Grupo: Dia: Hora: Profesor: Nombres: OBJETIVOS

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Grupo: Dia: Hora: Profesor: Nombres: OBJETIVOS"

Transcripción

1 UNIVERSIDAD DE ANTIOQUIA FACULTAD DE INGENIERÍA DEPARTAMENTO DE INGENIERIA ELECTRÓNICA LABORATORIO DE CIRCUITOS II PRÁCTICA N 7 "TRANSFORMADORES Y CAMPO MAGNÉTICO" Grupo: Dia: Hora: Profesor: Nombres: OBJETIVOS - Aprender el funcionamiento de una maquina eléctrica elemental. - Comprobar la teoría de inducción electromagnética. - Conocer la primera etapa de la aplicación final del laboratorio. - Aprender a usar transformadores reductores comerciales que se conecten a la red de EPM, sea 110Vrms ó 220Vrms. TEORIA Los descubrimientos de Ampère y Faraday tuvieron inmediatas aplicaciones prácticas que cambiaron la faz de la civilización moderna. Usando el descubrimiento de Oersted, que demostró que una corriente eléctrica produce un campo magnético en el espacio alrededor del cable que la conduce, tanto Ampère como Arago lograron magnetizar agujas de hierro. Lo hicieron de la siguiente forma: enrollaron un cable alrededor de la aguja y luego conectaron los extremos de dicho cable a una batería. Al pasar la corriente por el cable crea un campo magnético en el espacio dentro de la bobina; este campo magnético a su vez magnetiza la aguja. de la misma forma que un imán permanente magnetiza una limadura de hierro. En 1825 el inglés William Sturgeon ( ) enrolló 18 espiras de alambre conductor alrededor de una barra de hierro dulce, que dobló para que tuviera la forma de una herradura Figura 1. Al conectar los extremos del cable a una batería el hierro se magnetizó y pudo levantar un peso que era 20 veces mayor que el propio. Este fue el primer electroimán, es decir, un imán accionado por electricidad.

2 Figura 1. Primer electroimán construido por Sturgeon en DEFINICIONES PARA EL DISEÑO DE ELECTROIMANES Figura 2. Circuito magnetico tipico, con nucleo de hierro y un entrehierro.

3 Fuerza Magnetomotriz En la figura 2, el flujo magnetico es creado por N espiras de alambre, por las que circula una corriente de I amperes, produciendo entonces una fuerza magnetomotriz dada por: F= (N * I) / 0.796, donde: F: fuerza magnetomotriz en ampere.espira N: numero de espiras I: corriente en amperes Fuerza Magnetizadora La fuerza magnetizadora se define como la fuerza magnetomotriz por unidad de longitud del camino. H=F/l, donde: H:fuerza magnetizadora en LENZ F:fuerza magnetomotriz en amper.espira l:longitud del camino cm. Permeabilidad La permeabilidad (Mu) esta definida por la relacion: Mu=B/H, donde: Mu: Permeabilidad B: Densidad de flujo, en GAUSS H: Fuerza magnetizadora en Lenz En el aire, H es numericamente igual a la densidad de flujo B. La permeabilidad es el equivalente de la conductividad en los circuitos electricos. La permeabilidad en el hierro no es constante, ya que varia con el flujo. La relacion entre B, H y Mu se muestra en las curvas de B-H del hierro, como puede verse en la figura 3. El valor de Mu a un determinado punto de la curva, es el valor de B dividido por el de H a ese punto. Generalmente los materiales de hierro tienen valores de Mu altos, esto implica que el hierro tiene elevada conductividad, o baja "resistencia" al flujo magnetico; el hierro es un "buen conductor magnetico". En el lado opuesto tenemos al aire, que tiene baja conductividad, y por lo tanto alta "resistencia"; el aire es un "mal conductor magnetico". Principios de Inducción Electromagnética. La electricidad es la responsable del magnetismo en un electroimán, que es distinto de un imán permanente, y dicho campo magnético se produce sólo cuando las espiras de alambre enrolladas alrededor del núcleo magnético transportan corriente eléctrica. Para determinar la polaridad de un electroimán se puede usar la llamada regla de la mano izquierda.

4 Figura3. Curva BH caracteristica del hierro. EL TRANSFORMADOR La invención del transformador data del año de 1884, aplicado en los sistemas de transmisión que en esa época eran de corriente directa y presentaban limitaciones técnicas y económicas. El primer sistema comercial de corriente alterna con fines de distribución de la energía eléctrica que usaban transformadores, se puso en operación en los Estados Unidos de América. En el año de 1886 en Great Barington, Mass., en ese mismo año, al protección eléctrica se transmitió a 2000 volts en corriente alterna a una distancia de 30 kilómetros, en una línea construida en Cerchi, Italia. A partir de esta pequeñas aplicaciones iniciales, la industria eléctrica en el mundo, ha crecido de tal forma, que en la actualidad es factor de desarrollo de los pueblos, formando parte importante en esta industria el transformador. El transformador, es un dispositivo que no tiene partes móviles, el cual transfiere la energía eléctrica de un circuito a otro, bajo el principio de inducción electromagnética. La transferencia de energía la hace por lo general con cambios en los valores de voltajes y corrientes. Un transformador elevador convierte la potencia eléctrica a un valor de voltaje dado hacia un valor más elevado, en tanto que un transformador reductor convierte la potencia a un valor alto de voltaje haicia un valor bajo. Fundamentalmente, un transformador es un conjunto de dos bobinas de alambre devanadas alrededor de un núcleo de hierro y acopladas magnéticamente. En la Figura 4 se esquematiza un transformador. La bobina conectada a la fuente de alimentación recibe el nombre de primario y tiene un número de vueltas igual a N1; la conectada a la carga tiene un número de vueltas igual a N2 y se denomina secundario. La función del núcleo de hierro

5 es aumentar el flujo magnético y proporcionar el medio por el cual la mayor cantidad de flujo que pasa por el primario lo haga a través del secundario. En los transformadores ideales la potencia que el primario recibe de un generador, es igual a la entregada por el secundario a la carga, esto supone un rendimiento del 100%. En la práctica no se consigue éste rendimiento, debido: a las pérdidas por dispersión de flujo, histéresis, saturación, corrientes de Foucault y calentamiento del alambre (cobre). Las pérdidas por corrientes parásitas se reducen empleando un núcleo de hierro laminado. El núcleo blando se utiliza como el material del núcleo, para reducir pérdidas por histéresis. Las pérdidas por calor de joule causadas por la resistencia de los alambres de la bobina suelen ser pequeñas. Los transformadores (reales) fabricados con cuidado para reducir al mínimo las diferentes pérdidas, suelen tener alrededor de un 98% de rendimiento. Teoría del Funcionamiento Un transformador, como se menciono anteriormente no es más que dos solenoides o bobinas enrolladas alrededor de un núcleo común ferromagnético, el cual mantiene las líneas de campo magnético en su interior. Los solenoides tendrán áreas transversales iguales (A), pero poseen diferentes números de vueltas (N1) y (N2). En la primera bobina se tiene una fuerza electromotriz de CA (por estar conectada a la fuente de corriente alterna) ε1, con una amplitud v1, cuya relación viene dada por: ε1 = v1senωt Debido a que ε1 depende del tiempo, la corriente que circula por la primera bobina (primario) cambia, produciéndose una variación del flujo magnético ( θb) a través de ella. Según la ley de Faraday, la ε1 en el primario viene dada por la relación: di1 ε = L dt Siendo L la autoinductancia del solenoide 1. Al mismo tiempo, se induce una fuerza electromotriz ε2 a través de la bobina 2 (secundario). Esta ε2 se induce debido a que la

