobación experimental de la ecuación de Bernoulli de la dinámica de fluidos

Más detalles

1.2-Presión. Se incluye los temas de flujo y caudal

1.2-Presión. Se incluye los temas de flujo y caudal 1.2-Presión. Se incluye los temas de flujo y caudal Para optimizar el rendimiento en la obtención de electricidad a partir de la energía cinética del viento. Una de ellas está relacionada con la forma

Más detalles

Para no hundirte en la nieve es conveniente usar mayores superficies que la de los zapatos deportivos. Tampoco es recomendable usar tacones!

Para no hundirte en la nieve es conveniente usar mayores superficies que la de los zapatos deportivos. Tampoco es recomendable usar tacones! La Presión Porqué faltaría yo a clase el día que explicaron lo de la Presión? Para no hundirte en la nieve es conveniente usar mayores superficies que la de los zapatos deportivos. Tampoco es recomendable

Más detalles

PRÁCTICA 1 PRESIÓN. Laboratorio de Termodinámica

PRÁCTICA 1 PRESIÓN. Laboratorio de Termodinámica PRÁCTICA 1 PRESIÓN Laboratorio de Termodinámica M del Carmen Maldonado Susano Enero 2015 Antecedentes Fluido Es aquella sustancia que debido a su poca cohesión intermolecular carece de forma propia y adopta

Más detalles

Cuarta Lección. Principios de la física aplicados al vuelo.

Cuarta Lección. Principios de la física aplicados al vuelo. Capítulo II. Termodinámica y Física de los Fluidos aplicadas a procesos naturales. Tema. El proceso de vuelo de las aves y de los ingenios alados. Cuarta Lección. Principios de la física aplicados al vuelo.

Más detalles

INSTRUMENTOS Y/O DISPOSITIVOS PARA MEDIR CAUDALES EN TUBERÍAS

INSTRUMENTOS Y/O DISPOSITIVOS PARA MEDIR CAUDALES EN TUBERÍAS INSTRUMENTOS Y/O DISPOSITIVOS PARA MEDIR CAUDALES EN TUBERÍAS INTEGRANTES: Angie De Jesus Gutierrez de la Rosa Bayron David Santoya Reales Brian Jesus Pereira Cantillo Oscar De Jesus Pedrozo Cadena PRESENTADO

Más detalles

Colegio Cristo Rey Escolapios

Colegio Cristo Rey Escolapios 1- Cuál es el fluido de trabajo en oleohidráulica? a) Agua. b) Aceite mineral. c) Aire comprimido. d) Cualquier fluido. 2- Cuál es el fluido de trabajo en neumática? a) Agua. b) Aire comprimido. c) Cualquier

Más detalles

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil

Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Cátedra de Mecánica de los Fluidos. Carrea de Ingeniería Civil Universidad Nacional de Córdoba Facultad de Ciencias Exactas Físicas y Naturales Cátedra de Mecánica de los Fluidos Carrea de Ingeniería Civil FLUJO COMPRESIBLE DR. ING. CARLOS MARCELO GARCÍA 2011 A modo

Más detalles

Guía de estudio y prueba de conocimientos sobre: CAPITULO 4: Fluidos Hidrostáticos

Guía de estudio y prueba de conocimientos sobre: CAPITULO 4: Fluidos Hidrostáticos Guía de estudio y prueba de conocimientos sobre: CAPITULO 4: Fluidos Hidrostáticos Sección 901. Nombre: Cuenta: Nombre: Cuenta: Instrucciones: Contesta lo que se te pide clara y ordenadamente, si necesitas

Más detalles

FÍSICA CICLO 5 CAPACITACIÓN La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades.

FÍSICA CICLO 5 CAPACITACIÓN La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades. UNIDAD 5 TERMODINÁMICA - HIDRAULICA TERMODINÁMICA La Termodinámica es el estudio de las propiedades de la energia térmica y de sus propiedades. ENERGIA TERMICA: Todos los cuerpos se componen de pequeñas

Más detalles

1.- DETERMINESE LA DENSIDAD ABSOLUTA Y LA DENSIDAD RELATIVA DE LA GASOLINA, ASI COMO SU PESO ESPECIFICO, SI 51 gr OCUPAN 75 cm 3.

