TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA

Tamaño: px
Comenzar la demostración a partir de la página:

Download "TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA"

Transcripción

1 ESCUEL TÉCNIC SUPERIOR DE INGENIEROS DE TELECOMUNICCIÓN UNIVERSIDD POLITÉCNIC DE VLENCI NTENS de julio de 0 Problema Considere una apertura cuadrada de lado = 0λ (λ=3cm) iluminada con un campo uniforme de amplitud E 0 = V/m. ( E a = E 0 ˆx) y = 0λ x E a = 0λ a) Obtenga la expresión del campo radiado. (p) b) Con las expresiones del apartado anterior, particularice para el plano E. Obtenga el módulo del campo radiado, dibuje el diagrama de radiación. Indique el ancho de haz entre ceros y la NLPS. Puede despreciar el término de la apertura elemental. (p) c) Obtenga ahora el módulo del campo para el corte ϕ = 45. Dibuje el diagrama de radiación. Calcule el ancho de haz entre ceros y la NLPS. (p) y = 0λ x B = λ d) Suponga ahora que la apertura tiene una zona cuadrada de sombra (campo nulo) en el centro. La zona de sombra tiene lado B = λ. Obtenga la nueva expresión del campo radiado. (p) e) Obtenga el módulo del campo radiado por la apertura bloqueada para el plano E. Dibuje el diagrama de radiación y determine la NLPS. (p) f) Calcule la potencia radiada por la apertura, sin y con bloqueo. Obtenga la eficiencia de bloqueo. (p)

2 Problema Se pretende analizar una agrupación lineal de 6 dipolos resonantes orientados según el eje y, con espaciado λ/ a lo largo del eje z. La distribución es trapezoidal. El polinomio de la agrupación se puede escribir como p(z) = + z + 3 z + 3 z 3 + z 4 + z 5 = ( + z + z ) ( + z + z + z 3 ) Las corrientes de la antena se expresan en amperios y tienen las mismas fases. a) Escriba una expresión simplificada para el factor de la agrupación F (Ψ) de la antena. (p) b) Indique los 5 ceros del polinomio de la agrupación. (p) c) Represente gráficamente el Factor de la grupación F (Ψ). (p) d) Dibuje los diagramas de radiación en el plano E y en el plano H. (p) e) Suponiendo que todas las antenas tengan una impedancia de entrada de 73 Ω y que no hay efectos mutuos, calcule la Directividad de la agrupación. (p) f) Este tipo de agrupación se pretende utilizar como antena de una estación transmisora de TV, situada sobre un punto elevado y se quiere que el diagrama de radiación apunte a un ángulo θ = 00, indique la forma de conseguir este efecto. (p)

3 Solución al problema a) el campo radiado por una apertura cuadrada de lado se expresa como jkr e E j coscos Fkx, Gky, r jkr e E j sen cos F k, G k, r x y, donde hemos supuesto que Z0 Y F y G son las transformadas de Fourier en los planos horizontal y vertical respectivamente k x sen Fkx, k x, y, k y sen G k k y b) la vista de la polarización del campo en la apertura podemos afirmar que el plano E será el XZ (=0º). Particularizando en las expresiones del apartado anterior y despreciando el término de la apertura elemental obtenemos E r sen u, siendo u k sen u El diagrama de radiación se obtiene a partir de la función sen u u, entonces el margen visible para u será k u k y empleando el método gráfico. Dado que mplitud normalizada u/

4 la NLPS= 3, db y el ancho de haz entre ceros: u c k senc, y por tanto arcsen,5 o c c) De forma análoga, particularizando para =45º, obtenemos, w sen E E E, siendo r w w k sen. Se interpreta por tanto como la transformada de Fourier de una distribución triangular de dimensión, que es la dimensión de la diagonal de la apertura. Por tanto en margen visible es ahora k w k y el diagrama resultante 0.8 mplitud normalizada w/ Como se puede ver los lóbulos decrecen ahora mucho más deprisa. La NLPS es la propia de una distribución triangular, 6,4 db y el ancho de haz entre ceros: u c k senc, y por tanto arcsen 6,3 o c