6 corriente variable en el primario produce un flujo magnético variable a través del secundario. Por definición, ε2 depende de M (inductancia mutua). Es posible plantear que, di ε 2 = M 1 dt ε 2 ε1 M = L En donde, M/ L es constante, por lo que ε2 tiene la misma dependencia armónica respecto al tiempo que ε1. Si la frecuencia angular de la corriente en el primario es ω, también lo será en la corriente inducida en el secundario. Del estudio de las leyes que rigen el comportamiento del campo magnético en solenoides, y haciendo N1 el número de vueltas en el primario y N2 el número de vueltas en el secundario, se puede plantear que: que sería equivalente a, ε 2 = ε1 v 2 = v1 N 2 N1 N 2 N1 si N2/N1=a, entonces, para a > 1 se tiene un transformador de subida o elevador, porque v2 > v2, mientras que para a < 1 se tiene un transformador de bajada o reductor, ya que v1 < v2. El valor de a se denomina razón de transformación. Cuando la potencia en el primario (Pp) es igual a la del secundario (Ps), Pp = Ps, se tiene un rendimiento del 100% y el transformador es ideal. Pero, si éstos son diseñados y construidos cuidadosamente (eficiente), las pérdidas por calentamiento por efecto Joule se reducen al mínimo. Como P = ε. I, se tiene entonces con esta condición que ε1 I1 = ε2 I2, y se tendría que, I1 = I 2 N 2 N1 Esto indica que las corrientes del primario y secundario están en razón inversa de los respectivos números de espiras. Lo cual expresa, también, que si a > 1 la corriente en el secundario disminuye y si a < 1 aumenta. Es importante reconocer que una corriente continua o directa (CC o CD) no afecta a un transformador, es decir, el transformador no transfiere energía cuando al primario se conecta a una corriente continua. Esto, debido a que la CC no varía con el tiempo (no tiene

7 dependencia temporal ni armónica), por lo que no puede producir cambios en el flujo magnético (θ B) y, por ende, no genera fuerza electromotriz inducida. Tipos de Transformadores En el mercado electrónico se encuentra una serie de transformadores, los cuales son fabricados para atender las diferentes necesidades. Algunos de éstos son: Transformador de alimentación. Es un transformador de dimensiones pequeñas cuya función es transferir con buen rendimiento la potencia de la red, cambiando los niveles de la tensión y de la corriente para adaptarlos a los requerimientos de los circuitos que conforman el equipo o aparato electrónico. Autotransformador. Es un transformador de potencia que permite adaptar las tensiones a cargas (resistencia conectada a los terminales del secundario) de distintos valores. El transformador llamado balastro, el cual utilizan las lámparas de neón (usadas en oficinas, casas y laboratorios), es un autotransformador. Transformador de audiofrecuencia. Se emplea con tensiones y frecuencias comprendidas entre 20 y hz, las cuales se consideran como audibles. Sirve para transferir potencia y para adaptar impedancias. Este tipo de transformador se utiliza generalmente en los transmisores y receptores a la salida de los micrófonos y entrada de altavoces. Transformador de radiofrecuencia. Es utilizado con tensiones cuya frecuencia es superior a los hz. Funciona como dispositivo de enlace entre dos circuitos y no como transformador del nivel de tensión y corrientes. Transformador de frecuencia intermedia. Es un transformador de radiofrecuencia que trabaja a una frecuencia fija. Transformador de adaptación de impedancias. Permite adaptar las impedancias de un generador y su carga correspondiente, esto con el fin de conseguir la máxima transferencia de energía.

8 PRÁCTICA COMPONENTES 2 metros de alambre esmaltado o con recubrimiento calibre 16 ó clavos de hierro de 3 ó 4 pulgadas (0.5cm de espesor) 2 clavos de acero de 3 ó 4 pulgadas (0.5cm de espesor) clips metálicos Pila de 9V Caimanes 1 Transformador con cables de más de un metro (con enchufe) para conectar a la línea de energía eléctrica. Opcional: Limadura de hierro. PARTE A ELECTROIMAN 1. Construya el electroiman como indican las siguientes figuras, empleando el clavo de hierro. (Hacer el mayor número de vueltas posible)

9 2. Alimente el electroiman con un voltaje de 6 Vdc, compruebe el funcionamiento como iman acercándole un clip o un objeto metálico. 3. Mida la corriente que pasa por el electroiman I = 4. Determine la distancia mínima en que debe ser colocado el objeto metálico para ser atraído. D = 5. Cambie el voltaje y mire el comportamiento del dispositivo. 6. Cambie el clavo de hierro por el clavo de acero, y mida nuevamente la corriente que pasa por el electroiman I = 7. Determine la distancia mínima en que debe ser colocado el objeto metálico para ser atraído. D = 8. Cambie el voltaje y mire el comportamiento del dispositivo.

10 9. Conclusiones. PARTE B TRANSFORMADOR 1. Cómo se pueden distinguir el primario del secundario en un transformador? 2. Copie las características del transformador conseguido. Potencia: Corriente máxima en el secundario: Voltajes de entrada: Voltajes de salida: 3. Mida las impedancias de entrada y salida del transformador. Zi = Zo = 4. Medir el voltaje de la línea de EPM, (hacerlo con el multímetro). Vepm =

11 ATENCION: Asegurese de que las conexiones de alta tensión sean seguras, es decir, evite cualquier riesgo de contaco entre los terminales de 110 V. 5. Conecte el primario del transformador conseguido a la línea, teniendo en cuenta que soporte 110Vrms en el primario. Mida con el multímetro los voltajes entregados en el secundario y estime la relación de espiras. Voltaje medido Voltaje medido Voltaje medido Relación Relación Relación 6. Decir 3 aplicaciones en las cuales se use el transformador: 7. Conclusiones.

APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR TAREA DE PREPARACIÓN

APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR TAREA DE PREPARACIÓN Andrés González 393 APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR TAREA DE PREPARACIÓN 1. Por qué el núcleo del transformador es de hierro o acero? Podría ser de otro material? El núcleo

Más detalles

1. Estudiar la FEM inducida en bobinas y la inductancia mutua. 2. Estudiar el cambio de la inductancia en una bobina al variar el núcleo laminado.

1. Estudiar la FEM inducida en bobinas y la inductancia mutua. 2. Estudiar el cambio de la inductancia en una bobina al variar el núcleo laminado. Laboratorio 6 Inducción E.M. y el Transformador 6.1 Objetivos 1. Estudiar la FEM inducida en bobinas y la inductancia mutua. 2. Estudiar el cambio de la inductancia en una bobina al variar el núcleo laminado.

Más detalles

:: MARCO TEÓRICO [12.3] En la figura (12.1) se muestran dos bobinas B1 y B2 próximas entre si pertenecientes a circuitos diferentes.

:: MARCO TEÓRICO [12.3] En la figura (12.1) se muestran dos bobinas B1 y B2 próximas entre si pertenecientes a circuitos diferentes. INDUCCION ELECTROMAGNETICA Funcionamiento de Transformadores CAAPPÍ ÍTTUU LOO L 12 Ley de Faraday Ley de Lenz Transformadores :: OBJETIVOS [12.1] Entender en que consiste el fenómeno de la inducción electromagnética

Más detalles

APUNTE: EL TRANSFORMADOR

APUNTE: EL TRANSFORMADOR APUNTE: EL TRANSFORMADOR Área de EET Página 1 de 6 Derechos Reservados Titular del Derecho: INACAP N de inscripción en el Registro de Propiedad Intelectual #. de fecha - -. INACAP 2002. Página 2 de 6 INDICE

Más detalles

Laboratorio de Física II

Laboratorio de Física II Laboratorio de Física II Capitulo 12: Inducción electromagnética (funcionamiento de transformadores) Ley de Faraday Ley de Lenz Transformadores OBJETIVOS [12.1] Entender en que consiste el fenómeno de

Más detalles

UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO.

UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA APLICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO. UNIVERSIDAD DEL VALLE INGENIERIA ELECTRONICA ALICACIÓN DE LA LEY DE INDUCCIÓN DE FARADAY: EL TRANSFORMADOR INFORME DE LABORATORIO Andrés González OBJETIVOS Comprobar experimentalmente la influencia de

Más detalles

Electricidad y Magnetismo. Unidad 7. Inducción Electromagnética

Electricidad y Magnetismo. Unidad 7. Inducción Electromagnética INSTITUTO POLITECNICO NACIONAL ESCUELA SUPERIOR DE INGENIERÍA QUÍNICA E INDUSTRIAS EXTRACTIVAS Electricidad y Magnetismo Unidad 7. Inducción Electromagnética INDUCCIÓN ELECTROMAGNÉTICA A principios de

Más detalles

TRANSFORMADORES. Figura 19.-Diagrama de un transformador.

TRANSFORMADORES. Figura 19.-Diagrama de un transformador. TRAFORMADORE Los transformadores son dispositivos diseñados para transferir energía eléctrica de un circuito a otro. La conexión entre los dos circuitos para lograr esta transferencia se efectúa por medio

Más detalles

PRÁCTICA # 3 PRINCIPIOS DE ELECTROMAGNETISMO

PRÁCTICA # 3 PRINCIPIOS DE ELECTROMAGNETISMO PRÁCTICA # 3 PRINCIPIOS DE ELECTROMAGNETISMO OBJETIO 1.- El alumno comprenderá los factores que intervienen en la formación de un campo magnético en una estructura ferromagnética. INTRODUCCIÓN Recordemos

Más detalles

Electromagnetismo. Jhon Jairo Padilla A., PhD.

Electromagnetismo. Jhon Jairo Padilla A., PhD. Electromagnetismo Jhon Jairo Padilla A., PhD. Imán permanente Fuerzas de atracción magnéticas Material Magnético Cuando un material no magnético tal como papel, vidrio, madera o plástico se coloca en un

Más detalles

INDUCCION ELECTROMAGNETICA. 1.- Si hacemos girar una espira en un campo magnético, se produce:

INDUCCION ELECTROMAGNETICA. 1.- Si hacemos girar una espira en un campo magnético, se produce: INDUCCION ELECTROMAGNETICA 1.- Si hacemos girar una espira en un campo magnético, se produce: A. Calor B. Corriente alterna C. Corriente continua D. Corriente pulsante 2.- La fem inducida en una espira

Más detalles

Unidad I: Generalidades. Qué importancia tienen los transformadores en el sector eléctrico?

Unidad I: Generalidades. Qué importancia tienen los transformadores en el sector eléctrico? Unidad I: Generalidades Qué es un transformador? Un transformador es una máquina estática de corriente alterna CA que se encarga de cambiar el nivel de tensión de entrada por un nivel de tensión específico

Más detalles

Transformadores. Electrónica Industrial A

Transformadores. Electrónica Industrial A Materiales Ferromagnéticos: Son fuertemente atraídos por los imanes: Hierro, acero, níquel, cobalto Los polos iguales se repelen, los polos opuestos se atraen Es imposible tener un solo polo magnético

Más detalles

Experimento de laboratorio No. 6 Estudio de la ley de Faraday en un transformador.

Experimento de laboratorio No. 6 Estudio de la ley de Faraday en un transformador. Experimento de laboratorio No. 6 Estudio de la ley de Faraday en un transformador. AUTOR(ES): Aurea D. Rodríguez Llerena, OBJETIVOS 1. Estudiar el fenómeno de inducción electromagnética en un transformador.

Más detalles

MAGNETISMO CAMPO MAGNÉTICO

MAGNETISMO CAMPO MAGNÉTICO MAGNETISMO El magnetismo es un fenómeno que manifiestan algunos cuerpos llamados imanes y es conocido desde la antigüedad, por la fuerza experimentada entre dos imanes o entre un imán y un metal. La fuerza

Más detalles

Tema 3. Máquinas Eléctricas. Ingeniería Eléctrica y Electrónica

Tema 3. Máquinas Eléctricas. Ingeniería Eléctrica y Electrónica 1 Tema 3. Máquinas Eléctricas 2 Máquinas eléctricas. Definición, tipos. Índice El transformador El motor El generador 3 Máquina Eléctrica: Máquinas que realizan la conversión de energía de una forma u

Más detalles

Consiste en provocar una corriente eléctrica mediante un campo magnético variable.