1.- DETERMINESE LA DENSIDAD ABSOLUTA Y LA DENSIDAD RELATIVA DE LA GASOLINA, ASI COMO SU PESO ESPECIFICO, SI 51 gr OCUPAN 75 cm 3. EJERCICIOS DE DENSIDAD 1.- DETERMINESE LA DENSIDAD ABSOLUTA Y LA DENSIDAD RELATIVA DE LA GASOLINA, ASI COMO SU PESO ESPECIFICO, SI 51 gr OCUPAN 75 cm 3. 2.- Qué VOLUMEN OCUPAN 300 gr DE MERCURIO? SI LA

Más detalles

MEDIDA DE CAUDAL. Prácticas de Laboratorio 1. INTRODUCCIÓN 2. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR

MEDIDA DE CAUDAL. Prácticas de Laboratorio 1. INTRODUCCIÓN 2. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR Prácticas de Laboratorio MEDIDA DE CAUDAL 1. INTRODUCCIÓN. BANCO DE ENSAYO 3. OBJETIVOS Y TRABAJO A REALIZAR ANEXO I. TOMA DE DATOS EN EL LABORATORIO Y RESULTADOS FINALES. 1 1. INTRODUCCIÓN El caudal que

Más detalles

UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DE MECÁNICA DE FLUIDOS

UNIVERSIDAD SIMÓN BOLÍVAR UNIDAD DE LABORATORIOS LABORATORIO A SECCIÓN DE MECÁNICA DE FLUIDOS 1. Objetivos UNIVERSIDAD SIMÓN BOLÍVAR PRÁCTICA ESTUDIO DEL FLUJO TURBULENTO EN TUBERÍAS LISAS Analizar flujo turbulento en un banco de tuberías lisas. Determinar las pérdidas de carga en tuberías lisas..

Más detalles

MECÁNICA DE LOS FLUIDOS

MECÁNICA DE LOS FLUIDOS Dinámica de los Fluidos MECÁNICA DE LOS FLUIDOS Ing. Rubén Marcano PRINCIPIO DE CONSERVACIÓN DE LA ENERGÍA la energía ni se crea ni se destruye solo se transforma, y es una propiedad ligada a la masa para

Más detalles

PRÁCTICA Nº 5. MEDIDORES DE FLUJO PARA FLUIDOS COMPRESIBLES

PRÁCTICA Nº 5. MEDIDORES DE FLUJO PARA FLUIDOS COMPRESIBLES República bolivariana de Venezuela La Universidad del Zulia Facultad de Ingeniería Escuela de Ingeniería Química Laboratorio de Operaciones Unitarias I PRÁCTICA Nº 5. MEDIDORES DE FLUJO PARA FLUIDOS COMPRESIBLES

Más detalles

11 MEDICIÓN DE VARIABLES FUNDAMENTALES.

11 MEDICIÓN DE VARIABLES FUNDAMENTALES. Mod.. Medición de Variables MEDICIÓN DE VRIBLES FUNDMENTLES.. Flujos interiores y exteriores: Ya dijimos que atendiendo a los flujos desarrollados, ellos se clasifican en exteriores e interiores. Los flujos

Más detalles

1 PRACTICA # 1 PROPIEDADES FISICAS DE LOS FLUIDOS

1 PRACTICA # 1 PROPIEDADES FISICAS DE LOS FLUIDOS 1 PRACTICA # 1 PROPIEDADE FIICA DE LO FLUIDO 1.1 DENIDAD Es una propiedad intensiva que se define como la masa (m) por unidad de volumen (V), y es denotada con la letra "ρ", donde: masa de la sustancia

Más detalles

PROPIEDADES DE LA MATERIA

PROPIEDADES DE LA MATERIA PROPIEDADES DE LA MATERIA FLUIDOS Las tres fases de la materia. Presión. Propiedades 1 y 2 de los fluidos. Efecto de la gravedad sobre los fluidos. Densidad. Propiedad 3 de los fluidos. Presión atmosférica.

