SEGUNDA LEY DE LA TERMODINÁMICA. CONCEPTO DE ENTROPÍA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "SEGUNDA LEY DE LA TERMODINÁMICA. CONCEPTO DE ENTROPÍA"

Transcripción

1 SEGUNDA LEY DE LA TERMODINÁMICA. CONCEPTO DE ENTROPÍA ""El motor cero en lugar de trabajo nos entregará entropía, aproximando, si confiamos en Clausius, el fin del mundo" V.M.Brodianski, sobre el motor cero de Gemgi Sadi Carnot Los procesos ocurren en una determinada dirección y no en la opuesta. El primer principio de la termodinámica no dice nada sobre la dirección, solo sobre la conservación. El segundo principio de la termodinámica postula que la energía tiene calidad además de cantidad y que los procesos ocurren de forma natural en el sentido de disminuir la calidad de la energía MÁQUINAS TÉRMICAS En este sentido, el trabajo puede ser convertido de forma sencilla en otras formas de energía, esencialmente calor, de forma completa, sin embargo, el proceso reverso no es tan inmediato. Convertir calor en trabajo requiere de las denominadas máquinas térmicas y se caracterizan por: 1. Reciben calor de una fuente de alta temperatura. 2. Convierten parte del calor recibido en trabajo 3. Rechazan calor a un sumidero de baja temperatura.4. Operan en ciclos Las máquinas térmicas trabajan con un fluido que juega un papel crucial en la transferencia de calor en el ciclo. Este fluido se denomina fluido térmico o de trabajo. El término máquina de calor se usa incluso para aquellas máquinas que no operan de 28

2 forma exacta en un ciclo termodinámico, como es el caso de los motores de combustión. Estos motores operan en un ciclo mecánico pero no termodinámico ya que el fluido no sufre un ciclo sino que se alimenta de forma continua desechándose como gases de combustión en lo que se asemeja al rechazo de calor. Un ejemplo clarificador de una máquina térmica es la planta térmica de vapor de agua que se muestra en la figura. Las cantidades que aparecen reflejadas son: Q in : cantidad de calor dado al ciclo de un fuente de alta temperatura Q out : Cantidad de calor eliminado hacia un sumidero de baja temperatura. W out : Trabajo dado por el sistema mediante una expansión en una turbina W in : Trabajo dado al sistema mediante compresión en una bomba El trabajo neto dado por la planta es la diferencia de calores entrada salida o trabajo salida entrada (el sistema no intercambia masa con los alrededores) Eficiencia térmica Q out que representa la energía de desecho, nunca es cero y por tanto el trabajo neto dado por el sistema siempre será inferior al calor introducido. La fracción de calor introducido que se convierte a trabajo define la eficiencia térmica del sistema: Wout W in x 100 (6.1) Q in Para unificar la nomenclatura en diferentes máquinas térmicas (refrigeradores, bombas, compresores, etc.) se definen las siguientes magnitudes: Q H = Calor transferido entre el ciclo y la fuente de alta temperatura T H Q L = Calor transferido entre el ciclo y el sumidero de baja temperatura T L Ambas cantidades se definen de forma positiva por lo que la eficiencia térmica es siempre menor al 100%. Como ejemplo de eficiencias puede citarse el 25% de motores de gasolina, 40% de motores diesel y grandes plantas de turbina de gas y hasta el 60% en plantas de ciclo combinado que se estudiarán posteriormente. 29

3 Postulado de Kelvin Planck Incluso en condiciones ideales de funcionamiento, las máquinas térmicas deben rechazar calor para completar el ciclo. Por tanto, ninguna máquina puede convertir todo el calor recibido en trabajo. Esta afirmación es la base del postulado de kelvin Planck: Es imposible para cualquier máquina que opera en un ciclo recibir y rechazar calor de una sola fuente y producir trabajo neto. Este postulado también se expresa como: ninguna máquina térmica puede tener una eficiencia del 100% Postulado de Clausius El postulado de Kelvin Planck se relaciona comúnmente con máquinas térmicas mientras que el de Clausius se suele aplicar a ciclos de refrigeración o bombas de calor: Es imposible construir una máquina que operando en un ciclo solo transfiera calor desde el sumidero a la fuente de alta temperatura. Ambos postulados son equivalentes. Véase un ejemplo aclaratorio. Supóngase en el caso a una máquina capaz de convertir el 100% de calor en trabajo. Si se conecta a un refrigerador, el efecto neto de este último es simplemente el paso de 30

4 calor de un sumidero frio a una fuente caliente, que contradice el postulado de Clausius PROCESOS REVERSIBLES E IRREVERSIBLES Un proceso reversible es aquel que puede ser revertido sin dejar rastro en los alrededores, es decir, en el proceso reverso el sistema y los alrededores vuelven al estado inicial. Esto sólo es posible si el intercambio neto de calor y trabajo entre sistema y alrededores es cero (procesos directo y reverso). Obviamente, el restaurar un sistema a su estado inicial no implica reversibilidad en el proceso. Los procesos reversibles no existen en la naturaleza aunque algunos sistemas se aproximan bastante. Las razones de estudio de procesos reversibles son: Son fáciles de analizar desde el punto de vista termodinámico. El sistema pasa a través de una serie de estados de equilibrio infinitesimales. Sirven como modelos idealizados con los que comparar los procesos irreversibles. El proceso reversible entrega la máxima cantidad de trabajo a la vez que consume la mínima. El concepto de reversibilidad conlleva la definición de eficacia de proceso con respecto a la segunda ley de la termodinámica que viene a ser una medida de aproximación a la reversibilidad Las irreversibilidades que se encuentran en los sistemas reales se relacionan con: fricción, expansión sin restricciones, mezcla de fluidos, transferencia de calor a través de diferencias finitas de temperatura, resistencias eléctricas, reacciones químicas, etc. Una clasificación más pormenorizada distingue entre procesos internamente reversibles que implican la no presencia de irreversibilidades dentro del sistema y externamente reversibles que conllevan la no presencia de irreversibilidades en los alrededores del sistema. El proceso completamente reversible lo debe sir interna y externamente EL CICLO DE CARNOT DIRECTO Y REVERSO La eficiencia de una máquina cíclica depende de cómo se llevan a cabo los procesos individuales que conforman el ciclo. Tal como se apuntaba anteriormente, los procesos reversibles implican la máxima producción de trabajo y a su vez el mínimo consumo. Así, los ciclos compuestos por etapas reversibles serán los más adecuados a la hora de producir trabajo a partir de calor. 31