Consiste en provocar una corriente eléctrica mediante un campo magnético variable. www.clasesalacarta.com 1 Inducción electromagnética Inducción Electromagnética Consiste en provocar una corriente eléctrica mediante un campo magnético variable. Flujo magnético ( m ) El flujo magnético

Más detalles

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 1

DEPARTAMENTO DE CIENCIAS DE LA ENERGIA Y MECANICA Laboratorio de Instrumentación Industrial Mecánica Laboratorio de Instrumentación Mecatrónica 1 1. Tema: Característica estática de un sensor de inductancia variable. 2. Objetivos: a. Conocer la operación de un dispositivo de inductancia variable. b. Determinación de la característica estática tensión

Más detalles

LA ELECTRICIDAD Y LOS IMANES. Denominación de polos. Magnetismo LEY DE LOS POLOS 13/11/2014. Tema 3 2ª Parte

LA ELECTRICIDAD Y LOS IMANES. Denominación de polos. Magnetismo LEY DE LOS POLOS 13/11/2014. Tema 3 2ª Parte ELECTRICIDAD IMANES LA ELECTRICIDAD Y LOS IMANES Tema 3 2ª Parte CORRIENTE ELÉCTRICA MAGNETISMO ELECTROMAGNETISMO Magnetismo Consiste en atraer objetos de hierro, cobalto o níquel Imán es el cuerpo que

Más detalles

MAGNETISMO CAMPO MAGNÉTICO

MAGNETISMO CAMPO MAGNÉTICO MAGNETISMO El magnetismo es un fenómeno que manifiestan algunos cuerpos llamados imanes y es conocido desde la antigüedad, por la fuerza experimentada entre dos imanes o entre un imán y un metal. La fuerza

Más detalles

- Comprobar experimentalmente, las relaciones de transformación de impedancia, voltaje y corriente de un transformador ideal.

- Comprobar experimentalmente, las relaciones de transformación de impedancia, voltaje y corriente de un transformador ideal. 1. Objetivos -Proponer, simular, calcular y reproducir para el análisis, la topología de diversos circuitos acoplados magnéticamente (al menos 6). Dos con acople en aire, dos con núcleo abierto y dos con

Más detalles

EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11

EPO 11 ESCUELA PREPARATORIA OFICIAL NÚM. 11 Resuelve los siguientes problemas sobre los temas vistos en clase. En una placa circular de 5cm de radio existe una densidad de flujo magnético de 4 T. Calcula el flujo magnético, en webers y maxwell,

Más detalles

ELECTROMAGNETISMO ELECTROIMANES.

ELECTROMAGNETISMO ELECTROIMANES. ELECTROMAGNETISMO El electromagnetismo hace referencia a la relación existente entre electricidad y magnetismo. Esta relación fue descubierta por el físico danés Christian Ørsted, cuando observó que la

Más detalles

Inducción electromagnética

Inducción electromagnética Fenómeno consistente en provocar o inducir una corriente eléctrica mediante un campo magnético variable. Experiencias de Faraday Una bobina conectada a una batería, otra bobina conectada a un galvanómetro.

Más detalles

Capítulo 5 Inducción Magnética

Capítulo 5 Inducción Magnética Capítulo 5 Inducción Magnética Ley de Faraday A principios de la década de 1830, Faraday en Inglaterra y J. Henry en U.S.A., descubrieron de forma independiente, que un campo magnético induce una corriente

Más detalles

Interacción electromagnética

Interacción electromagnética Unidad 6 Interacción electromagnética chenalc@gmail.com Fenómeno consistente en provocar o inducir una corriente eléctrica mediante un campo magnético variable. Experiencias de Faraday Una bobina conectada

Más detalles

EC1081 LABORATORIO DE CIRCUITOS ELÉCTRICOS PRÁCTICA Nº 9 : EL VATÍMETRO CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO

EC1081 LABORATORIO DE CIRCUITOS ELÉCTRICOS PRÁCTICA Nº 9 : EL VATÍMETRO CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO EC1081 LABORATORIO DE CIRCUITOS ELÉCTRICOS PRÁCTICA Nº 9 : EL VATÍMETRO CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO VATIMETRO DIGITAL SUNEQUIPLO DWM-03060 EXPERIMENTO DEMOSTRATIVO DE LA PRÁCTICA 8 En

Más detalles

SISTEMAS ELECTROMECÁNICOS

SISTEMAS ELECTROMECÁNICOS Universidad Técnica Federico Santa María Departamento de Electrónica Valparaíso-Chile SISTEMAS ELECTROMECÁNICOS José Rodríguez Agosto de 1999 Introducción. Introducción. Este apunte contiene las figuras

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo FUNDAMENTOS DE INGENIERÍA ELÉCTRICA José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo Tema 6: Inducción magnética PUNTOS OBJETO DE ESTUDIO 3

Más detalles

TEMA 4. REPASO DE LAS LEYES Y PRINCIPIOS DE ELECTROMAGNESTISMO.

TEMA 4. REPASO DE LAS LEYES Y PRINCIPIOS DE ELECTROMAGNESTISMO. TEMA 4. REPASO DE LAS LEYES Y PRINCIPIOS DE ELECTROMAGNESTISMO. CONTENIDO: 4.1. Repaso de nociones de Electromagnetismo. 4.2. Acción de un campo magnético sobre una corriente. Campo creado por una corriente.

Más detalles

FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY

FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY 1. Objetivos Departamento de Física Laboratorio de Electricidad y Magnetismo FENÓMENOS DE INDUCCIÓN ELECTROMAGNÉTICA LA LEY DE FARADAY Observar el efecto producido al introducir un imán en una bobina.

Más detalles

FÍSICA GENERAL II Programación. Contenidos

FÍSICA GENERAL II Programación. Contenidos UNIVERSIDAD TÉCNICA FEDERICO SANTA MARIA 1 er Semestre 2011 FÍSICA GENERAL II Programación 1. Control 1: fecha 01 de abril, contenido: Módulos 1, 2 y 3(parcial: determinar diferencias de potencial a partir

Más detalles

Complemento ley de Faraday

Complemento ley de Faraday Complemento ley de Faraday 15 cm 1 cm C1.- Calcúlese la fuerza electromotriz en la espira móvil de la figura en el instante en que su posición es la indicada. Supóngase que la resistencia de la espira

Más detalles

MÁQUINAS ELÉCTRICAS ROTATIVAS: MOTORES DE CC

MÁQUINAS ELÉCTRICAS ROTATIVAS: MOTORES DE CC MÁQUINAS ELÉCTRICAS ROTATIVAS: MOTORES DE CC 1.- Concepto y principal clasificación de las máquinas eléctricas Una máquina eléctrica es un dispositivo capaz de generar, aprovechar o transformar la energía

Más detalles

Inducción electromagnética. 1. Flujo de campo magnético

Inducción electromagnética. 1. Flujo de campo magnético Inducción electromagnética 1. Flujo de campo magnético 2. Inducción electromagnética 2.1 Experiencia de Henry 2.2 Experiencias de Faraday 2.3 Ley de Faraday-Henry 2.4 Ley de Faraday- Lenz 3. Otros caso