Más detalles

Guía de Ejercicios de Estática de Fluidos

Guía de Ejercicios de Estática de Fluidos Universidad Nacional Experimental Politécnica de la Fuerza Armada Ciclo básico de ingeniería Sede Palmira Física II Secciones: III03M y III04M Guía de Ejercicios de Estática de Fluidos 1. La máxima presión

Más detalles

Como la densidad relativa es adimensional, tiene el mismo valor para todos los sistemas de unidades.

Como la densidad relativa es adimensional, tiene el mismo valor para todos los sistemas de unidades. LA DENSIDAD (D) de un material es la masa por unidad de volumen del material La densidad del agua es aproximadamente de 1000 DENSIDAD RELATIVA (Dr) de una sustancia es la razón de la densidad de una sustancia

Más detalles

REGIMENES DE CORRIENTES O FLUJOS

REGIMENES DE CORRIENTES O FLUJOS LINEAS DE CORRIENTE Ø Las líneas de corriente son líneas imaginarias dibujadas a través de un fluido en movimiento y que indican la dirección de éste en los diversos puntos del flujo de fluidos. Ø Una

Más detalles

El principio de Bernoulli y efecto de tubo de Venturi. Mariel Romero, Edna Rodríguez, Gabriela Ruvalcaba Claudia Bernal

El principio de Bernoulli y efecto de tubo de Venturi. Mariel Romero, Edna Rodríguez, Gabriela Ruvalcaba Claudia Bernal El principio de Bernoulli y efecto de tubo de Venturi Mariel Romero, Edna Rodríguez, Gabriela Ruvalcaba Claudia Bernal FLUIDOS EN MOVIMIENTO El flujo de fluidos suele ser extremadamente complejo, como

Más detalles

HIDRÁULICA 1.- NOCIONES SOBRE HIDRÁULICA INDUSTRIAL

HIDRÁULICA 1.- NOCIONES SOBRE HIDRÁULICA INDUSTRIAL HIDRÁULICA 1.- NOCIONES SOBRE HIDRÁULICA INDUSTRIAL Sistemas hidráulicos Sistemas de transmisión de energía en los cuales el medio ese un fluido teóricamente incompresible. Funciones: Transformación de

Más detalles

TEMA 1b: BIOMECANICA - FLUIDOS

TEMA 1b: BIOMECANICA - FLUIDOS Curso: 00-0 TEMA b: BIOMECANICA - FLUIDOS De un iceberg sólo se ve el 0% http://www.corbisimages.com/ TEMA b: BIOMECANICA - FLUIDOS Los tiburones siempre están nadando porque al no tener vejiga natatoria

Más detalles

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección

convección (4.1) 4.1. fundamentos de la convección Planteamiento de un problema de convección convección El modo de transferencia de calor por convección se compone de dos mecanismos de transporte, que son, la transferencia de energía debido al movimiento aleatorio de las moléculas (difusión térmica)

Más detalles

Capítulo 10. Efectos de superficie. Sistema respiratorio

Capítulo 10. Efectos de superficie. Sistema respiratorio Capítulo 10 Efectos de superficie. Sistema respiratorio 1 Tensión superficial El coeficiente de tensión superficial γ es la fuerza por unidad de longitud que hay que realizar para aumentar una superficie:

Más detalles

Al hinchar con una bomba de aire la rueda de una bicicleta, se está generando presión en la rueda.

