Microondas 3º ITT-ST

Tamaño: px
Comenzar la demostración a partir de la página:

Download "Microondas 3º ITT-ST"

Transcripción

1 Microondas 3º ITT-ST Tema 4: Pablo Luis López Espí. ircuitos RL de parámetros concentrados ircuito resonante serie. ircuito resonante paralelo. Acoplamiento de circuitos resonantes. ircuitos resonantes con líneas de transmisión. Líneas terminadas en cortocircuito. Líneas terminadas en circuito abierto. ircuitos resonantes con guías de onda: cavidades. avidades en guía rectangular. avidades en guía cilíndrica. ircuitos resonantes con materiales dieléctricos. Otros circuitos en línea microstrip y stripline.

2 ircuitos RL de parámetros concentrados. ircuito RL serie Impedancia de entrada al circuito: Z R+ jω L+ jω En función de la potencia disipada y las energías medias almacenadas: PD + jω ( WM WE) Z IN I IN ircuitos RL de parámetros concentrados (II). En resonancia ambas energías son iguales. ω Se define el factor de calidad como: L W + W W W ωl Q ω ω ω Q R ω R M E M E PD PD PD En función de este factor, la impedancia puede ponerse como: 3 RQΔω f ZIN R+ j R+ jlδω Q ω BW

3 4 ircuitos RL de parámetros concentrados (III). ircuito RL paralelo: Impedancia de entrada al circuito: ZIN + + jω R jω L La pulsación de resonancia tiene idéntica expresión que en el caso serie: ω L 5 ircuitos RL de parámetros concentrados (IV). En resonancia, el factor de calidad se expresa como: R Q R ω L ω A partir de este valor, la impedancia de entrada será: Z IN R + jδ ω R Δω + jq ω 3

4 6 Factor de calidad total. Acoplamiento. uando el circuito resonante se conecta a una carga, la resistencia del circuito aumenta y por tanto, el factor de calidad cambia: ωl ωl QT R R RL T R+ RL + + ω L ω L Q Q Se define el coeficiente de acoplamiento como: g Acoplamiento crítico. g < Infra-acoplamiento (undercoupling) g > Sobreacoplamiento (overcoupling) U L Q g Q T L 7 Mejora del acoplamiento (I) eq Q >> >> Y B ZD j Y B Y B I + + Y Z jx jx + j L B Y + B Y + B eq Q Q >> + + Q ( + ) >> Req Q R 4

5 Mejora del acoplamiento (II) 8 Req R + eq + Req R n n 9 ircuitos resonantes con líneas de transmisión. Una línea de transmisión terminada en cortocircuito o circuito abierto se comporta como un circuito resonante si su longitud es igual a cuarto o media longitud de onda. Impedancia de entrada a una línea cargada: Z Z ZL + Z tghγ d IN Z + Z tghγ d Propiedades de la tangente hiperbólica: tgh ( x jy) L ( x) + jtg ( y) ( ) ( ) tgh + + jtgh x tg y 5

6 Línea cortocircuitada. Línea terminada en cortocircuito: Z Z tghγ d IN onsiderando media longitud de onda y alrededor de la frecuencia de resonancia (ω ω + Δω ): d λ π ω v P βd ωd Δωπ π + v ω P Línea cortocircuitada (II). Puesto que la tangente es una función periódica: Δωπ Δωπ Δωπ tg( βd ) tg π + tg ω ω ω onsiderando bajas pérdidas, la impedancia de entrada puede aproximarse como: Δωπ αd + j ω Δωπ Z Z Z αd + j IN Δωπ + jα d ω ω 6

7 Línea cortocircuitada (III). omparando esta expresión con la del circuito resonante serie de parámetros concentrados: R Z αd Z L π ω El factor de calidad del circuito resonante es: Z πω Q ω L R β α Línea cortocircuitada (IV). 3 Si se considera una línea de longitud d λ/4 y alrededor de la frecuencia de resonancia (ω ω + Δω ): πv d p ω π Δωπ β d + ω Aprovechando relaciones trigonométricas: π Δωπ Δωπ Δωπ cotg( βd ) cotg + tg ω ω ω 7

8 Línea cortocircuitada (V). onsiderando bajas pérdidas, la impedancia de entrada a la línea es: Δωπ + jα d ω Z ZIN Z Δωπ Δωπ αd + j αd + j ω ω omparando con el circuito resonante paralelo de parámetros concentrados: 4 Z R αd π Z 4ω L 4Z πω R β Q ω α L Línea en circuito abierto. Línea terminada en circuito abierto: Impedancia de entrada a la línea: 5 Z Z cotghγ d IN 8

9 Línea en circuito abierto (II). onsiderando media longitud de onda y alrededor de la frecuencia de resonancia (ω ω + Δω ): Z Δωπ + jα d ω Z Δωπ Δωπ αd + j αd + j ω ω IN Z omparando con el circuito resonante paralelo de parámetros concentrados: 6 Z R αd π Z ω L Z πω R β Q ω α L Línea en circuito abierto (III). 7 Si se considera una línea de longitud d λ/4 y alrededor de la frecuencia de resonancia (ω ω + Δω ), siguiendo los pasos descritos anteriormente, los elementos del circuito resonante serie de parámetros concentrados equivalente son: R Z αd Z L π 4ω Q ω L R 4 ωπz β α 9

10 ircuitos resonantes en guía de onda. 8 Se construyen mediante tramos de guía de onda terminados en cortocircuito. La potencia se disipa en las paredes metálicas y en el dieléctrico que rellena la cavidad. La energía se almacena en los campos eléctricos y magnéticos confinados. Pueden solucionarse planteando la ecuación de onda sujeta a las condiciones de contorno de la cavidad o, de manera más sencilla, a partir de las soluciones de los modos TE o TM de los distintos tipos de guía. avidades en guías rectangulares. 9 Expresión del campo eléctrico en la cavidad: + jβmn, z + jβmn, z Et ( x, y, z) e( x, y) A e + A e Para que se anule en z ambas amplitudes deben ser iguales + E xyz,, jae xy, sen β z t ( ) ( ) ( m, n )

11 avidades en guías rectangulares (II). Para que se anule en z d βmnd, l π l,,3... Número de ondas de la cavidad y frecuencias de resonancia k mnl,, n mn,, fmn,, mπ π π + + a b d ck π με r r El modo fundamental de la cavidad es el TE avidades en guías rectangulares (III).