Más detalles

2.4. Flujo magnético Densidad de flujo Fuerza magnetizadora Fuerza magnética Permeabilidad magnética...

2.4. Flujo magnético Densidad de flujo Fuerza magnetizadora Fuerza magnética Permeabilidad magnética... ÍNDICE HISTORIA Y ANTECEDENTES... 11 Generalidades e historia... 13 Desarrollo histórico... 14 1. ELECTRICIDAD... 17 1.1. Unidades eléctricas... 19 1.1.1. El culombio: unidad de carga... 19 1.1.2. Diferencia

Más detalles

electromagnetismo Desarrollo histórico 30/05/2017 Campo magnético producido por una corriente Campo magnético producido por un conductor recto

electromagnetismo Desarrollo histórico 30/05/2017 Campo magnético producido por una corriente Campo magnético producido por un conductor recto Electromagnetismo Es la parte de la física que se encarga de estudiar al conjunto de fenómenos que resultan de las acciones mutuas entre las corrientes eléctricas y el magnetismo Desarrollo histórico Nombre

Más detalles

Laboratorio de Teoría Electromagnética II Practicas Transformadores

Laboratorio de Teoría Electromagnética II Practicas Transformadores Transformadores Práctica No. 5 Objetivos: Que el alumno conozca el principio de operación de un transformador monofásico Introducción: Cuando hay inducción mutua entre dos bobinas o devanados, entonces

Más detalles

PRESENTACIÓN Y OBJETIVOS...17 AUTORES...19

PRESENTACIÓN Y OBJETIVOS...17 AUTORES...19 ÍNDICE PRESENTACIÓN Y OBJETIVOS...17 AUTORES...19 CAPÍTULO 1. ELECTROSTÁTICA...21 1.1 ELECTRICIDAD Y ELECTROTECNIA...22 1.2 ELECTRIZACIÓN DE UN CUERPO. CARGA ELÉCTRICA...23 1.3 ESTRUCTURA ATÓMICA DE LA

Más detalles

CORRIENTE INDUCIDA EN UN SOLENOIDE. EL TRANSFORMADOR.

CORRIENTE INDUCIDA EN UN SOLENOIDE. EL TRANSFORMADOR. eman ta zabal zazu Departamento de Física de la Materia Condensada universidad del país vasco euskal herriko unibertsitatea FACULTAD DE CIENCIA Y TECNOLOGÍA UNIVERSIDAD DEL PAÍS VASCO DEPARTAMENTO de FÍSICA

Más detalles

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 8 PRÁCTICA Nº 8 : EL VATÍMETRO DIGITAL VATIMETRO DIGITAL SUNEQUIPLO DWM-03060

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 8 PRÁCTICA Nº 8 : EL VATÍMETRO DIGITAL VATIMETRO DIGITAL SUNEQUIPLO DWM-03060 EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 8 PRÁCTICA Nº 8 : EL VATÍMETRO DIGITAL CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO VATIMETRO DIGITAL SUNEQUIPLO DWM-03060 TRANSFORMADOR MONOFÁSICO

Más detalles

EXPERIMENTO DE LABORATORIO No 1 EL TRANSFORMADOR MONOFASICO. Página 1 de 6

EXPERIMENTO DE LABORATORIO No 1 EL TRANSFORMADOR MONOFASICO. Página 1 de 6 EXPERIMENTO DE LABORATORIO No 1 EL TRANSFORMADOR MONOFASICO Página 1 de 6 OBJETIVOS 1. Conocer las relaciones de voltaje y corriente de un transformador. 2. Estudiar las corrientes de excitación, la capacidad

Más detalles

Universidad de la República Facultad de Ingeniería. Electrotécnica 1. Clase 8 - Circuitos Magnéticos y Transformadores. Curso 2018

Universidad de la República Facultad de Ingeniería. Electrotécnica 1. Clase 8 - Circuitos Magnéticos y Transformadores. Curso 2018 Universidad de la República Facultad de Ingeniería Electrotécnica 1 Clase 8 - Circuitos Magnéticos y Transformadores Curso 2018 Contenido de la presentación Bibliografía de referencia Transformador ideal

Más detalles

1. MOTOR DE CORRIENTE CONTINUA Y DINAMO

1. MOTOR DE CORRIENTE CONTINUA Y DINAMO 1. MOTO DE COIENTE CONTINUA Y DINAMO 1.1. OBJETIVO El propósito de esta práctica es estudiar el comportamiento de un motor DC pequeño cuando opera directamente y en reversa como generador o dinamo. En

Más detalles

PRUEBAS ELEMENTALES I. OBJETIVOS:

PRUEBAS ELEMENTALES I. OBJETIVOS: PRUEBAS ELEMENTALES I. OBJETIVOS: Determinar la continuidad para cada bobina. Hallar la resistencia de aislamiento para cada bobina. Determinar la resistencia óhmica para cada bobina. Halar la polaridad

Más detalles

Práctico de Laboratorio N 7

Práctico de Laboratorio N 7 ráctico de Laboratorio N 7 Características de un Transformador Objetivos: 1. Determinar la relación de espiras de un transformador dado. 2. Relacionar el efecto de un aumento de la corriente en el arrollamiento

Más detalles

RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE

RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DEL NUCLEO CARACTERÍSTICAS DE LOS TERMINALES LEY DE AMPERE MAGNETISMO RELACIONES BÁSICAS LEY DE FARADAY CARACTERÍSTICAS DE LOS TERMINALES CARACTERÍSTICAS DEL NUCLEO LEY DE AMPERE MAGNITUDES MAGNÉTICAS MAGNITUDES ELÉCTRICAS Longitud l Campo magnético H Longitud

Más detalles

Inducción electromagnética. M del Carmen Maldonado Susano

Inducción electromagnética. M del Carmen Maldonado Susano Inducción electromagnética M del Carmen Maldonado Susano Cuando las intensidades de corriente son del mismo sentido existen entre ellas fuerzas atractivas; cuando las intensidades de corriente son de sentido

Más detalles

Adaptación de Impedancias:

Adaptación de Impedancias: Adaptación de Impedancias: Para que la energía que aporta un generador sea aprovechada en óptimas condiciones por el receptor las impedancias internas de ambos deben ser conjugadas: Las partes reales (Resistiva)

Más detalles

CONTENIDOS. Contenidos. Presentación. xiii

CONTENIDOS. Contenidos. Presentación. xiii CONTENIDOS Contenidos Presentación v xiii 1. Campo eléctrico y propiedades eléctricas de la materia 1 1.1. Introducción histórica............................... 2 1.2. Estructura interna de la materia.........................