5 El trabajo se realiza durante una parte del ciclo y se consume en otra. La diferencia es el trabajo neto de ciclo. Los ciclos reversibles no se pueden alcanzar en realidad sin embargo son la base comparativa de los procesos reales. El ciclo reversible por excelencia es el de Carnot, propuesto en 1824 por el ingeniero francés Sadi Carnot. Se compone de dos procesos isotermos y dos procesos adiabáticos. Se puede ejecutar en sistemas cerrados o abiertos de estado estacionario. Considérese un mecanismo de cilindro pistón. Las siguientes etapas se desarrollan: 1 2 Expansión isoterma. El pistón se mueve generando trabajo. Durante el proceso de expansión el fluido tiende a enfriarse, sin embargo, el contacto con una fuente caliente de temperatura T H aporta calor por cada paso de equilibrio infinitesimal de temperatura (dt) de tal manera que la etapa es isoterma a temperatura T H. El proceso es reversible puesto que la transferencia de calor se realiza a través de un diferencia infinitesimal de temperaturas. El calor cedido al sistema es Q H. 2 3 Expansión adiabática. El sistema continúa expandiéndose de forma adiabática y la temperatura desciende de T H a T L. 3 4 Compresión isoterma. El fluido se comprime de forma isoterma. La tendencia al aumento de temperatura se elimina mediante intercambio de calor con un sumidero a temperatura T L. Esta es la temperatura de proceso. 4.1 Compresión adiabática. El sistema se comprime hasta el estado inicial de forma adiabática. La temperatura aumenta hasta T H. En la figura se muestra el diagrama P v del ciclo. El trabajo realizado por el pistón en su movimiento podría expresarse como: dwb Fuerza d( espacio) P Area d( espacio) Pdv (4.1) Así, en el proceso de expansión el área bajo la curva constituye el trabajo dado por el sistema mientras que en el proceso de compresión el área es el trabajo requerido por el sistema. El área interior del ciclo es el trabajo neto. 32

6 Dado que las cuatro etapas son reversibles, el ciclo de Carnot es el que proporciona la mayor cantidad de trabajo neto entre las temperaturas T H y T L. Por otro lado, las etapas que comprende el ciclo de Carnot directo pueden ser realizadas en dirección opuesta, lo que se conoce como el ciclo de Carnot reverso o de refrigeración. En este ciclo, Q L es absorbido del sumidero y Q H es expulsado a la fuente de calor a temperatura T H. Lógicamente, el ciclo necesita aporte de trabajo para no incumplir con el postulado de Clausius. Dado que el ciclo reverso de Carnot opera como un refrigerador o bomba de calor (dependiendo de si se quiere maximizar Q L o Q H ), se definen dos nuevos parámetros para este tipo de dispositivos que son los coeficientes de desarrollo (las cantidades son tomadas en valor absoluto): Q Q COP L L Rrev, Wneto QH QL Q Q COP H H HP, rev Wneto QH QL (4.2) (4.3) En el caso de ciclos reversibles, los calores pueden ser sustituidos por las temperaturas absolutas: T 1 COP L Rrev, TH TL TH 1 T L T 1 COP H HP, rev TH TL T 1 L T H (4.4) (4.5) De las ecuaciones anteriores se deduce: COPHP, rev COPR, rev 1 (4.6) A partir del ciclo de Carnot surgen los principios de Carnot que no son sino otra forma de expresar la segunda ley de la termodinámica LOS PRINCIPIOS DE CARNOT Estos principios se enuncian como: 33

7 1. La eficacia de una máquina térmica irreversible es menor que la correspondiente a la máquina de Carnot que opera entre los mismos límites de temperatura. 2. La eficiencia de cualquier máquina térmica reversible es idéntica si trabaja entre los mismos límites de temperatura. Tal como se apuntaba anteriormente, en los ciclos reversibles como el de Carnot, la eficiencia térmica que se define a partir de los calores puestos en juego puede ser redefinida a partir de las temperaturas (en KELVIN) de las fuentes de intercambio de calor (cantidades en valor absoluto). th =1 Q L /Q H (4.7) th =1 T L /T H (4.8) En este sentido, la eficacia de una planta térmica de vapor de agua es de aproximadamente 40%. La eficacia de una máquina de Carnot operando entre T H = 1000 K y T L = 300 K es del 70%. Teniendo en cuenta esto, un 35 40% no está tan mal. La eficacia con respecto al segundo principio sería 40/70 = 57.1 % 4.5. ENTROPÍA La necesidad de contar con una propiedad de estado que midiera el grado de irreversibilidad llevó a la proposición de una serie de funciones desarrolladas para tal fin. La primera de ellas fue la entropía. R. J. E. Clausius ( ) Como se refería en apartados anteriores, para el caso particular de procesos reversibles o al menos internamente reversibles, los calores transferidos en los procesos isotermos eran proporcionales a las temperaturas a las cuales se realizaban las transferencias. QH T Q Q H ; H L (4.9) QL TL TH TL 34

8 Tomando la convención de signos como positivos los calores de entrada y trabajos de salida y negativos los calores de salida y trabajos de entrada: QH TH QL 0 T (4.10) L La suma de las cantidades Q/T, asociadas con la absorción y eliminación de calor por el fluido de trabajo de la máquina, es cero. Puesto que el fluido de trabajo de una máquina de Carnot regresa periódicamente a su estado inicial, propiedades tales como la temperatura, la presión y la energía interna regresan a sus valores iniciales aun cuando ellas cambien de una etapa del ciclo a otra. La característica principal de una propiedad es que la suma de sus cambios es cero para cualquier ciclo completo. Por tanto, la ecuación (4.10) sugiere la existencia de una propiedad cuyos cambios están dados aquí por las cantidades Q/T. Esta propiedad es la entropía, definida en 1865 por Clausius: Q ds T int rev (4.11) La ecuación 4.10 extendida a ciclos reversibles e irreversibles conduce a: Q 0 (4.12) T La desigualdad se aplica a procesos irreversibles mientras que la igualdad es aplicable a procesos reversibles totales o internamente reversibles. El cambio de entropía en un proceso puede ser evaluado por integración de 4.11 independientemente de si el proceso es reversible o irreversible. En este último caso se utiliza una aproximación a un proceso reversible que empiece y acabe en el mismo estado que el real (la entropía es una función de estado y solo depende de las condiciones iniciales y finales). En general la termodinámica calcula cambios de entropía y no valores absolutos. En cualquier caso, se elige un estado de referencia con entropía cero para dar valores numéricos de entropía a unas ciertas condiciones. Así, la tercera ley de la termodinámica establece que la entropía absoluta es cero para todas las sustancias cristalinas perfectas a la temperatura del cero absoluto. A partir de esta ley se pueden dar valores absolutos de entropía. 35

9 El principio de aumento de entropía. Considérese un ciclo constituido por el proceso 1 2 (reversible o irreversible) y el 2 1 que es internamente reversible. Según la inecuación de Clausius: 2 Q 1 Q 0 1 T 2 T reversible (4.13) La segunda integral es el cambio de entropía de proceso 2 Q 2 Q S1 S2 0; S2 S1 (4.14) 1 T 1 T Que en forma diferencial: 2 Q ds (4.15) 1 T Donde la igualdad se aplica al proceso reversible. La temperatura es la correspondiente a la frontera del sistema donde se transfiere el diferencial de calor. En un proceso irreversible hay generación de entropía debido a la presencia de irreversibilidades. Aplicando la igualdad de 4.15: 2 Q Ssystem Sgenerada (4.16) 1 T La entropía generada es siempre una cantidad positiva o cero. Los dos términos de la derecha en la ecuación anterior conforman la entropía transferida mediante calor y la generada Diagramas termodinámicos que contienen la entropía. Los dos diagramas que normalmente contienen la entropía son el T s y h s. El área bajo una curva T s de un proceso reversible (total o internamente) se 36

10 relaciona con el calor transferido El diagrama h s tiene su importancia en los procesos de estado estacionario llevados a cabo en sistemas adiabáticos como turbinas, toberas, difusores, etc. El diagrama h s también se llama de Mollier debido al científico alemán R. Mollier ( ). En este diagrama la distancia vertical es el trabajo dado o consumido por el sistema y la distancia horizontal da idea de la irreversibilidad asociada al proceso 37

Capítulo 5: La segunda ley de la termodinámica.