12 avidades en guías rectangulares (IV). Representación de la amplitud del campo eléctrico dentro de la cavidad: avidades en guías rectangulares (V). 3 Factor de calidad de la cavidad. Energías eléctrica y magnética. ε * εabd WE EyEydV E 4 V 6 μ * * μabd π W ( H H H H ) dv E W V 6 ZTE k η a M x x z z E Potencia disipada en los conductores. RS RSE λ ab bd a d Pc Ht ds Paredes 8η d a d a R S μω σ

13 avidades en guías rectangulares (VI). 4 Potencia disipada en el dieléctrico: ωε " abdωε " E Pd J E dv E dv V V 8 Factores de calidad Q Q ω WE P ω W ε ' " tgδ E D PD ε Q T + Q Q D avidades en guías rectangulares (VII). 5 3

14 avidades en guías cilíndricas. 6 avidad cilíndrica: Para que se cumpla la condición de contorno en z E xyz jae xy z t + (,, ) (, ) sen( βm, n ) avidades en guías cilíndricas (II). onstantes de propagación modos TE y TM β p ' nm, nm, k a β k p a nm, nm, ondición de resonancia: βmnd, π,,3... Frecuencias de resonancia modos TE 7 f nm,, p ' nm, π c + π μ ε a d r r 4

15 avidades en guías cilíndricas (III). 8 Frecuencias de resonancia modos TM El modo fundamental es el TE. El primer modo TM es el TM f nm,, pnm, π c + π μ ε a d r r Para la construcción de frecuencímetros se emplea el modo TE por su mayor factor de calidad. avidades en guías cilíndricas (IV). arta de modos 9 5

16 avidades en guías cilíndricas (V). 3 Energía eléctrica almacenada: ( ρ φ ) W W ε d π a E E E ρ d ρ d φ dz z φ + r 4 εk η a Hπd n W W ' E J p, 8 ( p ', ) p ' n n m nm nm, ( ) Potencia disipada en los conductores: RS ad βan βa n P π H Jn ( p' n, m) + + ( p', ) p ' nm nm, ( p' nm, ) avidades en guías cilíndricas (VI). 3 Potencia disipada en el dieléctrico: ωε '' ( ρ φ ) P * D J E dv E + E dv V V 4 ωε '' k η a Hπ d n ' D p ' n n m nm, P J p 8 ( p ' nm, ) Factor de calidad. Q decrece según la raíz de f Q ω W Q D P PD ω WE ε ' ε " tgδ Q (, ) T + Q Q D 6

17 avidades en guías cilíndricas (VII). 3 Excitación de cavidades 33 7

18 Frecuencímetros de cavidad 34 Frecuencímetro con una cavidad cilíndrica ajustable donde se excita el modo TM Resonadores dieléctricos. 35 onsisten en un pequeño disco o un cubo fabricados en un material dieléctrico de alta permitividad. Si la constante relativa es alta se asegura un cierto confinamiento de los campos. Se emplean materiales con constante dieléctrica entre y como óxidos de titanio y bario. Menores tamaño, coste y peso que las cavidades metálicas. No existen pérdidas en el conductor. Los factores de calidad que se obtienen son de varios miles. El modo de resonancia habitual es el TEδ análogo al TE de las guías cilíndricas. 8

19 Resonadores dieléctricos (II). Geometría de un resonador dieléctrico cilíndrico. 36 Resonadores dieléctricos (III). 37 Despreciando los efectos de borde, la frecuencia de resonancia se obtiene: β L tg α β p α k k k a p rk k rk β ε ε Si la constante dieléctrica es alta, el factor de calidad es aproximadamente /tg δ a 9

20 Algunas Referencias Alpuente, J. et al (). Líneas de Transmisión y Redes de Adaptación en ircuitos de Microondas. Servicio de Publicaciones de la UAH. Pozar, D. M. (998). Microwave Engineering. John Wiley and Sons. Ramo, S. et al. (993). Fields and waves in ommunication Electronics. John Wiley and Sons. 3ª Ed. 38

UNIVERSIDAD DISTRITAL FJDC FAC. TECNOLÓGICA INGENIERÍA EN TELECOMUNICACIONES MEDIOS DE TRANSMISIÓN "GUÍAS DE ONDA Y RESONADORES"

UNIVERSIDAD DISTRITAL FJDC FAC. TECNOLÓGICA INGENIERÍA EN TELECOMUNICACIONES MEDIOS DE TRANSMISIÓN GUÍAS DE ONDA Y RESONADORES UNIVERSIDAD DISTRITAL FJDC FAC. TECNOLÓGICA INGENIERÍA EN TELECOMUNICACIONES MEDIOS DE TRANSMISIÓN "GUÍAS DE ONDA Y RESONADORES" Prof. Francisco J. Zamora Propagación de ondas electromagnéticas en guías

Más detalles

Inconvenientes. Ventajas

Inconvenientes. Ventajas Antenas microstrip - Antenas con gran implantación en los últimos años - Fuerte aparato matemático asociado a su análisis - uy relacionado con elementos tales como las líneas de transmisión o los resonadores,

Más detalles

Sesión 3 Componentes Pasivos

Sesión 3 Componentes Pasivos Sesión 3 Componentes Pasivos Componentes y Circuitos Electrónicos José A. García Souto / José M. Sánchez Pena www.uc3m.es/portal/page/portal/dpto_tecnologia_electronica/personal/joseantoniogarcia OBJETIVOS

Más detalles

PROBLEMAS DE OSCILADORES DE MICROONDAS

PROBLEMAS DE OSCILADORES DE MICROONDAS PROBLEMAS DE OSCILADORES DE MICROONDAS Curso 10-11 PROBLEMA 1 (febrero 02) Se pretende diseñar un oscilador a 5 GHz haciendo uso de un diodo Impatt del que sabemos que presenta, alrededor de esta frecuencia,

Más detalles

Radiación y Radiocomunicación. Fundamentos de antenas. Carlos Crespo Departamento de Teoría de la Señal y Comunicaciones

Radiación y Radiocomunicación. Fundamentos de antenas. Carlos Crespo Departamento de Teoría de la Señal y Comunicaciones Radiación y Radiocomunicación Tema 2 Fundamentos de antenas Carlos Crespo Departamento de Teoría de la Señal y Comunicaciones ccrespo@us.es 17/03/2006 Carlos Crespo RRC-4IT 1 Radiación y Radiocomunicación

Más detalles

Microondas. Programa de la asignatura. Pablo Luis López Espí Curso 2007/08

Microondas. Programa de la asignatura. Pablo Luis López Espí Curso 2007/08 Programa de la asignatura Pablo Luis López Espí Curso 2007/08 Tema 1: Teoría general de circuitos de microondas. Tema 2: Dispositivos pasivos recíprocos. Tema 3: Dispositivos de microondas con ferritas.