5 d) La zona de sombra se puede obtener por superposición de dos aperturas uniformes, una de lado y otra de lado B que se restan. El resultado es un campo radiado que también se obtiene por superposición de los respectivos campos de las dos aperturas: jkr e E j coscos Fkx, Gky, FBkx, BGBky, B r jkr e E j sencos Fkx, Gky, FBkx, BGBky, B r kb x sen FB kx B B kb x Siendo, y B y, kb y sen G k B B kb y e) En el plano E, =0º u sen sen E B r u v v, siendo sen B u k y v k sen Para obtener el diagrama resultante por el método gráfico es útil observar que, dado que =5B, u=5v. sí podemos emplear la misma variable para representar las dos transformadas. Nótese también que el módulo se toma después de restar las dos funciones transformadas sen v 5 v En la gráfica F y FB B. No se han tomado las amplitudes que realmente tienen ( y B v v 5 respectivamente) para poder visualizar mejor el efecto de la superposición de los diagramas. sen 0.9 F F B 0.7 F -F B F -F B v/

6 La NLPS podemos calcularla de forma exacta como B 00 4 NLPS 0log 0log,8 db sen u 3 sen v ,4 B 3 u 3 v 3 0 f) La potencia radiada sin bloqueo se obtiene como E0 W rad E0 ds 40 W apertura La potencia radiada con bloqueo sólo se diferencia en la reducción de superficie que supone E0 W rad bloqueo E0 ds B 30 W apertura Wrad bloqueo 30 B En consecuencia la eficiencia de bloqueo se puede calcular como b 0,96 Wrad 40

7 SOLUCIÓN PROBLEM a) Escriba una expresión simplificada para el factor de la agrupación de la antena. p z z z z z z z z z z z ( ) = = ( + + )( ) Se puede analizar como el producto de dos distribuciones uniformes de 3 y 4 antenas. 3 4 z z p( z) = z z F ( ψ ) 3ψ 4ψ sin sin = ψ ψ sin sin b) Indique los 5 ceros del polinomio de la agrupación Se corresponden a los ceros de las agrupaciones uniformes p ( z) = ( + z + z ) Ceros: -0º,0º p ( z) = ( + z + z + z 3 ) Ceros 90º,80º,70º c) Represente gráficamente el Factor de la grupación Se puede representar a partir de los ceros obtenidos en el anterior apartado. d) Dibuje el diagrama de radiación en los planos E y H El Plano E es el definido por la dirección de máxima radiación, que es el eje X y el campo eléctrico en dicha dirección. Por lo tanto es el plano XY. El

8 factor de la agrupación es omnidireccional en dicho plano. Por lo tanto el diagrama de radiación en el plano E es el del dipolo resonante, con el máximo en la dirección del eje x. Se puede dibujar el diagrama de un dipolo orientado según el eje z y después realizar un cambio de coordenadas. El plano H corresponde al definido por la dirección de máxima radiación (eje X) y el campo H en dicha dirección. Por lo tanto corresponde al plano XZ e) Suponiendo que todas las antenas tengan una impedancia de entrada de 73Ω y que no hay efectos mutuos, calcule la Directividad de la agrupación 6 6 E a n an 4π r 60 η D = = =,64 = 6 6 W 0π r 73 an an 4π r =8.43 f) Este tipo de agrupación se pretende utilizar como antena de una estación transmisora de TV, situada sobre un punto elevado y se quiere que el digrama de radiación apunte a un ángulo θ=00 o, indique la forma de conseguir este efecto. Hay que añadir una fase diferente para cada antena.

9 α = kd cosθ = 3. 0

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA

ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA ANTENAS -enero-4 PROBLEMA Considere la antena de la figura formada por dos dipolos de semibrazo H=λ/4 separados

Más detalles

SOLUCIÓN: BADDB CCBBA CBBDD

SOLUCIÓN: BADDB CCBBA CBBDD ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA ANTENAS 17 de Enero de 2008 Duración: 60 minutos. Respuesta correcta: 1 punto, respuesta incorrecta: -1/3

Más detalles

TECNUN. Semana 7. A) La amplitud del campo eléctrico a 1 km de distancia según el eje X. B) La directividad en esa dirección.