Capítulo 5: La segunda ley de la termodinámica. Capítulo 5: La segunda ley de la termodinámica. 5.1 Introducción Por qué es necesario un segundo principio de la termodinámica? Hay muchos procesos en la naturaleza que aunque son compatibles con la conservación

Más detalles

UNEFA Ext. La Isabelica TERMODINÁMICA I. Ing. Petroquímica Unidad 4: Segunda ley de la termodinámica

UNEFA Ext. La Isabelica TERMODINÁMICA I. Ing. Petroquímica Unidad 4: Segunda ley de la termodinámica UNEFA Ext. La Isabelica TERMODINÁMICA I Ing. Petroquímica Unidad 4: Segunda ley de la termodinámica 4to Semestre Objetivo: Interpretar la segunda ley de la termodinámica. Materia: Termodinámica I Docente:

Más detalles

VI. Segunda ley de la termodinámica

VI. Segunda ley de la termodinámica Objetivos: 1. Introducir la segunda ley de la. 2. Identificar los procesos validos como aquellos que satisfacen tanto la primera ley como la segunda ley de la. 3. Discutir fuentes y sumideros de energía

Más detalles

SEGUNDA LEY DE LA TERMODINÁMICA

SEGUNDA LEY DE LA TERMODINÁMICA Tema 2 SEGUNDA EY DE A TERMODINÁMICA ING. JOANNA KRIJNEN CONTENIDO 1. Introducción a la segunda ley de la termodinámica. 2. Máquinas térmicas (MT) Concepto Descripción del ciclo termodinámico. Eficiencia

Más detalles

Termodinámica: Segunda Ley

Termodinámica: Segunda Ley Termodinámica: Segunda Ley Presenta: M. I. Ruiz Gasca Marco Antonio Instituto Tecnológico de Tláhuac II Octubre, 2015 Marco Antonio (ITT II) México D.F., Tláhuac Octubre, 2015 1 / 20 1 Introducción y objetivo

Más detalles

Formulario de Termodinámica Aplicada Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( )

Formulario de Termodinámica Aplicada Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( ) Conceptos Básicos Formula Descripción Donde F= fuerza (newton) Fuerza ( ) a = aceleración (m/s 2 ) Peso P= peso (newton) ( ) g = gravedad (9.087 m/s 2 ) Trabajo ( ) 1 Joule = 1( N * m) W = trabajo (newton

Más detalles

Motores térmicos o maquinas de calor

Motores térmicos o maquinas de calor Cómo funciona una maquina térmica? Motores térmicos o maquinas de calor conversión energía mecánica a eléctrica En nuestra sociedad tecnológica la energía muscular para desarrollar un trabajo mecánico

Más detalles

2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D.

2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D. 2 DA LEY DE LA TERMODINAMICA TOMAS RADA CRESPO PH.D. Dirección de los procesos Termodinámicos Todos los procesos termodinámicos que se dan en la naturaleza son procesos irreversibles, es decir los que

Más detalles

SEGUNDA LEY DE LA TERMODINAMICA

SEGUNDA LEY DE LA TERMODINAMICA U n i v e r s i d a d C a t ó l i c a d e l N o r t e E s c u e l a d e I n g e n i e r í a Unidad 4 SEGUNDA EY DE A ERMODINAMICA Segunda ey a 2 ey de la ermodinámica nos permite establecer la direc ción

Más detalles

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA

TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA TEMA 2: PRINCIPIOS DE TERMODINÁMICA. MÁQUINA TÉRMICA Y MÁQUINA FRIGORÍFICA La termodinámica es la parte de la física que se ocupa de las relaciones existentes entre el calor y el trabajo. El calor es una

Más detalles

Elaboró: Efrén Giraldo MSc.

Elaboró: Efrén Giraldo MSc. TERMODINÁMICA ENTROPÍA II. Elaboró: Efrén Giraldo MSc. evisó: Carlos A. Acevedo Ph.D Presentación hecha exclusívamente con el fin de facilitar el estudio Medellín 2016 Contenido: Entropía en procesos Reversibles

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE CIENCIAS. NOMBRE DE LA UNIDAD DE APRENDIZAJE: FÍSICA TÉRMICA

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE CIENCIAS. NOMBRE DE LA UNIDAD DE APRENDIZAJE: FÍSICA TÉRMICA UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE CIENCIAS. NOMBRE DE LA UNIDAD DE APRENDIZAJE: FÍSICA TÉRMICA UNIDAD DE COMPETENCIA V: MÁQUINAS TÉRMICAS, ENTROPÍA Y SEGUNDA LEY DE LA TERMODINÁMICA.

Más detalles

Ayudas visuales para el instructor. Contenido

Ayudas visuales para el instructor. Contenido Page 1 of 7 UN PANORAMA DE LA TERMODINÁMICA ENERGÍA, TRABAJO Y CALOR Por F. A. Kulacki Profesor de ingeniería mecánica Laboratorio de Termodinámica y Transferencia de Calor Departamento de Ingeniería Mecánica

Más detalles

Código: Titulación: INGENIERO TÉCNICO INDUSTRIAL Curso: 2º. Descriptores de la asignatura según el Plan de Estudios:

Código: Titulación: INGENIERO TÉCNICO INDUSTRIAL Curso: 2º. Descriptores de la asignatura según el Plan de Estudios: ASIGNATURA: TERMOTECNIA Código: 128212010 Titulación: INGENIERO TÉCNICO INDUSTRIAL Curso: 2º Profesor(es) responsable(s): - JOAQUÍN ZUECO JORDÁN (TEORÍA Y PRÁCTICAS) - FERNANDO ILLÁN GÓMEZ (TEORÍA) - JOSÉ

Más detalles

0. Inicio. III. Máquinas Térmicas. (use los comandos de su visor pdf para navegar las fichas) fing

0. Inicio. III. Máquinas Térmicas. (use los comandos de su visor pdf para navegar las fichas) fing FICHAS GUÍA: Máquinas Térmicas p. 1/3 0. Inicio nts III. Máquinas Térmicas (use los comandos de su visor pdf para navegar las fichas) FICHAS GUÍA: Máquinas Térmicas p. 2/3 1. segunda ley: necesidad Porqué

Más detalles

TERMODINÁMICA CICLOS III. CICLO DE CARNOT

TERMODINÁMICA CICLOS III. CICLO DE CARNOT TERMODINÁMICA CICLOS III. CICLO DE CARNOT GIRALDO TORO REVISÓ PhD. CARLOS A. ACEVEDO PRESENTACIÓN HECHA EXCLUIVAMENTE CON EL FIN DE FACILITAR EL ESTUDIO. MEDELLÍN 2016 CICLOS DE CARNOT. GIRALDO T. 2 Ciclo