Más detalles

Principios generales de las Máquinas Eléctricas

Principios generales de las Máquinas Eléctricas UNIVERSIDAD NACIONAL DE MAR DEL PLATA Máquinas Eléctricas (342) Curso: Ingeniería Mecánica Principios generales de las Máquinas Eléctricas Prof. Justo José Roberts Definición de Máquina Eléctrica Máquinas

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A OPCIÓN A Una batería con una tensión a circuito abierto E=100 V tiene una resistencia interna Rin=25 Ω y se conecta a una resistencia R=590 Ω junto a un voltímetro y un amperímetro como indica la figura.

Más detalles

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 6 PRÁCTICA Nº 8 : EL VATÍMETRO DIGITAL CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO

EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 6 PRÁCTICA Nº 8 : EL VATÍMETRO DIGITAL CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO EC1281 LABORATORIO DE MEDICIONES ELÉCTRICAS PRELABORATORIO Nº 6 PRÁCTICA Nº 8 : EL VATÍMETRO DIGITAL CARACTERISTICAS DEL TRANSFORMADOR MONOFASICO VATIMETRO DIGITAL SUNEQUIPLO DWM-03060 EXPERIMENTO DEMOSTRATIVO

Más detalles

Guía del docente. - 4º medio:

Guía del docente. - 4º medio: Guía del docente 1. Descripción curricular: - Nivel: 4º medio. - Subsector: Ciencias Físicas. - Unidad temática: Circuito de corriente variable. - Palabras claves: corriente eléctrica, bobinas, brújulas,

Más detalles

TEMA 5: Motores de Corriente Continua.

TEMA 5: Motores de Corriente Continua. Esquema: TEMA 5: Motores de Corriente Continua. TEMA 5: Motores de Corriente Continua....1 1.- Introducción...1 2.- Ley de Faraday...2 3.- Constitución de una Máquina Eléctrica...2 4.- Principio de un

Más detalles

Fecha de Entrega: 8/11/2013. Resolver los Ejercicios Propuestos 2, 5, 6, 14, 16. Índice

Fecha de Entrega: 8/11/2013. Resolver los Ejercicios Propuestos 2, 5, 6, 14, 16. Índice Gabinete Tema 11: El Transformador Fecha de Entrega: 8/11/2013 Resolver los Ejercicios Propuestos 2, 5, 6, 14, 16 Índice 11 Conversión Electromagnética. El Transformador.... 2 11.1 Introducción a los trasformadores...

Más detalles

PRÁCTICA 5 EL TRANSFORMADOR

PRÁCTICA 5 EL TRANSFORMADOR c Francisco Medina, Rafael R. Boix y Alberto Pérez Izquierdo 1 PRÁCTICA 5 EL TRANSFORMADOR 1. Objetivos En esta práctica se estudia el comportamiento de un dispositivo eléctrico cuyo funcionamiento se

Más detalles

Histéresis magnética Transiciones de fase magnéticas

Histéresis magnética Transiciones de fase magnéticas Histéresis magnética Transiciones de fase magnéticas Objetivo En este experimento se estudia el fenómeno de histéresis y la transición de fases normal a magnética de materiales ferromagnéticos o ferrimagnéticos

Más detalles

UD3. BOBINAS. Centro CFP/ES BOBINAS

UD3. BOBINAS. Centro CFP/ES BOBINAS UD3. Centro CFP/ES 1 2 Funcionamiento Clasificación 3 Tipos de material Calculo de una bobina 4 Características Tipos 5 Tipos Tipos 6 Tipos Tipos 7 Identificación Calculo de Transformadores 8 Transformadores

Más detalles

Transformador: Sistema que convierte los parámetros Tensión y Corriente, sin pérdida de energía. Solo puede funcionar con Corriente Alterna CA.

Transformador: Sistema que convierte los parámetros Tensión y Corriente, sin pérdida de energía. Solo puede funcionar con Corriente Alterna CA. Transformador: Sistema que convierte los parámetros Tensión y Corriente, sin pérdida de energía. Solo puede funcionar con Corriente Alterna CA. Inducción: Faraday descubrió que los cambios provocados en

Más detalles

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo

FUNDAMENTOS DE INGENIERÍA ELÉCTRICA. José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo FUNDAMENTOS DE INGENIERÍA ELÉCTRICA José Francisco Gómez González Benjamín González Díaz María de la Peña Fabiani Bendicho Ernesto Pereda de Pablo Tema 5: Fundamentos de electrotecnia PUNTOS OBJETO DE

Más detalles

CUESTIONARIO 2 DE FISICA 2

CUESTIONARIO 2 DE FISICA 2 CUESTIONARIO 2 DE FISICA 2 Contesta brevemente a cada uno de los planteamientos siguientes: 1.- Cuáles son los tipos de carga eléctrica y porqué se llaman así? 2.- Menciona los procedimientos para obtener

Más detalles

Práctica 11 Inducción electromagnética

Práctica 11 Inducción electromagnética Página 88/105 Práctica 11 Inducción electromagnética 88 Página 89/105 1. Seguridad en la ejecución Peligro o fuente de energía Riesgo asociado 1 Diferencia de potencial alterna. Descarga eléctrica y daño

Más detalles

CUESTIONARIO 2 DE FISICA 4

CUESTIONARIO 2 DE FISICA 4 CUESTIONARIO 2 DE FISICA 4 Contesta brevemente a cada uno de los planteamientos siguientes: 1.- Cuáles son los tipos de imanes? a) por su origen: b) por su retentividad magnética: c) por su forma: 2.-

Más detalles

Ud. 4 Magnetismo y electromagnetismo. Índice del libro

Ud. 4 Magnetismo y electromagnetismo. Índice del libro Ud. 4 Magnetismo y electromagnetismo Índice del libro Ud. 4 Magnetismo y electromagnetismo 1. Magnetismo 1.1. Propiedades de los imanes Continuación 1.2 Líneas de fuerza y campo magnético 1.3. Clasificación

Más detalles

Laboratorio de Maquinas Eléctricas, Edificio 4 (CITT). I. OBJETIVOS

Laboratorio de Maquinas Eléctricas, Edificio 4 (CITT). I. OBJETIVOS Nivel: Departamento: Facultad de Ingeniería. Eléctrica. Materia: Conversión de la Energía Electromecánica I. Docente(s) de Laboratorio: Lugar de Ejecución: Tiempo de Ejecución: Laboratorio de Maquinas

Más detalles

FÍSICA II. Guía de laboratorio 04: LEY DE FARADAY

FÍSICA II. Guía de laboratorio 04: LEY DE FARADAY FÍSICA II Guía de laboratorio 04: LEY DE FARADAY I. LOGROS ESPERADOS a) Mide el voltaje alterno inducido en la bobina de un transformador. b) Determina la relación entre los voltajes de entrada y de salida,

Más detalles

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2

3. TRANSFORMADORES. Su misión es aumentar o reducir el voltaje de la corriente manteniendo la potencia. n 2 V 1. n 1 V 2 3. TRANSFORMADORES Un transformador son dos arrollamientos (bobina) de hilo conductor, magnéticamente acoplados a través de un núcleo de hierro común (dulce). Un arrollamiento (primario) está unido a una

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA.