Más detalles

CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN

CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN CAMPO MAGNÉTICO 3. FENÓMENOS DE INDUCCIÓN RESUMEN 1. LEY DE FARADAY 2. LEY DE LENZ 3. INDUCTANCIA 4. ENERGÍA DEL CAMPO MAGNÉTICO 5. CIRCUITOS RL 6. OSCILACIONES. CIRCUITO LC 7. CORRIENTE ALTERNA. RESONANCIA

Más detalles

Acopladores direccionales Líneas acopladas Transductores. Ortomodos

Acopladores direccionales Líneas acopladas Transductores. Ortomodos 3.3. Redes de cuatro accesos 3.3.1. Acopladores direccionales Definición y parámetros. Híbridos. Aplicaciones. Implementación práctica 3.3.. Líneas acopladas. 3.3.3. Transductores. Ortomodos Redes pasivas

Más detalles

Por definición: La capacitancia (o capacidad) se define a la relación: F C =

Por definición: La capacitancia (o capacidad) se define a la relación: F C = APATORES Un capacitor: onsiste, esencialmente, en dos conductores separados por un dieléctrico. Por definición: La capacitancia (o capacidad) se define a la relación: [ ] [ ] Q oul [ F] = olts Dieléctrico

Más detalles

ONDAS Y PERTURBACIONES

ONDAS Y PERTURBACIONES ONDAS Y PERTURBACIONES Fenómenos ondulatorios Perturbaciones en el agua (olas) Cuerda oscilante Sonido Radio Calor (IR) Luz / UV Radiación EM / X / Gamma Fenómenos ondulatorios Todos ellos realizan transporte

Más detalles

2 Energía electrostática y Capacidad

2 Energía electrostática y Capacidad 2 Energía electrostática y Capacidad M. Mudarra Física III (2A) - M. Mudarra Enginyeria Aeroespacial - p. 1/44 Densidad de energía electrostática 2.2 Campo E en presencia de 2.6 Fuerzas sobre Física III

Más detalles

Consideremos una guía de ondas sin pérdidas (las paredes son conductores ideales) rellena de aire (conductividad despreciable, permitividad

Consideremos una guía de ondas sin pérdidas (las paredes son conductores ideales) rellena de aire (conductividad despreciable, permitividad c Rafael R. Boix 1 GUÍAS DE ONDAS Son tuberías metálicas huecas de sección transversal arbitraria (cuadrada, cilíndrica, elíptica,...) que permiten transmitir las ondas electromagnéticas de forma connada

Más detalles

ELECTROMAGNETISMO DE ALTA FRECUENCIA. Grado en Física

ELECTROMAGNETISMO DE ALTA FRECUENCIA. Grado en Física ELECTROMAGNETISMO DE ALTA FRECUENCIA Grado en Física 1.- LÍNEAS DE TRANSMISIÓN 2.- GUÍAS DE ONDA Bibliografía: POZAR D. M.- "Microwave Engineering". Wiley. 1997 MARSHALL, S.V. & SKITEK, G.G.- "Electromagnetic

Más detalles

Microondas 3º ITT-ST. Tema 2: Circuitos pasivos de microondas. Pablo Luis López Espí

Microondas 3º ITT-ST. Tema 2: Circuitos pasivos de microondas. Pablo Luis López Espí Microondas 3º ITT-ST Tema 2: Circuitos pasivos de microondas Pablo Luis López Espí 1 Dispositivos pasivos recíprocos Dispositivos de una puerta: Conectores de microondas. Terminaciones y cargas adaptadas.

Más detalles

Parámetros de antenas

Parámetros de antenas 1/43 Tema 3 Parámetros de antenas Lorenzo Rubio Arjona (lrubio@dcom.upv.es) Departamento de Comunicaciones. ETSI de Telecomunicación 1 /43 3. Parámetros de antenas 3.1. Introducción y justificación del

Más detalles

Diseño de filtros en tecnología Microstrip

Diseño de filtros en tecnología Microstrip Diseño de filtros en tecnología Microstrip D. Cordobés, J.A. López Pérez, J.A. López Fernández, J.A. Abad, G. Martínez Informe Técnico IT - OAN 2007-10 CONTENIDO I. Introducción 4 II. Diseño de un filtro

Más detalles

INDICE 1. Sistemas de Coordenadas e Integrales 2. Gradiente, Divergente y Rotacional 3. Campos Electrostáticos

INDICE 1. Sistemas de Coordenadas e Integrales 2. Gradiente, Divergente y Rotacional 3. Campos Electrostáticos INDICE Prefacio XVII 1. Sistemas de Coordenadas e Integrales 1 1.1. Conceptos generales 1 1.2. Coordenadas de un punto 2 1.3. Los campos escalares y cómo se transforman 4 1.4. Campos vectoriales y cómo

Más detalles

ANTENAS Y PROPAGACIÓN

ANTENAS Y PROPAGACIÓN ANTENAS Y POPAGACIÓN PÁCTICO 4 DIAGAMA DE SMITH INDICE INDICE 2 EJECICIOS DE PÁCTICO 3 EJECICIO 1 3 EJECICIO 2 3 EJECICIO 3 3 EJECICIO 4 3 EJECICIO 5 3 EJECICIO 6 4 EJECICIO 7 4 EJECICIO 8 4 EJECICIO 9

Más detalles

3.5 ANTENAS MICROSTRIP

3.5 ANTENAS MICROSTRIP 3.5 ANTENAS MICROSTRIP 3.5.1 Descripción general 3.5. Alimentación de un parche sencillo 3.5.3 Modelo de línea de transmisión 3.5.4 Campo de radiación 3.5.5 Impedancia de entrada 3.5.6 Métodos de análisis

Más detalles

V cos(wt) = V + V. = L. Sustituyendo, se obtiene la ecuación del dt circuito RL: di L + Ri = Vmcos(wt) dt

V cos(wt) = V + V. = L. Sustituyendo, se obtiene la ecuación del dt circuito RL: di L + Ri = Vmcos(wt) dt ircuitos y en estado estable ircuito Supongamos un circuito como el mostrado en la figura. Suponga que se desea calcular la corriente i(t) que circula por el circuito. De acuerdo con la ey de Kirchoff

Más detalles

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R

TEMA PE9. PE.9.2. Tenemos dos espiras planas de la forma y dimensiones que se indican en la Figura, siendo R TEMA PE9 PE.9.1. Los campos magnéticos de los que estamos rodeados continuamente representan un riesgo potencial para la salud, en Europa se han establecido recomendaciones para limitar la exposición,

Más detalles

PRÁCTICA 11 FACTOR DE CALIDAD Y FACTOR DE ACOPLAMIENTO DE CIRCUITOS RESONANTES

PRÁCTICA 11 FACTOR DE CALIDAD Y FACTOR DE ACOPLAMIENTO DE CIRCUITOS RESONANTES c Francisco Medina, Rafael R. Boix y Alberto Pérez Izquierdo PRÁCTICA FACTOR DE CALIDAD Y FACTOR DE ACOPLAMIENTO DE CIRCUITOS RESONANTES. Objetivos El primer objetivo de esta práctica es introducir el

Más detalles

EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE GRUPOS C Y D.

EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE GRUPOS C Y D. Página 1 de 14 Al índice de exámenes EXAMEN PARCIAL DE FÍSICA DE PRIMER CURSO. 7 DE FEBRERO DE 1994. GRUPOS C Y D. E1. Deducir la ecuación de dimensiones de las siguientes magnitudes: 1- velocidad; 2-

Más detalles

TEMA PE6. 2) carga de los condensadores C

TEMA PE6. 2) carga de los condensadores C TEMA PE6 PE.6.. Dado el circuito de la figura y teniendo en cuenta que la energía almacenada en el condensador de µ F es de.5 Julios, calcular: a) Valor de la intensidad I.b) Valor de la fem ε. C) Carga

Más detalles

Test de Electricidad - Copia #1. Parte 1. Nombre: Nota: / Test de Electricidad. Curso º Grado Biología

Test de Electricidad - Copia #1. Parte 1. Nombre: Nota: / Test de Electricidad. Curso º Grado Biología Nombre: Nota: / Test de Electricidad - Copia #1 Test de Electricidad. Curso 2012-13. 1º Grado Biología Parte 1 1 Una carga de valor q= 1.0 nc se encuentra situada en el plano x-y en el punto ( 1,0). Consideremos

Más detalles

Apuntes de Fundamentos de Microondas 1 4 o E.T.S.I. Telecomunicación Universidad de Málaga

Apuntes de Fundamentos de Microondas 1 4 o E.T.S.I. Telecomunicación Universidad de Málaga Apuntes de Fundamentos de Microondas 1 4 o E.T.S.I. Telecomunicación Universidad de Málaga Carlos García Argos (garcia@ieee.org) http://www.telecos-malaga.com Curso 2002/2003 ÍNDICE GENERAL ÍNDICE GENERAL

Más detalles

UNIDAD CURRICULAR: TEORÍA DE ONDAS VII Prof. Juan Hernández Octubre Eje de Formación Prelación HAD HTIE

UNIDAD CURRICULAR: TEORÍA DE ONDAS VII Prof. Juan Hernández Octubre Eje de Formación Prelación HAD HTIE PROGRAMA ANALÌTICO FACULTAD: INGENIERÌA ESCUELA: INGENIERÍA ELECTRÓNICA UNIDAD CURRICULAR: TEORÍA DE ONDAS Código de la Escuela Código Período Elaborado por Fecha Elaboración Plan de Estudios 25 25-0927

Más detalles

INDUCCIÓN ELECTROMAGNÉTICA

INDUCCIÓN ELECTROMAGNÉTICA INDUCCIÓN ELECTROMAGNÉTICA 1. La figura muestra la superficie de un cubo de arista a = 2 cm, ubicada en un campo uniforme B = 5i + 4j + 3k Tesla. Cual es el valor del flujo del campo magnético a través

Más detalles

DISEÑO DE ANTENA MICROSTRIP PARA LA BANDA DE UHF

DISEÑO DE ANTENA MICROSTRIP PARA LA BANDA DE UHF 1 DISEÑO DE ANTENA MICROSTRIP PARA LA BANDA DE UHF 1 M.Sc. J. C. García y 2 J. A. Franco Grupo de Control y Procesamiento Digital de Señales Universidad Nacional de Colombia Sede Manizales 1 jcgarcia@nevado.manizales.unal.edu.co

Más detalles

MEDIDA DEL COEFICIENTE DE REFLEXIÓN

MEDIDA DEL COEFICIENTE DE REFLEXIÓN MEDIDA DEL COEFICIENTE DE REFLEXIÓN 1. INTRODUCCIÓN En este documento se describe la práctica de laboratorio correspondiente a la medida del coeficiente de reflexión producido por una láma dieléctrica

Más detalles

MATERIALES DIELÉCTRICOS

MATERIALES DIELÉCTRICOS MATERIALES DIELÉCTRICOS PREGUNTAS 1. Qué le ocurre a una placa sólida, dieléctrica, cuando se coloca en un campo eléctrico uniforme?. Qué es un material dieléctrico?, argumente. 3. Hay dieléctricos polar

Más detalles

Formulario PSU Parte común y optativa de Física

Formulario PSU Parte común y optativa de Física Formulario PSU Parte común y optativa de Física I) Ondas: Sonido y Luz Frecuencia ( f ) f = oscilaciones Vector/, Unidad de medida f 1/s = 1 Hz Periodo ( T ) T = oscilaciones f = 1 T T Segundo ( s ) Longitud

Más detalles

FIS1533/FIZ Examen Facultad de Física

FIS1533/FIZ Examen Facultad de Física FIS533/FIZ022 - Examen Facultad de Física Nombre: Pontificia Universidad Católica de Chile Segundo Semestre 204-24 de Noviembre Tiempo para responder: 50 minutos Sección: Buenas Malas Blancas Nota Instrucciones

Más detalles

FISI 3172 Examen Final Dic Sección u hora de clases

FISI 3172 Examen Final Dic Sección u hora de clases FISI 3172 Examen Final Dic. 2007 Nombre Sección u hora de clases Número Estud. Profesor Conteste cualesquiera 20 preguntas, pero solamente 20, de las siguientes preguntas. Escriba letras mayúsculas en

Más detalles

Ondas Planas en medios reales Reflexión y Transmisión

Ondas Planas en medios reales Reflexión y Transmisión Ondas Planas en medios reales Reflexión Transmisión Campos Ondas FACULTAD D INGNIRÍA UNIVRSIDAD NACIONAL D LA PLATA ARGNTINA ONDAS LCTROMAGNTICAS * PROPAGACIÓN D ONDAS PLANAS. Propagación de ondas planas

Más detalles

El BJT en la zona activa

El BJT en la zona activa El BJT en la zona activa Electrónica Analógica º Desarrollo de Productos Electrónicos Índice.- Amplificadores con BJT. 2.- Osciladores L con BJT. Electrónica Analógica El BJT en la zona activa 2 .- ircuitos