Al hinchar con una bomba de aire la rueda de una bicicleta, se está generando presión en la rueda. 7 Pressió i cabal Al hinchar con una bomba de aire la rueda de una bicicleta, se está generando presión en la rueda. En la arena de la playa, la profundidad de las huellas de los pies de una persona es

Más detalles

Modelado y simulación de un proceso de nivel

Modelado y simulación de un proceso de nivel Modelado y simulación de un proceso de nivel Carlos Gaviria Febrero 14, 2007 Introduction El propósito de este sencillo ejercicio es el de familiarizar al estudiante con alguna terminología del control

Más detalles

; En el caso de fuerzas conservativas, de donde:

; En el caso de fuerzas conservativas, de donde: MECÁNICA DE FLUIDOS. PROBLEMAS RESUELTOS 1. Ecuación diferencial de la estática de fluidos en el caso particular de fuerzas conservativas. Analizar la relación entre las superficies equipotenciales y las

Más detalles

PROBLEMAS DE NAVIDAD 2001

PROBLEMAS DE NAVIDAD 2001 PROBLEMAS DE NAVIDAD 2001 PROBLEMAS DE NAVIDAD 2001 Navidad 2001-1 Para la conducción cuya sección transversal se representa en la figura se pide: Calcular el caudal de agua que puede trasegar suponiendo

Más detalles

FACULTAD DE CIENCIAS CURSO DE INTRODUCCION A LA METEOROLOGIA 2008

FACULTAD DE CIENCIAS CURSO DE INTRODUCCION A LA METEOROLOGIA 2008 BOLILLA 9 Dinámica de fluidos Fluidos: Se denomina así al sistema de partículas que a diferencia de los sólidos, no están unidas rígidamente y pueden moverse con una cierta libertad unas respecto de las

Más detalles

APARATO DE VENTURI. Esta relación es conocida como la ecuación de continuidad, y es expresada como: (1) ν ν

APARATO DE VENTURI. Esta relación es conocida como la ecuación de continuidad, y es expresada como: (1) ν ν APARATO DE VENTURI Objetivo Estudiar cualitativamente y cuantitativamente para verificar la ecuación de continuidad, el principio de Bernoulli y el efecto Venturi. Introducción En el aparato de Venturi,

Más detalles

PRESION MANOMETRICA Y PRINCIPIO DE ARQUIMEDES. ELABORADO POR: DANIELA ALEJANDRA BARRETO GOMEZ MARIA CAROLINA BENAVIDES MUÑOZ VALENTINA ROJAS MARTINEZ

PRESION MANOMETRICA Y PRINCIPIO DE ARQUIMEDES. ELABORADO POR: DANIELA ALEJANDRA BARRETO GOMEZ MARIA CAROLINA BENAVIDES MUÑOZ VALENTINA ROJAS MARTINEZ PRESION MANOMETRICA Y PRINCIPIO DE ARQUIMEDES. ELABORADO POR: DANIELA ALEJANDRA BARRETO GOMEZ MARIA CAROLINA BENAVIDES MUÑOZ VALENTINA ROJAS MARTINEZ KAREN SUSANA DE MARIA MOSQUERA TORRADO PRESENTADO A:

Más detalles

UNIDAD DE FLUIDOS GUIA PARA EL PROFESOR. La dinámica de los fluidos es el estudio de un fluido en movimiento y de las fuerzas que lo producen.

UNIDAD DE FLUIDOS GUIA PARA EL PROFESOR. La dinámica de los fluidos es el estudio de un fluido en movimiento y de las fuerzas que lo producen. Jornada Enero 00 UNIDAD DE FLUIDOS GUIA ARA EL ROFESOR DINAMICA DE LOS FLUIDOS La dinámica de los fluidos es el estudio de un fluido en movimiento y de las fuerzas que lo producen. Una de las formas de

Más detalles

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera

T 1 T 2. x L. Con frecuencia es importante el valor de la resistencia térmica multiplicado por el área de flujo de calor, en este caso sera 1. ey de Fourier ué flujo de calor es necesario hacer pasar a través de una barra circular de madera de 5 cm de diámetro y 10 cm de longitud, cuya temperatura en los extremos es de 50 C y 10 C en sus extremos?