Más detalles

1RA Y 2DA LEY DE LA TERMODINÁMICA. M. En C. José Antonio González Moreno FisicoQuímica Noviembre del 2016

1RA Y 2DA LEY DE LA TERMODINÁMICA. M. En C. José Antonio González Moreno FisicoQuímica Noviembre del 2016 1RA Y 2DA LEY DE LA TERMODINÁMICA M. En C. José Antonio González Moreno FisicoQuímica Noviembre del 2016 INTRODUCCIÓN: En esta presentación se estudiarán los enunciados correspondientes a la 1ra y 2da

Más detalles

Capítulo 5: la segunda ley de la termodinámica. La segunda ley de la termodinámica establece que los procesos ocurren en una cierta

Capítulo 5: la segunda ley de la termodinámica. La segunda ley de la termodinámica establece que los procesos ocurren en una cierta Capítulo 5: la segunda ley de la termodinámica a segunda ley de la termodinámica establece que los procesos ocurren en una cierta dirección, no en cualquiera. os procesos de naturaleza física pueden dirigirse

Más detalles

Segunda Ley de la Termodinámica

Segunda Ley de la Termodinámica Segunda Ley de la Termodinámica Gonzalo Abal -- abril 2004 versión corregida abril 2005: Agradezco a Leonardo Rosés la revisión de éste material -- G.A. 1.Formulación Histórica a) Necesidad de la Segunda

Más detalles

Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas

Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas Termodinámica: Segundo principio de la termodinámica Parte 5: Maquinas térmicas Olivier Skurtys Departamento de Ingeniería Mecánica Universidad Técnica Federico Santa María Email: olivier.skurtys@usm.cl

Más detalles

Ejemplos de máquina térmica son: los motores de combustión interna, las plantas de potencia de vapor, entre otras.

Ejemplos de máquina térmica son: los motores de combustión interna, las plantas de potencia de vapor, entre otras. TERMODINÁMICA II Unidad : Ciclos de potencia y refrigeración Objetivo: Estudiar los ciclos termodinámicos de potencia de vapor UNEFA Ext. La Isabelica Ing. Petroquímica 5to Semestre Materia: Termodinámica

Más detalles

CÁLCULOS Y PROCESOS TERMODINÁMICOS.

CÁLCULOS Y PROCESOS TERMODINÁMICOS. UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO PUNTO FIJO PROGRAMA DE INGENIERÍA INDUSTRIAL CÁTEDRA: CONVERSION DE ENERGIA TEMA: CÁLCULOS Y PROCESOS TERMODINÁMICOS. ING. CARACCIOLO

Más detalles

Ciclo de refrigeración por la compresión de un vapor. M del Carmen Maldonado Susano

Ciclo de refrigeración por la compresión de un vapor. M del Carmen Maldonado Susano Ciclo de refrigeración por la compresión de un vapor 1 Depósito térmico Es un sistema incapaz de recibir o efectuar trabajo, mantiene su temperatura constante y cuenta solamente con la transmisión de calor

Más detalles

III Tema Segunda ley de la termodinámica

III Tema Segunda ley de la termodinámica UNIVERSIDAD NACIONAL EXPERIMENTAL FRANCISCO DE MIRANDA COMPLEJO ACADÉMICO "EL SABINO" PROGRAMA DE INGENIERÍA PESQUERA AREA DE TECNOLOGÍA UNIDAD CURRICULAR: TERMODINÁMICA APLICADA III Tema Segunda ley de

Más detalles

Procesos reversibles e irrevesibles

Procesos reversibles e irrevesibles Procesos reversibles e irrevesibles Procesos reversibles e irrevesibles tiempo Máquinas térmicas y la segunda ley de la termodinámica La segunda ley de la termodinámica establece cuáles procesos pueden

Más detalles

Sílabo de Termodinámica

Sílabo de Termodinámica Sílabo de Termodinámica I. Datos generales Código ASUC 00887 Carácter Obligatorio Créditos 4 Periodo académico 2017 Prerrequisito Ninguno Horas Teóricas 2 Prácticas 4 II. Sumilla de la asignatura La asignatura

Más detalles

Q = ΔU + W. El calor que entra al sistema se considera positivo, el que sale del sistema, negativo

Q = ΔU + W. El calor que entra al sistema se considera positivo, el que sale del sistema, negativo 1 TERMODINÁMICA. CONCEPTOS BÁSICOS.MÁQUINAS TÉRMICAS La termodinámica aplicada al estudio de las máquinas térmicas, se encarga de estudiar el intercambio de energía (calor y trabajo) entre un sistema y

Más detalles

2.2 SISTEMAS TERMODINÁMICOS

2.2 SISTEMAS TERMODINÁMICOS 2.2 SISTEMAS TERMODINÁMICOS En termodinámica se puede definir como sistema a toda aquella parte del universo que se separa para su estudio. Esta separación se hace por medio de superficies que pueden ser

Más detalles

PROGRAMA DE CURSO PROPÓSITO DEL CURSO

PROGRAMA DE CURSO PROPÓSITO DEL CURSO PROGRAMA DE CURSO CÓDIGO IQ3201 NOMBRE DEL CURSO Termodinámica Aplicada HORAS DE NÚMERO DE UNIDADES HORAS DE CÁTEDRA DOCENCIA DOCENTES AUXILIAR 10 3 1,5 5,5 REQUISITOS CM2004, EI2001 REQUISITOS DE ESPECÏFICOS

Más detalles

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen.

Enunciados Lista 6. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. Nota: Los ejercicios 8.37 y 8.48 fueron modificados respecto al Van Wylen. 8.1* El compresor en un refrigerador recibe refrigerante R-134a a 100 kpa y 20 ºC, y lo comprime a 1 MPa y 40 ºC. Si el cuarto

Más detalles

Indice1. Cap.1 Energía. Cap. 2 Fuentes de Energía. Indice - Pág. 1. Termodinámica para ingenieros PUCP

Indice1. Cap.1 Energía. Cap. 2 Fuentes de Energía. Indice - Pág. 1. Termodinámica para ingenieros PUCP Indice1 Cap.1 Energía INTRODUCCIÓN... 1 La Energía en el Tiempo... 2 1.1 Energía... 5 1.2 Principio de conservación de energía... 5 1.3 Formas de energía... 7 1.4 Transformación de energía... 9 1.5 Unidades

Más detalles

Programa Regular. Abordar y profundizar el análisis de principios y leyes de la Termodinámica.

Programa Regular. Abordar y profundizar el análisis de principios y leyes de la Termodinámica. Programa Regular Curso: Termodinámica A Carga horaria: 6hs. Modalidad de la asignatura: teórico-práctica Objetivos. Abordar y profundizar el análisis de principios y leyes de la Termodinámica. Adquirir

Más detalles

Ciclo de refrigeración por la compresión de un vapor. M del Carmen Maldonado Susano

Ciclo de refrigeración por la compresión de un vapor. M del Carmen Maldonado Susano Ciclo de refrigeración por la compresión de un vapor 1 Depósito térmico Es un sistema incapaz de recibir o efectuar trabajo. Mantiene su temperatura constante y cuenta solamente con la transmisión de calor

Más detalles

Los principios de Carnot son:

Los principios de Carnot son: IV.- Principios de Carnot La segunda ley de termodinámica pone límites en la operación los ciclos. Una máquina térmica no puede operar intercambiando calor con un reservorio simple, y un refrigerador no

Más detalles

F. Tipos de transformaciones. Ciclos termodinámicos. Rendimientos de una máquina térmica

F. Tipos de transformaciones. Ciclos termodinámicos. Rendimientos de una máquina térmica F. Tipos de transformaciones. Ciclos termodinámicos. Rendimientos de una máquina térmica El trabajo no depende solamente del estado energético inicial y final del sistema, sino también depende del camino

Más detalles

1. (a) Enunciar la Primera Ley de la Termodinámica.