Más detalles

Última modificación: 1 de agosto de

Última modificación: 1 de agosto de LÍNEA DE TRANSMISIÓN EN RÉGIMEN SINUSOIDAL Contenido 1.- Propagación de ondas en línea acoplada. 2.- Onda estacionaria. 3.- Máxima transferencia de potencia. 4.- Impedancia de onda. 5.- Degradación en

Más detalles

CAPACITORES EL CAPACITOR COMO COMPONENTE ELECTRÓNICO

CAPACITORES EL CAPACITOR COMO COMPONENTE ELECTRÓNICO DISPOSITIVO ELETRONIO APAITORES EL APAITOR OMO OMPONENTE ELETRÓNIO EL APAITOR OMO OMPONENTE ELETRÓNIO Un capacitor es, esencialmente dos conductores separados por un dieléctrico Se define: La capacitancia

Más detalles

UTN FRRQ APUNTE: CÁLCULO DE IMPEDANCIAS. Redes de Distribución e Instalaciones Eléctricas. Cátedra: Docente: Ing. Elvio Daniel Antón

UTN FRRQ APUNTE: CÁLCULO DE IMPEDANCIAS. Redes de Distribución e Instalaciones Eléctricas. Cátedra: Docente: Ing. Elvio Daniel Antón UTN FRRQ APUNTE: CÁCUO DE IMPEDANCIAS Cátedra: Redes de Distribución e Instalaciones Eléctricas Docente: Ing. Elvio Daniel Antón Auiliar: Ing. Diego Salinas 1. Introducción Para el cálculo de caída de

Más detalles

ELECTRÓNICA Y CIRCUITOS

ELECTRÓNICA Y CIRCUITOS ELECTRÓNICA Y CIRCUITOS EJERCICIOS TEMA 1 1.- Dado el dispositivo de la figura, en el que = V, obtener el valor de su parámetro, R, para que la corriente que lo atraviesa tenga un valor =0 ma. Resolver

Más detalles

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro

LISTA DE SÍMBOLOS. Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro LISTA DE SÍMBOLOS Capítulo 2 EJEMPLOS Y TEORIA DE LAS VIBRACIONES PARAMÉTRICAS 2.1 Introducción T - Periodo Ω - Frecuencia a- parámetro b- parámetro 2.1.1 Rigidez Flexiva que Difiere en dos Ejes x- Desplazamiento

Más detalles

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1

Ondas. Prof. Jesús Hernández Trujillo Facultad de Química, UNAM. Ondas/J. Hdez. T p. 1 Ondas Prof. Jesús Hernández Trujillo Facultad de Química, UNAM Ondas/J. Hdez. T p. 1 Introducción Definición: Una onda es una perturbación que se propaga en el tiempo y el espacio Ejemplos: Ondas en una

Más detalles

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003.

Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. Temas: Corresponden a la Unidad 6 y 7 del programa analítico de la asignatura Electrotecnia 1 correspondiente al plan 2003. PROBLEMA Nº 1: Por un circuito serie formado por un elemento resistivo de resistencia

Más detalles

Circuitos de Corriente. Alterna. Fundamentos Físicos y Tecnológicos de la Informática

Circuitos de Corriente. Alterna. Fundamentos Físicos y Tecnológicos de la Informática Fundamentos Físicos y Tecnológicos de la Informática ircuitos de orriente - Tensión y corriente alterna. Funciones sinusoidales. Valores medio y eficaz. - Relación tensión corriente en los elementos de

Más detalles

LEY DE COULOMB E INTENSIDAD DE CAMPO ELECTRICO

LEY DE COULOMB E INTENSIDAD DE CAMPO ELECTRICO INDICE Prefacio XIV Visita Guiada 1 Análisis Vectorial 1 2 Ley Coulomb e Intensidad de Campo Eléctrico 26 3 Densidad de Flujo Eléctrico, Ley de Gauss y Divergencia 51 4 Energía y Potencial 80 5 Corriente

Más detalles

ECUACIONES de MAXWELL

ECUACIONES de MAXWELL ECUACIONES de MAXWELL 1.-Campos variables con el tiempo: Corriente de desplazamiento 1 Las ecuaciones fundamentales de la magnetostática vistas en el tema anterior se resumen en B= [1] H = j [] la primera

Más detalles

ds = ds = 4πr2 Kq r 2 φ = q ε

ds = ds = 4πr2 Kq r 2 φ = q ε 1 El teorema de Gauss. Supongamos una superficie que es atravesada por las líneas de fuerza de un campo eléctrico. Definimos flujo de dicho campo eléctrico a través de la superficie como φ = E S = E S

Más detalles

Campo eléctrico. Fig. 1. Problema número 1.

Campo eléctrico. Fig. 1. Problema número 1. Campo eléctrico 1. Cuatro cargas del mismo valor están dispuestas en los vértices de un cuadrado de lado L, tal como se indica en la figura 1. a) Hallar el módulo, dirección y sentido de la fuerza eléctrica

Más detalles

(Problemas - Parte 2) Prof. Cayetano Di Bartolo Andara

(Problemas - Parte 2) Prof. Cayetano Di Bartolo Andara Física 3 (Problemas - Parte 2) Prof. Cayetano Di Bartolo Andara Ultima actualización: Julio de 2004 Julio de 2004 Física-3 (Problemas - Parte 2) Prof. Cayetano Di Bartolo Andara Departamento de Física

Más detalles

Guía de Ejercicios de Ondas Electromagnéticas

Guía de Ejercicios de Ondas Electromagnéticas UNIVERSIDAD PEDAGÓGICA EXPERIMENTAL LIBERTADOR INSTITUTO PEDAGÓGICO DE BARQUISIMETO LUIS BELTRÁN PRIETO FIGUEROA DEPARTAMENTO DE CIENCIAS NATURALES PROGRAMA DE FÍSICA ELECTROMAGNETISMO II Objetivo: Analizar

Más detalles

REAL SOCIEDAD ESPAÑOLA DE FÍSICA REAL SOCIEDAD ESPAÑOLA DE FÍSICA. XX Olimpiada FASE LOCAL DE LA RIOJA. 27 de febrero de 2009.

REAL SOCIEDAD ESPAÑOLA DE FÍSICA REAL SOCIEDAD ESPAÑOLA DE FÍSICA. XX Olimpiada FASE LOCAL DE LA RIOJA. 27 de febrero de 2009. XX Olimpiada ESPAÑOLA DE FÍSICA FASE LOCAL DE LA RIOJA 7 de febrero de 009 ª Parte P y P Esta prueba consiste en la resolución de dos problemas. Razona siempre tus planteamientos No olvides poner tus apellidos,

Más detalles

Conductores, capacidad, condensadores, medios dieléctricos.