Más detalles

Mecánica de Fluidos y Máquinas Hidráulicas

Mecánica de Fluidos y Máquinas Hidráulicas Mecánica de Fluidos y Máquinas Hidráulicas Tema 04. Dinámica de Fluidos Severiano F. Pérez Remesal Carlos Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA Este tema se publica bajo Licencia:

Más detalles

TEMA 2: PROPIEDADES FÍSICAS DE LOS FLUIDOS

TEMA 2: PROPIEDADES FÍSICAS DE LOS FLUIDOS Manual para el diseño de una red hidráulica de climatización 3 A ntes de comenzar a estudiar cualquier problema de flujo, es necesario conocer algunas características y propiedades físicas de los fluidos,

Más detalles

Prof. Jorge Rojo Carrascosa

Prof. Jorge Rojo Carrascosa Asignatura: FÍSICA Y QUÍMICA EJERCICIOS DE AMPLIACIÓN - SOLUCIONES Fecha finalización: Martes, 8 de marzo de 2011 Nombre y Apellidos JRC 1 Un submarino se encuentra a una profundidad de 400 metros. Cuál

Más detalles

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II

PRÁCTICO DE MÁQUINAS PARA FLUIDOS II 44) En la instalación de la figura la bomba gira a 1700rpm, entregando un caudal de agua a 20 o C de 0.5m 3 /s al tanque elevado. La cañería es de acero galvanizado, rígida y de 500mm de diámetro y cuenta

Más detalles

OLEOHIDRÁULICA BÁSICA 2014

OLEOHIDRÁULICA BÁSICA 2014 A D O T E C 2 0 1 4 OLEOHIDRÁULICA BÁSICA 2014 Unidad 1 Fundamentos1 1 1.- MÓDULO. OLEOHIDRÁULICA BÁSICA 2.- INTRODUCCIÓN. PROPÓSITO. Desarrollar los conocimientos y habilidades para efectuar tareas de

Más detalles

Estática de fluidos. 7. Si se llena con agua una presa de anchura 100 m hasta una altura de 30 m, determinar la fuerza que ejerce el agua sobre ésta.

Estática de fluidos. 7. Si se llena con agua una presa de anchura 100 m hasta una altura de 30 m, determinar la fuerza que ejerce el agua sobre ésta. Estática de fluidos 1. Para elevar un automóvil de 13300 N de peso se utiliza una bomba hidráulica con un pistón de 15 cm de diámetro. Qué fuerza debe aplicarse al otro pistón de 5 cm de diámetro, conectado

Más detalles

Flujo en canales abiertos

Flujo en canales abiertos cnicas y algoritmos empleados en estudios hidrológicos e hidráulicos Montevideo - Agosto 010 PROGRAMA DE FORMACIÓN IBEROAMERICANO EN MATERIA DE AGUAS Flujo en canales abiertos Luis Teixeira Profesor Titular,

Más detalles

Física II. 1 Fluidos. 2 Movimiento Armónico. 3 Ondas Mecánicas. 4 Superposición de Ondas. 5 Sonido. 6 Calor. 7 Propiedades Térmicas de la Materia

Física II. 1 Fluidos. 2 Movimiento Armónico. 3 Ondas Mecánicas. 4 Superposición de Ondas. 5 Sonido. 6 Calor. 7 Propiedades Térmicas de la Materia Fluidos Física II Moimiento Armónico 3 Ondas Mecánicas 4 Suerosición de Ondas 5 Sonido 6 Calor 7 Proiedades Térmicas de la Materia 8 Primera Ley de la Termodinámica Fluidos Presión Un fluido en reoso esta

Más detalles

PPT DE APOYO CCNN FÍSICA NIVEL: 8 BÁSICO PROFESORA: GUISLAINE LOAYZA TEMA: LA FUERZA Y LA PRESIÓN

PPT DE APOYO CCNN FÍSICA NIVEL: 8 BÁSICO PROFESORA: GUISLAINE LOAYZA TEMA: LA FUERZA Y LA PRESIÓN PPT DE APOYO CCNN FÍSICA NIVEL: 8 BÁSICO PROFESORA: GUISLAINE LOAYZA TEMA: LA FUERZA Y LA PRESIÓN TEMA DE LA CLASE: LA FUERZA Y LA PRESIÓN OBJETIVO DE LA CLASE: Describir la relación entre la fuerza y

Más detalles

QUÉ ES LA TEMPERATURA?