1. (a) Enunciar la Primera Ley de la Termodinámica. ESCUELA SUPERIOR DE INGENIEROS Universidad de Navarra Examen de TERMODINÁMICA II Curso 2000-200 Troncal - 7,5 créditos 7 de febrero de 200 Nombre y apellidos NOTA TEORÍA (30 % de la nota) Tiempo máximo:

Más detalles

Capítulo 4 Ciclos Termodinámicos. M del Carmen Maldonado Susano

Capítulo 4 Ciclos Termodinámicos. M del Carmen Maldonado Susano Capítulo 4 Ciclos Termodinámicos Objetivo El alumno conocerá los ciclos termodinámicos fundamentales empleados en la transformación de la energía. Contenido Ciclos de generación de potencia mecánica. Ciclos

Más detalles

Unidad 3. Primera ley de la termodinámica en sistemas cerrados. Sustancias puras

Unidad 3. Primera ley de la termodinámica en sistemas cerrados. Sustancias puras Unidad 3 Primera ley de la termodinámica en sistemas cerrados Sustancias puras Pero antes un pequeño repaso!...si es que no resolvieron estos problemas Se deja que vapor de agua sobrecalentado a 1MPa y

Más detalles

La primera ley de la termodinámica identifica el calor como una forma de energía.

La primera ley de la termodinámica identifica el calor como una forma de energía. La primera ley de la termodinámica identifica el calor como una forma de energía. Esta idea, que hoy nos parece elemental, tardó mucho en abrirse camino y no fue formulada hasta la década de 1840, gracias

Más detalles

1.- Pricipios Termodinámicos.

1.- Pricipios Termodinámicos. REFRIGERACIÓN INDUSTRIAL. 1.- Pricipios Termodinámicos. Bibliografía: Sears, F.W. & Salinger, G.L.; Thermodynamics, Kinetic Theory, and Statistical Thermodynamics; Adison-Wesley Publishing Company, 1975.

Más detalles

Modelo del Desarrollo del Programa de una Asignatura

Modelo del Desarrollo del Programa de una Asignatura 2005-2006 Hoja 1 de,centro: TITULACIÓN: ESCUELA TÉCNICA SUPERIOR DE NÁUTICA Y MÁQUINAS DIPLOMADO EN MÁQUINAS NAVAIS Código: 631111209 Denominación: ASIGNATURA: Curso: 2º 1 er Cuatrimestre X 2º Cuatrimestre

Más detalles

Física Térmica - Práctico 5

Física Térmica - Práctico 5 - Práctico 5 Instituto de Física, Facultad de Ingeniería, Universidad de la República La numeración entre paréntesis de cada problema, corresponde a la numeración del libro Fundamentos de Termodinámica

Más detalles

0. Inicio. IV. Entropía. (use los comandos de su visor pdf para navegar las fichas) FICHAS GUÍA: Entropía p. 1/2

0. Inicio. IV. Entropía. (use los comandos de su visor pdf para navegar las fichas) FICHAS GUÍA: Entropía p. 1/2 FICHAS GUÍA: Entropía p. 1/2 0. Inicio nts IV. Entropía (use los comandos de su visor pdf para navegar las fichas) FICHAS GUÍA: Entropía p. 2/2 1. desigualdad de Clausius δq T 0 T δq PSfrag replacements

Más detalles

Tema 3. Máquinas Térmicas II

Tema 3. Máquinas Térmicas II Asignatura: Tema 3. Máquinas Térmicas II 1. Motores Rotativos 2. Motores de Potencia (Turbina) de Gas: Ciclo Brayton 3. Motores de Potencia (Turbina) de Vapor: Ciclo Rankine Grado de Ingeniería de la Organización

Más detalles

2011 II TERMODINAMICA - I

2011 II TERMODINAMICA - I TERMODINAMICA I 2011 II UNIDAD Nº 2 SESION Nº 2 LA SEGUNDA LEY DE LA TERMODINAMICA 1.- GENERALIDADES.- La primera ley de la termodinámica establece que el calor es una forma de energía que puede transformarse

Más detalles

Enunciados Lista 5 Nota: 7.2* 7.7* 7.9* 7.14* 7.20* 7.21*

Enunciados Lista 5 Nota: 7.2* 7.7* 7.9* 7.14* 7.20* 7.21* Nota: Los ejercicios 7.14, 7.20, 7.21. 7.26, 7.59, 7.62, 7.67, 7.109 y 7.115 tienen agregados y/o sufrieron modificaciones respecto al Van Wylen. 7.2* Considere una máquina térmica con ciclo de Carnot

Más detalles

2. LA PRIMERA LEY DE LA TERMODINÁMICA

2. LA PRIMERA LEY DE LA TERMODINÁMICA 1. CONCEPTOS BÁSICOS Y DEFINICIONES l. 1. Naturaleza de la Termodinámica 1.2. Dimensiones y unii2acles 1.3. Sistema, propiedad y estado 1.4. Densidad, volumen específico y densidad relativa 1.5. Presión

Más detalles

mecánica estadística Principios Fundamentales Capítulo 1

mecánica estadística Principios Fundamentales Capítulo 1 mecánica estadística Principios Fundamentales Capítulo 1 2013 Objetivo de la mecánica estadística Predecir el comportamiento macroscópico de un sistema, en base de las propiedades microscópicas de las

Más detalles

CICLOS TERMODINÁMICOSY LA SEGUNDA LEY DE LA TERMODINÁMICA. Se denomina ciclo termodinámico al proceso que tiene lugar en:

CICLOS TERMODINÁMICOSY LA SEGUNDA LEY DE LA TERMODINÁMICA. Se denomina ciclo termodinámico al proceso que tiene lugar en: CICLOS TERMODINÁMICOSY LA SEGUNDA LEY DE LA TERMODINÁMICA INTRODUCCION La conversión de energía es un proceso que tiene lugar en la biosfera. Sin embargo, los seres humanos a lo largo de la historia hemos

Más detalles

Módulo 2: Termodinámica Segundo principio de la Termodinámica

Módulo 2: Termodinámica Segundo principio de la Termodinámica Módulo 2: Termodinámica Segundo principio de la Termodinámica 1 Transferencias de energía Sabemos por el primer principio de la Termodinámica que la energía de un sistema se conserva. Sólo que en diferentes

Más detalles

Palabras Claves. Introducción. -Motor térmico -Proceso reversible -Proceso irreversible -Eficiencia -Máquina de Carnot -Entropía