INDUCCIÓN ELECTROMAGNÉTICA. Síntesis Física º Bach. Inducción Magnética. IM - 1 INDUCCIÓN ELECTROMAGNÉTICA. FLUJO DEL CAMPO MAGNÉTICO. Se define el flujo de un vector a través de una superficie: r r Φ = B d S s Para una superficie

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA 1. Inducción electromagnética. 2. Leyes. 3. Transformadores. 4. Magnitudes de la corriente eléctrica. 5. Síntesis electromagnética. Física 2º bachillerato Inducción electromagnética

Más detalles

Índice de contenidos

Índice de contenidos FundamentosdeElectrotecniaparaIngenieros Índice de contenidos TEMA 1... 9 CONCEPTOS BÁSICOS DE ELECTRICIDAD... 9 TEMA 1.- CONCEPTOS BÁSICOS DE ELECTRICIDAD... 11 1.1.- Introducción... 11 1.2.- Naturaleza

Más detalles

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO GUIA DE EJERCICIOS: C A MPO MAGNETICO Y CIRCUITOS MAGNETICOS INGENIERIA DE SONIDO ELECTRICIDAD Y MAGNETISMO

UNIVERSIDAD NACIONAL DE TRES DE FEBRERO GUIA DE EJERCICIOS: C A MPO MAGNETICO Y CIRCUITOS MAGNETICOS INGENIERIA DE SONIDO ELECTRICIDAD Y MAGNETISMO UNIVERSIDAD NACIONAL DE TRES DE FEBRERO ELECTRICIDAD Y MAGNETISMO GUIA DE EJERCICIOS: C A MPO MAGNETICO Y CIRCUITOS MAGNETICOS INGENIERIA DE SONIDO Titular: Ing. Alejandro Di Fonzo Jefe de Trabajos Prácticos:

Más detalles

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR

INSTITUTO POLITÉCNICO NACIONAL SECRETARÍA ACADÉMICA DIRECCIÓN DE EDUCACIÓN MEDIA SUPERIOR 1. REPASO NO. 1 FÍSICA IV LEY DE COULOMB Y CAMPO ELÉCTRICO 1. Una partícula alfa consiste en dos protones (qe = 1.6 x10-19 C) y dos neutrones (sin carga). Cuál es la fuerza de repulsión entre dos partículas

Más detalles

La inductancia de la corriente contínua y alterna

La inductancia de la corriente contínua y alterna La inductancia de la corriente contínua y alterna La Inductancia también denominada inductancia propia es la propiedad de un circuito o elemento de un circuito para retardar el cambio en la corriente que

Más detalles

CORRIENTE ALTERNA DEFINICION.

CORRIENTE ALTERNA DEFINICION. DEFINICION. CORRIENTE ALTERNA La forma de oscilación de la corriente alterna más comúnmente utilizada es la de una oscilación sinusoidal, puesto que se consigue una transmisión más eficiente de la energía.

Más detalles

Eje Magnético. Eje magnético de la barra de la línea que une los dos polos.

Eje Magnético. Eje magnético de la barra de la línea que une los dos polos. IMANES Un imán es toda sustancia que posee o ha adquirido la propiedad de atraer el hierro. Normalmente son barras o agujas imantadas de forma geométrica regular y alargada. Existen tres tipos de imanes:

Más detalles

UNIDAD 1: MAGNETISMO TEMA 2: Fuerza magnética. Fuerza magnética Inducción magnética Flujo magnético (Ley de Faraday y ley de Lenz) El transformador

UNIDAD 1: MAGNETISMO TEMA 2: Fuerza magnética. Fuerza magnética Inducción magnética Flujo magnético (Ley de Faraday y ley de Lenz) El transformador UNIDAD 1: MAGNETISMO TEMA 2: Fuerza magnética. Fuerza magnética Inducción magnética Flujo magnético (Ley de Faraday y ley de Lenz) El transformador Fuerza magnética a) Sobre una carga móvil De lo estudiado

Más detalles

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras

x x x x x x n= número de espiras por unidad de longitud r r enc nli El número de espiras en el tramo L es nl N= número total de espiras c d x x x x x x x b a n número de espiras por unidad de longitud L r r b r r c r r d r r a r r b r r dl µ 0I dl + dl + dl + dl dl L a b c d a enc I enc nli El número de espiras en el tramo L es nl L µ

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CRITERIOS ESPECÍFICOS DE CORRECCIÓN

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD CRITERIOS ESPECÍFICOS DE CORRECCIÓN CRITERIOS ESPECÍFICOS DE CORRECCIÓN A- CALIFICACIÓN En el propio enunciado, a cada ejercicio se le asigna su valoración global máxima: 2,5 puntos En los ejercicios con varios apartados, la puntuación de

Más detalles

No, ya que existen perdidas, pudiendo hacer tal conexionado en un transformador ideal.

No, ya que existen perdidas, pudiendo hacer tal conexionado en un transformador ideal. 1. Un transformador de tensión es reversible. Si se toman dos transformadores idénticos de 230/12 V y si conectan los dos secundarios entre si y uno de los primarios se conecta a una toma de tensión, En

Más detalles

Inducción electromagnética

Inducción electromagnética Práctica 11 Inducción electromagnética Elaborado por: Revisado por: Autorizado por: Vigente a partir de : M.I. Juan Carlos Cedeño Vázquez Ing. Juan Manuel Gil Pérez Ing. Francisco Miguel Pérez Ramírez

Más detalles

2. Desde el punto de vista del magnetismo qué ocurre en un conductor cuando es recorrido por una corriente eléctrica?

2. Desde el punto de vista del magnetismo qué ocurre en un conductor cuando es recorrido por una corriente eléctrica? UNIDAD 1: MAGNETISMO Y ELECTROMAGNETISMO ESTUDIO DEL CASO - PÁGINA 5 1. Fermín y Abel han observado, en las hojas de características, que algunos de los motores que han instalado disponen de imanes permanentes

Más detalles

Transformadores (Parte 1)

Transformadores (Parte 1) UNIVERSIDAD NACIONAL DE MAR DEL PLATA Máquinas Eléctricas (34) Curso: Ingeniería Mecánica Transformadores (Parte 1) Prof. Justo José Roberts Introducción MÁQUINAS ESTÁTICAS Transformador Autotransformador

Más detalles

TEMA 6 Inducción electromagnética

TEMA 6 Inducción electromagnética TEMA 6 Inducción electromagnética 6.1 Fem inducida y ley de Faraday. 6. Ley de Lenz. 6.3 Auto inductancia y inductancia mutua. 6.4 Energía magnética. 6.5 Transitorios en corriente continua: circuito RL

Más detalles

Marco teórico. Magnetismo. Campo magnético. Ley de Faraday: Inducción electromagnética. -Los imanes.