Conductores, capacidad, condensadores, medios dieléctricos. Física 3 Guia 2 - Conductores y dieléctricos Verano 2016 Conductores, capacidad, condensadores, medios dieléctricos. 1. Dentro de un conductor hueco de forma arbitraria, se encuentra alojado un segundo

Más detalles

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical

La cuerda vibrante. inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical la cuerda es extensible La cuerda vibrante inicialmente se encuentra sobre el eje de abscisas x la posición de un punto de la cuerda viene descrita por su posición vertical y(x, t) la posición depende

Más detalles

MOVIMIENTO ONDULATORIO

MOVIMIENTO ONDULATORIO MOVIMIENTO ONDULATORIO 1. Ondas. 2. Propagación de ondas mecánicas. 3. Parámetros del movimiento ondulatorio. 4. Ondas armónicas. 5. Energía del movimiento ondulatorio. 6. El sonido. Física 2º Bachillerato

Más detalles

EJERCICIOS DE RESOLUCIÓN DE CIRCUITOS ELÉCTRICOS MEDIANTE LOS TEOREMAS GENERALES.

EJERCICIOS DE RESOLUCIÓN DE CIRCUITOS ELÉCTRICOS MEDIANTE LOS TEOREMAS GENERALES. EJERCICIOS DE RESOLUCIÓN DE CIRCUITOS ELÉCTRICOS MEDIANTE LOS TEOREMAS GENERALES. EJERCICIO. En el circuito de la figura, hallar la corriente que circula por la impedancia Ω. RESOLUCIÓN: MÉTODO DE LAS

Más detalles

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA)

PROBLEMAS DE ONDAS. Función de onda, Autor: José Antonio Diego Vives. Documento bajo licencia Creative Commons (BY-SA) PROBLEMAS DE ONDAS. Función de onda, energía. Autor: José Antonio Diego Vives Documento bajo licencia Creative Commons (BY-SA) Problema 1 Escribir la función de una onda armónica que avanza hacia x negativas,

Más detalles

Departamento de Electrónica y Sistemas PARTE I) ELECTROSTÁTICA

Departamento de Electrónica y Sistemas PARTE I) ELECTROSTÁTICA Departamento de Electrónica y Sistemas PARTE I) ELECTROSTÁTICA 1) Capacidad de un conductor aislado 2) Condensadores y su capacidad 1) Condensador plano 2) Condensador cilíndrico 3) Asociación de condensadores.

Más detalles

El vector de desplazamiento también puede inscribirse como: D (r) = εe (r)

El vector de desplazamiento también puede inscribirse como: D (r) = εe (r) ENTREGA 2 Dieléctricos Elaborado por liffor astrillo, Ariel Hernández Muñoz, Rafael López Sánchez y Armando Ortez Ramos, Universidad Nacional Autónoma de Managua. Vector de desplazamiento eléctrico Se

Más detalles

Física 3: Septiembre-Diciembre 2011 Clase 13,Lunes 24 de octubre de 2011

Física 3: Septiembre-Diciembre 2011 Clase 13,Lunes 24 de octubre de 2011 Clase 13 Potencial Eléctrico Cálculo del potencial eléctrico Ejemplo 35: Efecto punta En un conductor el campo eléctrico es mas intenso cerca de las puntas y protuberancias pues el exceso de carga tiende

Más detalles

Estudio de la coherencia espacial de una fuente de luz

Estudio de la coherencia espacial de una fuente de luz Estudio de la coherencia espacial de una fuente de luz Clase del miércoles 29 de octubre de 2008 Prof. María Luisa Calvo Coherencia espacial Está ligada a las dimensiones finitas de las fuentes de luz.

Más detalles

Física II. Grado en Ingeniería Química Industrial. Curso 16/17 Boletín 1. Electricidad

Física II. Grado en Ingeniería Química Industrial. Curso 16/17 Boletín 1. Electricidad Física II. Grado en Ingeniería Química Industrial. Curso 16/17 Boletín 1. Electricidad 1. Dos pequeñas esferas de masa m están suspendidas de un punto común mediante sendas cuerdas de longitud L. Se aplica

Más detalles

TURBINAS DE VAPOR. Pedro Fernández Díez pfernandezdiez.es

TURBINAS DE VAPOR. Pedro Fernández Díez pfernandezdiez.es TURBINAS DE VAPOR Pedro Fernández Díez I.- PARÁMETROS DE DISEÑO DE LAS TURBINAS DE FLUJO AXIAL I..- INTRODUCCIÓN Para estudiar las turbinas de flujo axial, se puede suponer que las condiciones de funcionamiento

Más detalles

ε = = d σ (2) I. INTRODUCCIÓN

ε = = d σ (2) I. INTRODUCCIÓN Estudio del comportamiento de un material piezoeléctrico en un campo eléctrico alterno. Eduardo Misael Honoré, Pablo Daniel Mininni Laboratorio - Dpto. de Física -FCEyN- UBA-996. Un material piezoeléctrico

Más detalles

CONTENIDOS. Contenidos. Presentación. xiii

CONTENIDOS. Contenidos. Presentación. xiii CONTENIDOS Contenidos Presentación v xiii 1. Campo eléctrico y propiedades eléctricas de la materia 1 1.1. Introducción histórica............................... 2 1.2. Estructura interna de la materia.........................

Más detalles

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático

Ejercicios de Fundamentos Matemáticos I. Rafael Payá Albert. Ingeniería de Telecomunicaciones. Departamento de Análisis Matemático Ejercicios de Fundamentos Matemáticos I Ingeniería de Telecomunicaciones Rafael Payá Albert Departamento de Análisis Matemático Universidad de Granada FUNDAMENTO MATEMÁTICO I Relación de Ejercicios N o

Más detalles

Ejercicios Propuestos Transporte eléctrico.