Palabras Claves. Introducción. -Motor térmico -Proceso reversible -Proceso irreversible -Eficiencia -Máquina de Carnot -Entropía Palabras Claves -Motor térmico -Proceso reversible -Proceso irreversible -Eficiencia -Máquina de Carnot -Entropía Introducción La primera ley de la termodinámica es una declaración de la conservación de

Más detalles

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS

MÁQUINAS HIDRÁULICAS Y TÉRMICAS TURBOMÁQUINAS TÉRMICAS 1. LA MÁQUINA TÉRMICA MÁQUINA DE FLUIDO: Es el conjunto de elementos mecánicos que permite intercambiar energía mecánica con el exterior, generalmente a través de un eje, por variación de la energía disponible

Más detalles

Física 2 (Biólogos y Geólogos) SERIE 8

Física 2 (Biólogos y Geólogos) SERIE 8 Física 2 (Biólogos y Geólogos) SERIE 8 i) Máquinas térmicas 1. Un mol de gas ideal (C v = 3 / 2 R) realiza el siguiente ciclo: AB) Se expande contra una presión exterior constante, en contacto térmico

Más detalles

Electricidad y calor

Electricidad y calor Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora

Electricidad y calor. Webpage: Departamento de Física Universidad de Sonora Electricidad y calor Webpage: http://paginas.fisica.uson.mx/qb 2007 Departamento de Física Universidad de Sonora Temario A. Termodinámica 1. Temperatura y Ley Cero. (3horas) 1. Equilibrio Térmico y ley

Más detalles

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TACHIRA Vicerrectorado Académico Decanato de Docencia Departamento de Ingeniería Mecánica

UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TACHIRA Vicerrectorado Académico Decanato de Docencia Departamento de Ingeniería Mecánica UNIVERSIDAD NACIONAL EXPERIMENTAL DEL TACHIRA Vicerrectorado Académico Decanato de Docencia Departamento de Ingeniería Mecánica Departamento: Ingeniería Mecánica Núcleo: Termofluidos Asignatura: I Código:

Más detalles

Maquinas térmicas. Nota el aire se comporta como gas ideal con calores específicos variables con la temperatura

Maquinas térmicas. Nota el aire se comporta como gas ideal con calores específicos variables con la temperatura Nota el aire se comporta como gas ideal con calores específicos variables con la temperatura 19) El arreglo cilindro pistón aislado térmicamente que se muestra en la figura contiene inicialmente aire a

Más detalles

Programa Regular. Asignatura: Termodinámica A. Carrera: Ingeniería Electromecánica. Ciclo Lectivo: Coordinador/Profesor: Omar Mosquera.

Programa Regular. Asignatura: Termodinámica A. Carrera: Ingeniería Electromecánica. Ciclo Lectivo: Coordinador/Profesor: Omar Mosquera. Programa Regular Asignatura: Termodinámica A Carrera: Ingeniería Electromecánica Ciclo Lectivo: 2016 Coordinador/Profesor: Omar Mosquera. Carga horaria semanal: 6 hs. Modalidad de la Asignatura: Teórico

Más detalles

Universidad Central del Este U C E Facultad de Ciencias de las Ingenierías y Recursos Naturales Producción Escuela de Ingeniería Industrial

Universidad Central del Este U C E Facultad de Ciencias de las Ingenierías y Recursos Naturales Producción Escuela de Ingeniería Industrial Universidad Central del Este U C E Facultad de Ciencias de las Ingenierías y Recursos Naturales Producción Escuela de Ingeniería Industrial Programa de la asignatura: IEM-211 Termodinámica I Total de Créditos:

Más detalles

TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6.

TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6. TERMODINÁMICA 1. EL CALOR 2. LA TEMPERATURA 3. CONCEPTO DE TERMODINÁMICA 4. PRIMER PRINCIPIO 5. SEGUNDO PRINCIPIO 6. CICLO DE CARNOT 7. DIAGRAMAS ENTRÓPICOS 8. ENTROPIA Y DEGRADACIÓN ENERGÉTICA INTRODUCCIÓN

Más detalles

Ciclos de fuerza de vapor. Jazmín Palma Campos Daniela Torrentes Díaz

Ciclos de fuerza de vapor. Jazmín Palma Campos Daniela Torrentes Díaz Ciclos de fuerza de vapor Jazmín Palma Campos Daniela Torrentes Díaz Ciclos de fuerza de vapor El vapor es el fluido de trabajo más empleado en los ciclos de potencia de vapor gracias a sus numerosas ventajas,

Más detalles

Máquinas térmicas y Entropía

Máquinas térmicas y Entropía Física 2 (Biólogos y Geólogos) SERIE 10 Máquinas térmicas y Entropía 1. Un mol de gas ideal (C v = 3 / 2 R) realiza el siguiente ciclo: AB) Se expande contra una presión exterior constante, en contacto

Más detalles

TEMA 3: CIRCUITO FRIGORÍFICO. BOMBA DE CALOR

TEMA 3: CIRCUITO FRIGORÍFICO. BOMBA DE CALOR TEMA 3: CIRCUITO FRIGORÍFICO. BOMBA DE CALOR 1. Introducción a. Ecuación de los gases perfectos b. Principios de la termodinámica y ley de Joule de los gases ideales 2. Principio de funcionamiento de los

Más detalles

5. MODELO DE ANÁLISIS DEL CICLO TERMODINÁMICO. El método aplicado para modelar el ciclo de la Turbina se basa en el ciclo

5. MODELO DE ANÁLISIS DEL CICLO TERMODINÁMICO. El método aplicado para modelar el ciclo de la Turbina se basa en el ciclo 60 5. MODELO DE ANÁLISIS DEL CICLO TERMODINÁMICO El método aplicado para modelar el ciclo de la Turbina se basa en el ciclo Brayton para el cual se hicieron algunas simplificaciones que se especifican

Más detalles

Capítulo 4 Segunda ley de la Termodinámica y Entropia

Capítulo 4 Segunda ley de la Termodinámica y Entropia Capítulo 4 Segunda ley de la Termodinámica y Entropia Índice 4.1. Segunda ley de la termodinámica.............................. 78 4.1.1. Conceptos fundamentales............................... 79 4.1.2.

Más detalles

GASES IDEALES, REALES, MEZCLAS 3.1 El gas ideal o perfecto. Ecuación de estado para los gases ideales. Superficie de estado para el gas ideal.