QUÉ ES LA TEMPERATURA? 1 QUÉ ES LA TEMPERATURA? Nosotros experimentamos la temperatura todos los días. Cuando estamos en verano, generalmente decimos Hace calor! y en invierno Hace mucho frío!. Los términos que frecuentemente

Más detalles

Capítulo 2. Sensores. Sistema de control de calentamiento de aire en lazo cerrado. Función de transferencia de un sensor lineal de acción directa

Capítulo 2. Sensores. Sistema de control de calentamiento de aire en lazo cerrado. Función de transferencia de un sensor lineal de acción directa Sistema de control de calentamiento de aire en lazo cerrado Temperatura de consigna egulador Capítulo. Sensores Sensor de temperatura T Válvula de dos vías Actuador Suministro de agua caliente Batería

Más detalles

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO

Física II MOVIMIENTO ONDULATORIO INGENIERIA DE SONIDO INGENIERIA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés Ley de Hooke - Ondas De ser necesario

Más detalles

Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1

Convección Problemas de convección 1.1. PROBLEMAS DE CONVECCIÓN 1 1.1. PROBLEMAS DE CONVECCIÓN 1 Convección 1.1. Problemas de convección Problema 1 Una placa cuadrada de 0,1 m de lado se sumerge en un flujo uniforme de aire a presión de 1 bar y 20 C con una velocidad

Más detalles

TRANSFERENCIA DE CALOR

TRANSFERENCIA DE CALOR Conducción Convección Radiación TRANSFERENCIA DE CALOR Ing. Rubén Marcano Temperatura es una propiedad que depende del nivel de interacción molecular. Específicamente la temperatura es un reflejo del nivel

Más detalles

Física II TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO

Física II TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO TRANSFERENCIA DE CALOR INGENIERÍA DE SONIDO Primer cuatrimestre 2012 Titular: Valdivia Daniel Jefe de Trabajos Prácticos: Gronoskis Alejandro Jefe de Trabajos Prácticos: Auliel María Inés TRANSFERENCIA

Más detalles

LABORATORIO #6 DEMOSTRACIÓN DEL TOREMA DE BERNOULLI LUIS CARLOS DE LA CRUZ TORRES GILDARDO DIAZ CARLOS ROJAS PRESENTADO EN LA CÁTEDRA:

LABORATORIO #6 DEMOSTRACIÓN DEL TOREMA DE BERNOULLI LUIS CARLOS DE LA CRUZ TORRES GILDARDO DIAZ CARLOS ROJAS PRESENTADO EN LA CÁTEDRA: LABORATORIO #6 DEMOSTRACIÓN DEL TOREMA DE BERNOULLI LUIS CARLOS DE LA CRUZ TORRES GILDARDO DIAZ CARLOS ROJAS PRESENTADO EN LA CÁTEDRA: LABORATORIO DE MECÁNICA DE FLUIDOS PRESENTADO A: ING. VLADIMIR QUIROZ

Más detalles

CENTRO DE BACHILLERATO TECNOLOGICO agropecuario No. 2. Hidrodinámica. Cd. Delicias, Chih

CENTRO DE BACHILLERATO TECNOLOGICO agropecuario No. 2. Hidrodinámica. Cd. Delicias, Chih CENTRO DE BACHILLERATO TECNOLOGICO agropecuario No. Hidrodinámica. Cd. Delicias, Chih. 015. Situación problema para el estudio de la hidrodinámica. Definición de conceptos Gasto o Caudal. Ecuación de continuidad

Más detalles

Ingeniería. Instrumentos de Procesos Industriales. Instrumentos de medición de presión. Introducción

Ingeniería. Instrumentos de Procesos Industriales. Instrumentos de medición de presión. Introducción Ingeniería Instrumentos de Procesos Industriales Instrumentos de medición de presión Introducción Junto con la temperatura, la presión es la variable más comúnmente medida en plantas de proceso. Su persistencia