Marco teórico. Magnetismo. Campo magnético. Ley de Faraday: Inducción electromagnética. -Los imanes. Magnetismo -Los imanes. Marco teórico Un imán es una materia capaz de producir un campo magnético exterior y atraer al hierro (también puede atraer al cobalto y al níquel). Los imanes que manifiestan sus

Más detalles

INDICE Capitulo 1. El concepto del circuito magnético Capitulo 2. Excitación de estructuras ferromagnéticas con corriente directa

INDICE Capitulo 1. El concepto del circuito magnético Capitulo 2. Excitación de estructuras ferromagnéticas con corriente directa INDICE Capitulo 1. El concepto del circuito magnético 1-1. introducción 1 1-2. algunas leyes básicas de electrostática 3 1-3. algunas leyes básicas de magnetostática 8 1-4. otras conclusiones útiles en

Más detalles

5.- Interacción ente campos magnéticos y corrientes. Ley de Faraday-Henry o de inducción electromagnética

5.- Interacción ente campos magnéticos y corrientes. Ley de Faraday-Henry o de inducción electromagnética 5.- Interacción ente campos magnéticos y corrientes. Ley de Faraday-Henry o de inducción electromagnética Si el flujo de campo magnético que atraviesa una bobina es variable respecto al tiempo, se induce

Más detalles

LABORATORIO DE CONVERSORES ESTÁTICOS PRÁCTICA N 9

LABORATORIO DE CONVERSORES ESTÁTICOS PRÁCTICA N 9 ESCUELA POLITÉCNICA NACIONAL Campus Politécnico "J. Rubén Orellana R." FACULTAD DE INGENIERÍA ELÉCTRICA Y ELECTRÓNICA Carrera de Ingeniería Electrónica y Control LABORATORIO DE CONVERSORES ESTÁTICOS 1.

Más detalles

Tema 8. Inducción electromagnética

Tema 8. Inducción electromagnética Tema 8. Inducción electromagnética Se producirá una corriente eléctrica inducida en un circuito, cuando varíe el flujo magnético que lo atraviesa. Los aparatos se alimentan con energía eléctrica, y necesitan

Más detalles

Inducción electromagnética

Inducción electromagnética Práctica 11 Inducción electromagnética Elaborado por: Revisado por: Autorizado por: Vigente a partir de : M.I. Juan Carlos Cedeño Vázquez Ing. Juan Manuel Gil Pérez Ing. Francisco Miguel Pérez Ramírez

Más detalles

EL CIRCUITO ELÉCTRICO

EL CIRCUITO ELÉCTRICO EL CIRCUITO ELÉCTRICO -ELEMENTOS DE UN CIRCUITO -MAGNITUDES ELÉCTRICAS -LEY DE OHM -ASOCIACIÓN DE ELEMENTOS -TIPOS DE CORRIENTE -ENERGÍA ELÉCTRICA. POTENCIA -EFECTOS DE LA CORRIENTE ELÉCTRICA 1. EL CIRCUITO

Más detalles

Generación y medición de campos magnéticos

Generación y medición de campos magnéticos Generación y medición de campos magnéticos Aplicaciones Investigacion Industria Clinica Campo aplicado (H) y campo total (B) La permeabilidad magnética (μ) de un material se define como el cociente entre

Más detalles

Capítulo II. Ecuaciones de los circuitos magnéticos

Capítulo II. Ecuaciones de los circuitos magnéticos Capítulo II. Ecuaciones de los circuitos magnéticos 2.1. Intensidad de Campo magnético Los campos magnéticos son el mecanismo fundamental para convertir energía eléctrica de corriente alterna de un nivel

Más detalles

PROGRAMA INSTRUCCIONAL MAQUINAS ELÉCTRICAS I

PROGRAMA INSTRUCCIONAL MAQUINAS ELÉCTRICAS I UNIVERSIDAD FERMÍN TORO VICE RECTORADO ACADÉMICO FACULTAD DE INGENIERÍA ESCUELA DE ELÉCTRICA PROGRAMA INSTRUCCIONAL MAQUINAS ELÉCTRICAS I CÓDIGO ASIGNADO SEMESTRE U. C DENSIDAD HORARIA H.T H.P/H.L H.A

Más detalles

PARÁMETROS ELÉCTRICOS DE LAS INSTALACIONES ELÉCTRICAS

PARÁMETROS ELÉCTRICOS DE LAS INSTALACIONES ELÉCTRICAS PARÁMETROS ELÉCTRICOS DE LAS INSTALACIONES ELÉCTRICAS Objetivo específico: Dimensionar, verificar y medir los parámetros eléctricos de las instalaciones eléctricas. Capacidades a desarrollar: Identificar

Más detalles

Flujo magnético. El flujo magnético representa el número de líneas de. Para un elemento de superficie (superficie diferencial) será: dφ=

Flujo magnético. El flujo magnético representa el número de líneas de. Para un elemento de superficie (superficie diferencial) será: dφ= FJC 009 Oersted había comprobado experimentalmente que una corriente eléctrica crea a su alrededor un campo magnético. Se puede obtener el fenómeno inverso? Se puede crear una corriente eléctrica a partir

Más detalles

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores Introducción En este capítulo se presentan dos nuevos e importantes elementos pasivos de los circuitos lineales: el capacitor y el inductor. A diferencia

Más detalles

PRÓLOGO A LA SEGUNDA EDICIÓN... VII PRÓLOGO A LA TERCERA EDICIÓN... XI

PRÓLOGO A LA SEGUNDA EDICIÓN... VII PRÓLOGO A LA TERCERA EDICIÓN... XI PRÓLOGO A LA SEGUNDA EDICIÓN... VII PRÓLOGO A LA TERCERA EDICIÓN... XI I. FUNDAMENTOS DE ELECTROMAGNETISMO E INTRODUCCIÓN AL ESTUDIO DE LOS CIRCUITOS MAGNÉTICOS EN LAS MÁQUINAS ELÉCTRICAS... 1 I.1. PLANTEAMIENTO

Más detalles

Transformador sin carga (Primera parte)

Transformador sin carga (Primera parte) Transformador sin carga (Primera parte) Fundamento El transformador en un dispositivo eléctrico que por su entrada recibe una corriente alterna con un voltaje y una intensidad, mientras que por su salida

Más detalles

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD

UNIVERSIDADES DE ANDALUCÍA PRUEBA DE ACCESO A LA UNIVERSIDAD OPCIÓN A Dos pilas iguales de fuerza electromotriz 1,5 V y resistencia interna 0,1 Ω. a) Si se asocian en serie y se conectan a una resistencia exterior, la intensidad que circula es de 3 A, cuál es el

Más detalles