GASES IDEALES, REALES, MEZCLAS 3.1 El gas ideal o perfecto. Ecuación de estado para los gases ideales. Superficie de estado para el gas ideal. Programa Analítico de: TERMODINÁMICA TÉCNICA Especialidad: INGENIERIA ELECTROMECANICA Nivel: Tercer año. UNIDAD I 1. 1 1. 2 1. 3 1. 4 CONTENIDOS IMPORTANCIA DE LA TERMODINÁMICA EN INGENIERÍA Termodinámica

Más detalles

F. Aclarando conceptos sobre termodinámica

F. Aclarando conceptos sobre termodinámica F. Aclarando conceptos sobre termodinámica Termodinámica La termodinámica es la parte de la física que analiza los fenómenos en los que interviene el calor, estudiando transformaciones de energía y las

Más detalles

(f) Si la velocidad de transferencia de calor con ambos focos es [ ] [ ]

(f) Si la velocidad de transferencia de calor con ambos focos es [ ] [ ] ESCUELA SUPERIOR DE INGENIEROS INDUSRIALES Universidad de Navarra Examen de ERMODINÁMICA I Curso 996-97 roncal - 4,5 créditos 7 de enero de 997 PROBLEMAS RESUELOS Problema (obligatorio; puntos) Para el

Más detalles

Termodinámica y Máquinas Térmicas

Termodinámica y Máquinas Térmicas Termodinámica y Máquinas Térmicas Tema 02. Primer Principio de la Termodinámica Inmaculada Fernández Diego Severiano F. Pérez Remesal Carlos J. Renedo Estébanez DPTO. DE INGENIERÍA ELÉCTRICA Y ENERGÉTICA

Más detalles

MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA.

MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA. 1 MÁQUINAS TÉRMICAS. CICLOS TERMODINÁMICOS Y ESQUEMAS. TEORÍA. Una máquina térmica es un dispositivo que trabaja de forma cíclica o de forma continua para producir trabajo mientras se le da y cede calor,

Más detalles

3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO

3. TERMODINÁMICA. PROBLEMAS I: PRIMER PRINCIPIO TERMOINÁMI PROLEMS I: PRIMER PRINIPIO Problema 1 Un gas ideal experimenta un proceso cíclico ---- como indica la figura El gas inicialmente tiene un volumen de 1L y una presión de 2 atm y se expansiona

Más detalles

SERIE 8: Segunda Ley de la Termodinámica

SERIE 8: Segunda Ley de la Termodinámica SERIE 8: Segunda Ley de la Termodinámica I. Ciclos y máquinas térmicas 1. Un mol de gas ideal (C v = 3 / 2 R) realiza el siguiente ciclo: AB) Se expande contra una presión exterior constante, en contacto

Más detalles

5_2ª LEY DE LA TERMODINÁMICA

5_2ª LEY DE LA TERMODINÁMICA 5_2ª EY DE A ERMODINÁMICA 5. DIRECCIÓN DE OS PROCESOS 5.2 FOCOS, DEPÓSIOS O BAÑOS 5.3 MÁUINAS ÉRMICAS 5.4 REFRIGERADORES Y BOMBAS DE CAOR 5.5 PROCESOS REVERSIBES Y PROCESOS IRREVERSIBES 5.6 CICO DE CARNO

Más detalles

CONTENIDO SEGUNDO PRINCIPIO. Introducción. Máquinas térmicas. Rendimiento. Segundo principio. Enunciado de kelvin-planck

CONTENIDO SEGUNDO PRINCIPIO. Introducción. Máquinas térmicas. Rendimiento. Segundo principio. Enunciado de kelvin-planck FÍSIA I ONTENIDO SEGUNDO PRINIPIO Introducción Máquinas térmicas. Rendimiento Segundo principio. Enunciado de kelvin-planck Refrigeradores y bombas de calor Segundo principio. Enunciado de lausius iclo

Más detalles

(a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada en el segundo término.

(a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada en el segundo término. PROBLEMA 1. Fórmulas para el calor específico Deduzca una expresión para el como función de y evalúela para: (a) Un gas ideal. (b) Un fluido incompresible. (c) Un gas que obedece la ecuación virial truncada

Más detalles

FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA BIOQUÍMICA. PRE: Ecuaciones diferenciales, Fundamentos de Físico química.

FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA BIOQUÍMICA. PRE: Ecuaciones diferenciales, Fundamentos de Físico química. FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERÍA BIOQUÍMICA Código-Materia: Requisito: 31002 TERMODINÁMICA I PRE: Ecuaciones diferenciales, Fundamentos de Físico química. Programa Semestre: Ingeniería

Más detalles

V. Análisis de masa y energía de volúmenes de control

V. Análisis de masa y energía de volúmenes de control Objetivos: 1. Desarrollar el principio de conservación de masa. 2. Aplicar el principio de conservaciones de masa a varios sistemas incluyendo en estado estable y no estable. 3. Aplicar la primera ley

Más detalles

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica

1 TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica TERMODINAMICA Departamento de Física - UNS Carreras: Ing. Industrial y Mecánica Trabajo Práctico N : PROCESOS Y CICLOS DE POTENCIA DE VAPOR Procesos con vapor ) En un cierto proceso industrial se comprimen

Más detalles

Tema 4. Máquinas Térmicas III

Tema 4. Máquinas Térmicas III Asignatura: Tema 4. Máquinas Térmicas III 1. Máquinas Frigoríficas 2. Ciclo de refrigeración por compresión de vapor 3. Ciclo de refrigeración por absorción 4. Ciclo de refrigeración por compresión de

Más detalles

Guía de Trabajo Procesos Termodinámicos. Nombre: No. Cuenta:

Guía de Trabajo Procesos Termodinámicos. Nombre: No. Cuenta: Guía de Trabajo Procesos Termodinámicos Nombre: No. Cuenta: Resolver cada uno de los ejercicios de manera clara y ordenada en hojas blancas para entregar. 1._a) Determine el trabajo realizado por un fluido

Más detalles

SEGUNDA LEY DE LA TERMODINÁMICA

SEGUNDA LEY DE LA TERMODINÁMICA EGUND LEY DE L TERMODINÁMIC EXPERIENCI: Q Dos consecuencias empíricas y el sentido de evolución de los procesos: iempre se observa transferencia de energía térmica desde un sistema de mayor temperatura

Más detalles

GUÍA DE RESUELTOS: SEGUNDA LEY DE LA TERMODINÁMICA Y ENTROPÍA

GUÍA DE RESUELTOS: SEGUNDA LEY DE LA TERMODINÁMICA Y ENTROPÍA Universidad Nacional Experimental Politécnica de la Fuerza Armada Bolivariana Núcleo Valencia Extensión La Isabelica Ingeniería Petroquímica IV semestre Período 1-2012 Termodinámica I Docente: Lcda. Yurbelys

Más detalles

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot)

GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) UNIVERSIDAD PEDRO DE VALDIVIA TERMODINAMICA. GUIA DE EJERCICIOS II. (Primera Ley Segunda Ley - Ciclo de Carnot) 1. Deducir qué forma adopta la primera ley de la termodinámica aplicada a un gas ideal para

Más detalles

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE CIENCIAS. NOMBRE DE LA UNIDAD DE APRENDIZAJE: Termodinámica

UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE CIENCIAS. NOMBRE DE LA UNIDAD DE APRENDIZAJE: Termodinámica UNIVERSIDAD AUÓNOMA DEL ESADO DE MÉXICO FACULAD DE CIENCIAS. NOMBRE DE LA UNIDAD DE APRENDIZAJE: ermodinámica Diapositivas Sobre la Unidad de Competencia III. En esta Unidad de Competencia el estudiante

Más detalles

Ejemplos de temas V, VI, y VII

Ejemplos de temas V, VI, y VII 1. Un sistema de aire acondicionado que emplea refrigerante R-134a como fluido de trabajo es usado para mantener una habitación a 23 C al intercambiar calor con aire exterior a 34 C. La habitación gana

Más detalles

COORDINACIÓN DE. División Departamento Licenciatura. Asignatura: Horas/semana: Horas/semestre: Obligatoria X Teóricas 4.0 Teóricas 64.