Más detalles

La presión y sus efectos Presión en sólidos Actividad:

La presión y sus efectos Presión en sólidos Actividad: La presión y sus efectos Presión en sólidos Por ejemplo, si una persona desea clavar sobre una viga de madera, le resultará mucho más fácil utilizar un clavo cuya punta es fina que otro cuya punta se encuentra

Más detalles

GUIA N o 2: TRANSMISIÓN DE CALOR Física II

GUIA N o 2: TRANSMISIÓN DE CALOR Física II GUIA N o 2: TRANSMISIÓN DE CALOR Física II Segundo Cuatrimestre 2013 Docentes: Ing. Daniel Valdivia Lic. Maria Ines Auliel Universidad Nacional de Tres de febrero Depto de Ingeniería Sede Caseros II Buenos

Más detalles

Vertedores y compuertas

Vertedores y compuertas Vertedores y compuertas Material para el curso de Hidráulica I Se recomienda consultar la fuente de estas notas: Sotelo Ávila Gilberto. 2002. Hidráulica General. Vol. 1. Fundamentos. LIMUSA Editores. México.

Más detalles

1. FLUIDOS (1 punto) Enuncie la ecuación de Bernoulli y describa cada uno de los términos.

1. FLUIDOS (1 punto) Enuncie la ecuación de Bernoulli y describa cada uno de los términos. Física Forestales. Examen A. 7-0-0 Instrucciones. La parte de teoría se contestará en primer lugar utilizando la hoja de color, sin consultar libros ni apuntes, durante el tiempo que el estudiante considere

Más detalles

PRUEBAS EN UN COMPRESOR DE AIRE DE DOS. compresor de dos etapas. Obtener la curva de caudal v/s presión de descarga. Compresor de aire a pistón.

PRUEBAS EN UN COMPRESOR DE AIRE DE DOS. compresor de dos etapas. Obtener la curva de caudal v/s presión de descarga. Compresor de aire a pistón. ANEXO Nº 1 2 UNIVERSIDAD TECNOLOGICA METROPOLITANA Facultad de Ingeniería Departamento de Mecánica Ingeniería en Mecánica Experiencia: PRUEBAS EN UN COMPRESOR DE AIRE DE DOS ETAPAS i. Objetivos. Reconstruir

Más detalles

TEMA II.5. Viscosidad. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México)

TEMA II.5. Viscosidad. Dr. Juan Pablo Torres-Papaqui. Departamento de Astronomía Universidad de Guanajuato DA-UG (México) TEMA II.5 Viscosidad Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus Guanajuato,

Más detalles

DE FLUJOS INTERNOS IMPORTANTES. = e Ley universal de Prandtl para la fricción en tuberías lisas Re 2300

DE FLUJOS INTERNOS IMPORTANTES. = e Ley universal de Prandtl para la fricción en tuberías lisas Re 2300 DE FLUJOS INTERNOS IMPORTANTES Tabla 9.5 (continuación) iii. Zona rugosa 70 = + 8.5 e f 1-2.0 Ley universal de Prandtl para la fricción en tuberías lisas Re 2300 = Para la zona rugosa y la zona de transición

Más detalles

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4.

Sustancias puras, procesos de cambios de fase, diagramas de fase. Estado 3 Estado 4 Estado 5. P =1 atm T= 100 o C. Estado 3 Estado 4. TERMODINÁMICA Departamento de Física Carreras: Ing. Industrial y Mecánica Trabajo Práctico N 2: PROPIEDADES DE LAS SUSTANCIAS PURAS La preocupación por el hombre y su destino debe ser el interés primordial

Más detalles

F A. 2. Medición de Presión. Generalización:

F A. 2. Medición de Presión. Generalización: . Medición de Presión. Generalización: La presión y la presión diferencial están entre los mas importantes parámetros medidos y controlados en la industria de procesos en la actualidad. Su significado,