Ejercicios Propuestos Transporte eléctrico. Ejercicios Propuestos Transporte eléctrico. 1. La cantidad de carga que pasa a través de una superficie de área 1[ 2 ] varía con el tiempo de acuerdo con la expresión () =4 3 6 2 +6. (a) Cuál es la intensidad

Más detalles

GUÍA 7: CORRIENTE ALTERNA Electricidad y Magnetismo

GUÍA 7: CORRIENTE ALTERNA Electricidad y Magnetismo GUÍA 7: CORRIENTE ALTERNA Primer Cuatrimestre 2013 Docentes: Dr. Alejandro Gronoskis Lic. María Inés Auliel Andrés Sabater Universidad Nacional de Tres de febrero Depto de Ingeniería Universidad de Tres

Más detalles

Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas

Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas Guía n 9: Materiales Magnéticos Ecuaciones de Maxwell Ondas Electromagnéticas Problema 1 Dos imanes permanentes iguales A y B, cuyo momento magnético es P m están situados como indica la figura. La distancia

Más detalles

SISTEMAS ELÉCTRICOS PROBLEMAS DE TRANSFORMADORES

SISTEMAS ELÉCTRICOS PROBLEMAS DE TRANSFORMADORES SISTEMAS ELÉCTRICOS PROBLEMAS DE TRANSFORMADORES TR_1 Del circuito equivalente de un transformador se conocen todos los parámetros que lo forman. Determínense todas las magnitudes eléctricas que aparecen

Más detalles

Teoría del Campo Electromagnético

Teoría del Campo Electromagnético Teoría del Campo Electromagnético Página 1 de 6 Programa de: UNIVERSIDAD NACIONAL DE CÓRDOBA Facultad de Ciencias Exactas, Físicas y Naturales República Argentina Carrera: Ingeniería Electrónica Escuela:

Más detalles

1. V F El producto escalar de dos vectores es siempre un número real y positivo.

1. V F El producto escalar de dos vectores es siempre un número real y positivo. TEORIA TEST (30 %) Indique si las siguientes propuestas son VERDADERAS o FALSAS encerrando con un círculo la opción que crea correcta. Acierto=1 punto; blanco=0; error= 1. 1. V F El producto escalar de

Más detalles

E 4.0. EJERCICIOS DE EXAMEN

E 4.0. EJERCICIOS DE EXAMEN E 4.0. EJERCICIOS DE EXAMEN E 4.0.01. El campo eléctrico producido por un anillo circular uniformemente cargado, en un punto cualquiera sobre su eje es (ver figura 1 Qz izquierda) E = k [N/C]. A 2 2 3

Más detalles

PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA.

PRÁCTICA NÚMERO 6. ESTUDIO DE UN CIRCUITO RLC EN CORRIENTE ALTERNA. PRÁCTCA NÚMERO 6. ESTUDO DE UN CRCUTO RLC EN CORRENTE ALTERNA. 6.. Análisis Teórico del Circuito. En las prácticas anteriores se ha analizado el comportamiento del circuito RLC cuando este es alimentado

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E.

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E. PRUES DE ESO UNIVERSIDD.O.G.S.E. URSO 2005-2006 ONVOTORI JUNIO EETROTENI E UMNO EEGIRÁ UNO DE OS DOS MODEOS riterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico y gráfico si

Más detalles

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Corriente eléctrica

FÍSICA Y QUÍMICA 1º Bachillerato Ejercicios: Corriente eléctrica 1(8) Ejercicio nº 1 Un alambre de aluminio está recorrido por una corriente eléctrica de 30 ma. Calcula la carga eléctrica que atraviesa una sección recta del alambre cada media hora. Ejercicio nº 2 Una

Más detalles

En un circuito de CA los generadores suministran energía que es absorbida por los elementos pasivos (R, L y C). Esta energía absorbida puede:

En un circuito de CA los generadores suministran energía que es absorbida por los elementos pasivos (R, L y C). Esta energía absorbida puede: www.clasesalacarta.com 1 Elementos Lineales Tema 7.- CA Elementos Lineales Cuando se aplica una tensión alterna con forma de onda senoidal a los bornes de un receptor eléctrico, circula por él una corriente

Más detalles

x x x x x x x x x x x x x x x x P x x x x x x x x x x x x x x x x x x x x x x x x x x x x B x x x x x x x x x x x x x x V x x x x x x x x x x x x x

x x x x x x x x x x x x x x x x P x x x x x x x x x x x x x x x x x x x x x x x x x x x x B x x x x x x x x x x x x x x V x x x x x x x x x x x x x Ejercicio resuelto nº 1 Tenemos el sistema siguiente: x x x x x x P x x x x x x x x B x x x x x x x x x x x x x x V x x x x x x x x Q x x x x x Qué sentido tiene la corriente inducida al desplazar el conductor

Más detalles

Electromagnetismo II

Electromagnetismo II Electromagnetismo II Semestre: 2015-1 TAREA 7: Solución Dr. A. Reyes-Coronado Problema 1 (15 pts.) Por: Jesús Castrejón Figueroa En 1987 J. J. Thomson descubrió el electrón midiendo el cociente entre la

Más detalles

1º- CORRIENTE ALTERNA

1º- CORRIENTE ALTERNA º- CORRIENTE ALTERNA Se denomina corriente alterna a toda corriente eléctrica que cambia de polaridad periódicamente, pero en la práctica toma este nombre la corriente alterna de tipo senoidal: e Voltaje

Más detalles

FÍSICA cede.es EJERCICIOS Y PROBLEMAS 287 MADRID 2014

FÍSICA cede.es EJERCICIOS Y PROBLEMAS 287 MADRID 2014 FÍSICA cede.es EJERCICIOS Y PROBLEMAS 287 MADRID 2014 1. Un avión en vuelo está sujeto a una fuerza de resistencia del aire proporcional al cuadrado de su rapidez. Sin embargo hay una fuerza de resistencia

Más detalles

TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción CONSTITUCIÓN DE UNA MÁQUINA DE CORRIENTE CONTINUA.

TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción CONSTITUCIÓN DE UNA MÁQUINA DE CORRIENTE CONTINUA. TEMA 7. Máquinas rotativas de corriente continua. Principio y descripción. CONTENIDO: 7.1.- Constitución de una máquina de corriente continua. 7.2.- Principio de funcionamiento. 7.3.- Tipos de excitación.

Más detalles

Laboratorio de Técnicas Experimentales II - 2º Física Laboratorio L1 - "Osciloscopio"

Laboratorio de Técnicas Experimentales II - 2º Física Laboratorio L1 - Osciloscopio Laboratorio de Técnicas Experimentales II - 2º Física Laboratorio L1 - "Osciloscopio" Práctica L1-2 - Estudio de un circuito : estado de carga de un condensador e tegración de señales - Inducción electromagnética

Más detalles

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO

Facultad de Ciencias Curso Grado de Óptica y Optometría SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO SOLUCIONES PROBLEMAS FÍSICA. TEMA 3: CAMPO ELÉCTRICO 1. Un condensador se carga aplicando una diferencia de potencial entre sus placas de 5 V. Las placas son circulares de diámetro cm y están separadas

Más detalles

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E

PRUEBAS DE ACCESO A LA UNIVERSIDAD L.O.G.S.E PRUES DE ESO L UNIVERSIDD L.O.G.S.E URSO 005-006 ONVOTORI SEPTIEMRE ELETROTENI EL LUMNO ELEGIRÁ UNO DE LOS DOS MODELOS riterios de calificación.- Expresión clara y precisa dentro del lenguaje técnico y

Más detalles

La frecuencia propia del sistema es la frecuencia fundamental en alguno de sus modos de vibración.