COORDINACIÓN DE. División Departamento Licenciatura. Asignatura: Horas/semana: Horas/semestre: Obligatoria X Teóricas 4.0 Teóricas 64. UNIVERSIDAD NACIONAL AUTÓNOMA DE MÉXICO FACULTAD DE INGENIERÍA PROGRAMA DE ESTUDIO TERMODINÁMICA CIENCIAS BÁSICAS 4 10 Asignatura Clave Semestre Créditos COORDINACIÓN DE FÍSICA Y QUÍMICA INGENIERÍA MECÁNICA

Más detalles

Programa Regular. Abordar y profundizar el análisis de principios y leyes de la Termodinámica.

Programa Regular. Abordar y profundizar el análisis de principios y leyes de la Termodinámica. Programa Regular Curso: Termodinámica B Carga horaria: 6 hs. Modalidad de la asignatura: teórico-práctica Objetivos. Abordar y profundizar el análisis de principios y leyes de la Termodinámica. Adquirir

Más detalles

TERMODINÁMICA AVANZADA

TERMODINÁMICA AVANZADA ERMODINÁMICA AANZADA Unidad I: ropiedades y Leyes de la ermodinámica! Ciclos de potencia! Ciclo de refrigeración 8/7/0 Ctenido! Ciclos termodinámicos!! Ciclo Rankine! ariantes del Ciclo Rankine! Ciclos

Más detalles

Termodinámica de los compresores de gas. Termodinámica Técnica II Emilio Rivera Chávez Septiembre agosto 2009

Termodinámica de los compresores de gas. Termodinámica Técnica II Emilio Rivera Chávez Septiembre agosto 2009 Termodinámica de los compresores de gas Termodinámica Técnica II Emilio Rivera Chávez Septiembre 2007 - agosto 2009 Que es un Compresor de Gas? What is a Gas Compressor? Un compresor de gas es un dispositivo

Más detalles

TERMODINAMICA AVANZADA PROGRAMA: MAESTRÍA EN GESTIÓN ENERGÉTICA INDUSTRIAL

TERMODINAMICA AVANZADA PROGRAMA: MAESTRÍA EN GESTIÓN ENERGÉTICA INDUSTRIAL TERMODINAMICA AVANZADA PROGRAMA: MAESTRÍA EN GESTIÓN ENERGÉTICA INDUSTRIAL Docente: Elizabeth Rodríguez Acevedo, MSc. IQ elizabethrodriguez@itm.edu.co CONCEPTOS BÁSICOS DE TERMODINÁMICA CONTENIDO Introducción

Más detalles

Termodinámica. Calor y Temperatura

Termodinámica. Calor y Temperatura Termodinámica Calor y Temperatura 1 Temas 4. PRIMERA LEY DE LA TERMODINÁMICA. 4.1 Concepto de Trabajo aplicado a gases. 4.2 Trabajo hecho por un gas ideal para los procesos: Isocóricos, isotérmicos, Isobáricos

Más detalles

Capítulo 10: ciclos de refrigeración. El ciclo de refrigeración por compresión es un método común de transferencia de calor de una

Capítulo 10: ciclos de refrigeración. El ciclo de refrigeración por compresión es un método común de transferencia de calor de una Capítulo 0: ciclos de refrigeración El ciclo de refrigeración por compresión es un método común de transferencia de calor de una temperatura baja a una alta. ENTRA IMAGEN capítulo 0-.- CAOR ambiente 2.-

Más detalles

Actualización 2012 del Curso Electricidad y Calor: Tema Segunda Ley de la Termodinámica y sus aplicaciones

Actualización 2012 del Curso Electricidad y Calor: Tema Segunda Ley de la Termodinámica y sus aplicaciones Actualización 2012 del Curso Electricidad y Calor: Tema Segunda Ley de la Termodinámica y sus aplicaciones Responsable : Dr. Mario Enrique Alvarez Ramos Colaboradores: Dra. María Betsabe Manzanares Martínez

Más detalles

Introducción a la Termodinámica

Introducción a la Termodinámica Introducción a la Termodinámica Consulte nuestra página web: www.sintesis.com En ella encontrará el catálogo completo y comentado Introducción a la Termodinámica Cristóbal Fernández Pineda y Santiago Velasco

Más detalles

PROBLEMAS Propiedades termodinámicas de los fluidos. La energía interna es 32 J bar

PROBLEMAS Propiedades termodinámicas de los fluidos. La energía interna es 32 J bar 242 6. Propiedades termodinámicas de los fluidos La energía interna es 34 10 bar 32 J Estos resultados concuerdan mucho más con los valores experimentales que los del supuesto caso del vapor de l-buteno

Más detalles

TERMODINÁMICA - PREGUNTAS DE TEST

TERMODINÁMICA - PREGUNTAS DE TEST TERMODINÁMICA - PREGUNTAS DE TEST Grupo A: DEFINICIONES DE VARIABLES. CONCEPTOS GENERALES Grupo B: MAQUINAS TÉRMICAS: Grupo C: PRIMER PRINCIPIO: Grupo D: SEGUNDO PRINCIPIO: Grupo E: ESPONTANEIDAD DE LAS

Más detalles

RESPONSABLE DE LA CÁTEDRA

RESPONSABLE DE LA CÁTEDRA CÁTEDRA Q-TERMODINAMICA RESPONSABLE DE LA CÁTEDRA CAIVANO Jorge Omar CARRERA INGENIERÍA QUIMICA CARACTERÍSTICAS DE LA ASIGNATURA PLAN DE ESTUDIOS 2005 ORDENANZA CSU. Nº 1028 OBLIGATORIA ELECTIVA ANUAL

Más detalles

EQUILIBRIO EN SISTEMAS

EQUILIBRIO EN SISTEMAS UNIVERSIDAD AUTÓNOMA DEL ESTADO DE MÉXICO FACULTAD DE INGENIERÍA EQUILIBRIO EN SISTEMAS TERMODINÁMICOS (PARTE I) Unidad de aprendizaje: Fisicoquímica Dra. MERCEDES LUCERO CHÁVEZ Semestre 2015B CONTENIDO

Más detalles

Facultad de Ingeniería - Universidad Nacional de Cuyo PROGRAMA DE ASIGNATURA

Facultad de Ingeniería - Universidad Nacional de Cuyo PROGRAMA DE ASIGNATURA Facultad de Ingeniería - Universidad Nacional de Cuyo PROGRAMA DE ASIGNATURA Asignatura: Termodinámica y Máquinas Térmicas Carrera: Ingeniería Industrial Profesor Titular: MAMANI, Manuel Año: 2010 Semestre:

Más detalles

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011

Electricidad y calor. Dr. Roberto Pedro Duarte Zamorano. Departamento de Física 2011 Electricidad y calor Dr. Roberto Pedro Duarte Zamorano Departamento de Física 2011 A. Termodinámica Temario 1. Temperatura y Ley Cero. (3horas) 2. Calor y transferencia de calor. (5horas) 3. Gases ideales

Más detalles