Más detalles

1. GENERALIDADES DE LOS SISTEMAS NEUMÁTICOS E HIDRÁULICOS. Las diferencias entre ambas vienen dadas por la naturaleza de los fluidos utilizados:

1. GENERALIDADES DE LOS SISTEMAS NEUMÁTICOS E HIDRÁULICOS. Las diferencias entre ambas vienen dadas por la naturaleza de los fluidos utilizados: CONTENIDOS: -Técnicas de producción, conducción y depuración de fluidos. - Caudal. Pérdida de carga. - Elementos de accionamiento, regulación y control. Simbología. - Circuitos característicos de aplicación:

Más detalles

1. MÁQUINAS HIDRÁULICAS

1. MÁQUINAS HIDRÁULICAS . MÁQUINAS HIDRÁULICAS. MÁQUINAS HIDRÁULICAS.. DEFINICIÓN DE MÁQUINA Una máquina es un transformador de energía. La máquina absorbe energía de una clase y restituye energía de otra clase o de la misma

Más detalles

Formatos para prácticas de laboratorio

Formatos para prácticas de laboratorio CARRERA PLAN DE ESTUDIO CLAVE DE UNIDAD DE APRENDIZAJE NOMBRE DE LA UNIDAD DE APRENDIZAJE ING. MECÁNICO 2009-2 12198 MECÁNICA DE FLUIDOS PRÁCTICA No. MF -01 1. INTRODUCCIÓN LABORATORIO DE NOMBRE DE LA

Más detalles

LOS GASES Y LAS DISOLUCIONES. Departamento de Física y Química 3º ESO

LOS GASES Y LAS DISOLUCIONES. Departamento de Física y Química 3º ESO LOS GASES Y LAS DISOLUCIONES Departamento de Física y Química 3º ESO 0. Mapa conceptual SÓLIDO ESTADOS DE LA MATERIA LÍQUIDO Presión atmosférica GAS Solubilidad Disolución saturada Disoluciones Soluto

Más detalles

HIDROMECÁNICA. HIDROSTÁTICA: Estudia el comportamiento de los fluidos considerados en reposo o equilibrio

HIDROMECÁNICA. HIDROSTÁTICA: Estudia el comportamiento de los fluidos considerados en reposo o equilibrio HIDROMECÁNICA El objeto de la hidromecánica es el estudio de los fluidos (líquidos y gases). La hidromecánica se divide en: HIDROSTÁTICA: Estudia el comportamiento de los fluidos considerados en reposo

Más detalles

DEPARTAMENTO DE INGENIERÍA QUÍMICA. Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESTADO NO ESTACIONARIO

DEPARTAMENTO DE INGENIERÍA QUÍMICA. Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESTADO NO ESTACIONARIO DEPARAMENO DE INGENIERÍA QUÍMICA Laboratorio de Ingeniería Química BALANCE DE ENERGÍA EN ESADO NO ESACIONARIO 1. INRODUCCIÓN El sistema al que se va a plantear el balance de energía calorífica consiste

Más detalles

MECÁNICA DE FLUIDOS. Docente: Ing. Alba Díaz Corrales

MECÁNICA DE FLUIDOS. Docente: Ing. Alba Díaz Corrales MECÁNICA DE FLUIDOS Docente: Ing. Alba Díaz Corrales Fecha: 1 de septiembre 2010 Mecánica de Fluidos Tipo de asignatura: Básica Específica Total de horas semanales: 6 Total de horas semestrales: 84 Asignatura

Más detalles

CUESTIONARIOS FÍSICA 4º ESO

CUESTIONARIOS FÍSICA 4º ESO DPTO FÍSICA QUÍMICA. IES POLITÉCNICO CARTAGENA CUESTIONARIOS FÍSICA 4º ESO UNIDAD 4 Fuerzas en los fluidos Mª Teresa Gómez Ruiz 2010 HTTP://WWW. POLITECNICOCARTAGENA. COM/ ÍNDICE Página CUESTIONARIO PRIMERO

Más detalles