La frecuencia propia del sistema es la frecuencia fundamental en alguno de sus modos de vibración. APITULO 8 RESONANIA 8. INTRODUION Todo sistema oscilante tiene una frecuencia característica (oscilaciones que da en un segundo) llamada de resonancia. uando lo sometemos a una fuerza exterior, periódica

Más detalles

Ejercicios típicos de Líneas A)RG 58 B) RG 213 C) RG 220. (Perdida del Cable RG 58 a 100 MHz) db = 10 * Log (W Ant / W TX ) = - 6,44dB

Ejercicios típicos de Líneas A)RG 58 B) RG 213 C) RG 220. (Perdida del Cable RG 58 a 100 MHz) db = 10 * Log (W Ant / W TX ) = - 6,44dB Ejercicios típicos de Líneas 1- Tenemos que instalar un transmisor de 500W, en una radio de FM que trabaja en.1 MHz. Sabiendo que la torre disponible para sostener la antena es de 40m, calcular la potencia

Más detalles

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores

CAPACITORES INDUCTORES. Mg. Amancio R. Rojas Flores CAPACITORES E INDUCTORES Mg. Amancio R. Rojas Flores A diferencia de resistencias, que disipan la energía, condensadores e inductores no se disipan, pero almacenan energía, que puede ser recuperada en

Más detalles

Resonancia en Circuito RLC en Serie AC

Resonancia en Circuito RLC en Serie AC Laboratorio 5 Resonancia en Circuito RLC en Serie AC 5.1 Objetivos 1. Determinar las caracteristicas de un circuito resonante RLC en serie. 2. Construir las curvas de corriente, voltaje capacitivo e inductivo

Más detalles

CIRCUITOS II. Presentación del Curso

CIRCUITOS II. Presentación del Curso CIRCUITOS II Presentación del Curso Introducción Repaso de semestres anteriores: Fuentes que varían con el tiempo V(t) Fuente senoidal Circuitos con interruptores El curso es base para asignaturas en las

Más detalles

Diseño de filtros paso bajo a partir de estructuras periódicas EBG en guía de onda rectangular con inserciones metálicas

Diseño de filtros paso bajo a partir de estructuras periódicas EBG en guía de onda rectangular con inserciones metálicas Diseño de filtros paso bajo a partir de estructuras periódicas EBG en guía de onda rectangular con inserciones metálicas Máster en Ingeniería de Telecomunicación Trabajo Fin de Grado Autor: María Eugenia

Más detalles

Comunicaciones Inalámbricas Capitulo 3: Antenas. Víctor Manuel Quintero Flórez Claudia Milena Hernández Bonilla

Comunicaciones Inalámbricas Capitulo 3: Antenas. Víctor Manuel Quintero Flórez Claudia Milena Hernández Bonilla Comunicaciones Inalámbricas Capitulo 3: Víctor Manuel Quintero Flórez Claudia Milena Hernández Bonilla Maestría en Electrónica y Telecomunicaciones II-2013 Componente fundamental de sistemas de comunicaciones

Más detalles

INDICE. 1. Introducción a los Sistemas de Comunicaciones y sus

INDICE. 1. Introducción a los Sistemas de Comunicaciones y sus INDICE 1. Introducción a los Sistemas de Comunicaciones y sus 15 Limitaciones 1.1. Objetivos 15 1.2. Cuestionario de autoevaluación 15 1.3. Componentes básicos de un sistema de comunicaciones 16 1.4. Varios

Más detalles

Física 2º Bach. Ondas 16/11/10

Física 2º Bach. Ondas 16/11/10 Física º Bach. Ondas 16/11/10 DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre: Puntuación máxima: Problemas 6 puntos (1 cada apartado). Cuestiones 4 puntos (1 cada apartado o cuestión, teórica o práctica) No se

Más detalles

Ondas Planas. Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA CAMPOS Y ONDAS

Ondas Planas. Campos y Ondas FACULTAD DE INGENIERÍA UNIVERSIDAD NACIONAL DE LA PLATA ARGENTINA CAMPOS Y ONDAS Ondas Planas Campos Ondas FACULTAD D INGNIRÍA UNIVRSIDAD NACIONAL D LA PLATA ARGNTINA ONDAS LCTROMAGNTICAS N L SPACIO LIBR. * l espacio libre es un medio HOMOGÉNO, permitividad, permeabilidad la conductibidad

Más detalles

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Corriente alterna

Programa de Acceso Inclusivo, Equidad y Permanencia PAIEP U. de Santiago. Corriente alterna Corriente alterna A Conceptos 1 Corriente alterna y corriente directa En la corriente directa, o continua, la intensidad de la corriente puede disminuir, pero su polaridad, esto es, el sentido de circulación

Más detalles

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre:

Problemas. Laboratorio. Física moderna 09/11/07 DEPARTAMENTO DE FÍSICA E QUÍMICA. Nombre: Física moderna 9/11/7 DEPARTAMENTO DE FÍSICA E QUÍMICA Problemas Nombre: 1. Un muelle de constante k =, 1 3 N/m está apoyado en una superficie horizontal sin rozamiento. A 1, m hay un bucle vertical de

Más detalles

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s

a) La distancia que ha recorrido el electrón cuando su velocidad se ha reducido a 0' m/s 1- Un electrón es lanzado con una velocidad de 2.10 6 m/s paralelamente a las líneas de un campo eléctrico uniforme de 5000 V/m. Determinar: a) La distancia que ha recorrido el electrón cuando su velocidad

Más detalles

COMPONENTES DE MICROONDAS

COMPONENTES DE MICROONDAS CAPITUO 6 COMPONENTES DE MICROONDAS Existen diversos tipos de elementos o componentes para transmitir, guiar o monitorear las señales de microondas. Estos componentes se pueden clasificar en componentes

Más detalles

Planificaciones Sistemas Inalámbricos. Docente responsable: COLOMBO HUGO ROBERTO. 1 de 5

Planificaciones Sistemas Inalámbricos. Docente responsable: COLOMBO HUGO ROBERTO. 1 de 5 Planificaciones 8632 - Sistemas Inalámbricos Docente responsable: COLOMBO HUGO ROBERTO 1 de 5 OBJETIVOS Proveer los fundamentos, dentro del área de comunicaciones, acerca de la aplicación de las ondas

Más detalles