TECNUN. Semana 7. A) La amplitud del campo eléctrico a 1 km de distancia según el eje X. B) La directividad en esa dirección. Semana 7.- Una antena está formada por dos dipolos resonantes de 73 Ω ortogonales separados λ/4 y alimentados de forma simétrica mediante una línea de transmisión. Despreciando el acoplamiento entre los

Más detalles

TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA

TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA ESCUEA TÉCNICA SUPERIOR DE INGENIEROS DE TEECOMUNICACIÓN UNIVERSIDAD POITÉCNICA DE VAENCIA ANTENAS de abril de 009 Problema Una agrupación está formada por tres dipolos de brazo H = λ/4 colineales alimentados

Más detalles

3. Un reflector de esquina supera en directividad a un dipolo aislado en aproximadamente a) 3 db b) 6 db c) 12 db d) 24 db

3. Un reflector de esquina supera en directividad a un dipolo aislado en aproximadamente a) 3 db b) 6 db c) 12 db d) 24 db ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA ANTENAS 26 de Enero de 2007 Duración: 60 minutos. Respuesta correcta: 1 punto, respuesta incorrecta: -1/3

Más detalles

1. La directividad de una antena cuya densidad de potencia viene dada por P = A0

1. La directividad de una antena cuya densidad de potencia viene dada por P = A0 ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA ANTENAS 11 de Julio de 2012 Duración: 60 minutos. Respuesta correcta: 1 punto, respuesta incorrecta: -1/3

Más detalles

SOLUCIÓN: CDBCB DCBAB BACCA. 1. La impedancia de entrada de una ranura de longitud 0, 1λ es:

SOLUCIÓN: CDBCB DCBAB BACCA. 1. La impedancia de entrada de una ranura de longitud 0, 1λ es: ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA ANTENAS 18 de Abril de 2007 Duración: 60 minutos. Respuesta correcta: 1 punto, respuesta incorrecta: -1/3

Más detalles

d l = 5λ/4 Pa red Sue lo

d l = 5λ/4 Pa red Sue lo XAMN FINAL 3 de nero PROBLMA Considere la antena de la figura formada por un monopolo de longitud l = 5λ/4, situado a una distancia d de la pared. Tanto la pared como el suelo se consideran conductores

Más detalles

TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA

TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA ANTENAS 5 de enero de 006 Problema 1 La figura representa un reflector parabólico cua apertura equivalente

Más detalles

4. Con cuál de las siguientes configuraciones de antenas es posible obtener polarización circular en el eje x?

4. Con cuál de las siguientes configuraciones de antenas es posible obtener polarización circular en el eje x? ESCUELA TÉCNICA SUPERIOR DE INGENIEROS DE TELECOMUNICACIÓN UNIVERSIDAD POLITÉCNICA DE VALENCIA ANTENAS 12 de enero de 2004 Duración: 60 minutos. Respuesta correcta: 1 punto, respuesta incorrecta: -1/3

Más detalles

Cuestiones del tema 6

Cuestiones del tema 6 ANTENAS 1 Cuestiones del tema 6 1. Cuál debe ser el espaciado de una agrupación uniforme broadside de 8 antenas para que el diagrama de radiación no tenga ningún lóbulo secundario? a) λ/8 b) λ/4 c) λ/2

Más detalles

Diagrama de radiación: corte phi=0º grados

Diagrama de radiación: corte phi=0º grados Alumno: EXAMEN SUSISEMAS DE RADIOFRECUENCIA Y ANENAS DO. DE EORÍA DE LA SEÑAL Y COMUNICACIONES 6 de julio de roblema (hay que entregar la hoja de este enunciado (puede utilizar ningún tipo de documentación,

Más detalles

DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES EXAMEN FINAL DE RADIACIÓN Y PROPAGACIÓN (2 de septiembre de 2002).

DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES EXAMEN FINAL DE RADIACIÓN Y PROPAGACIÓN (2 de septiembre de 2002). DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES EXAMEN FINAL DE RADIACIÓN Y PROPAGACIÓN (2 de septiembre de 2002). Versión A Cada pregunta solamente posee una solución, que se valorará con 0,5

Más detalles

Alumno: a) Calcule las pérdidas del radioenlace en espacio libre en db. Las pérdidas del radioenlace en db se calculan con la fórmula:

Alumno: a) Calcule las pérdidas del radioenlace en espacio libre en db. Las pérdidas del radioenlace en db se calculan con la fórmula: Alumno: 1. Dos bocinas rectangulares idénticas de área de apertura (4λ 3λ) y eficiencia de iluminación de apertura del 50% se sitúan en el transmisor y el receptor de un radioenlace a 10 GHz, de 10 km

Más detalles

Parámetros de antenas

Parámetros de antenas 1/43 Tema 3 Parámetros de antenas Lorenzo Rubio Arjona (lrubio@dcom.upv.es) Departamento de Comunicaciones. ETSI de Telecomunicación 1 /43 3. Parámetros de antenas 3.1. Introducción y justificación del

Más detalles

Tecnología Electrónica 3º Ingeniero Aeronáutico. radiación n y antenas

Tecnología Electrónica 3º Ingeniero Aeronáutico. radiación n y antenas Tecnología Electrónica 3º Ingeniero Aeronáutico Conceptos básicos b de propagación, radiación n y antenas Dra. Mª Ángeles Martín Prats Radiación n y propagación. 1. Ondas electromagnéticas ticas en el

Más detalles

PROBLEMAS DE ELECTROMAGNETISMO. Figura 1

PROBLEMAS DE ELECTROMAGNETISMO. Figura 1 PROBLEMAS DE ELECTROMAGNETISMO. 2 o Cuatrimestre. Temas XVIII y XIX y XX de la Unidad Didáctica V PROBLEMA 1 En el origen y en el punto A(0,0,d) se hallan situadas dos antenas idénticas en magnitud y fase.

Más detalles

DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES EXAMEN FINAL DE RADIACIÓN Y PROPAGACIÓN (29 de enero de 2002). Versión B

DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES EXAMEN FINAL DE RADIACIÓN Y PROPAGACIÓN (29 de enero de 2002). Versión B DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES EXAMEN FINAL DE RADIACIÓN Y PROPAGACIÓN (29 de enero de 2002). Versión B Cada pregunta solamente posee una solución, que se valorará con 0,5 puntos

Más detalles

ANTENAS 1. d y. En un array plano se sintetiza un haz en forma de pincel cuya orientación se puede controlar mediante las fases de los elementos.

ANTENAS 1. d y. En un array plano se sintetiza un haz en forma de pincel cuya orientación se puede controlar mediante las fases de los elementos. ANTENAS 1 Agrupaciones planas Las antenas de una agrupación se pueden situar a lo largo de una línea, formando un arra lineal, o en los puntos de una rejilla rectangular, formando un arra plano. d z d

Más detalles

Solución.- Páginas del texto base: XV/5 y XV/6 (ecuaciones 15.6).

Solución.- Páginas del texto base: XV/5 y XV/6 (ecuaciones 15.6). UNED CURSO 2003/04, SEPTIEMBRE (RESERVA) ASIGNATURA: ELECTROMAGNETISMO (4º de CC. Físicas) MATERIAL: Calculadora no programable, formulario (1 hoja DINA4) y Carta de Smith. Nombre:... Centro:... Instrucciones:

Más detalles

Radiación y Radiocomunicación. Fundamentos de antenas. Carlos Crespo Departamento de Teoría de la Señal y Comunicaciones

Radiación y Radiocomunicación. Fundamentos de antenas. Carlos Crespo Departamento de Teoría de la Señal y Comunicaciones Radiación y Radiocomunicación Tema 2 Fundamentos de antenas Carlos Crespo Departamento de Teoría de la Señal y Comunicaciones ccrespo@us.es 17/03/2006 Carlos Crespo RRC-4IT 1 Radiación y Radiocomunicación

Más detalles

Problemas de Sistemas de Radiofrecuencia TEMA 2

Problemas de Sistemas de Radiofrecuencia TEMA 2 Problemas de Sistemas de Radiofrecuencia TEMA 2 PROFESOR: FRANCISCO CABRERA ASIGNATURA: SISTEMAS DE RADIOFRECUENCIA CURSO: ITINERARIO AÑO: 2013/2014 Tema 2 Introducción a los Sistemas de Radiofrecuencia

Más detalles

Ganancia y Polarización. Rogelio Ferreira Escutia

Ganancia y Polarización. Rogelio Ferreira Escutia Ganancia y Polarización Rogelio Ferreira Escutia PARAMETROS DE UNA ANTENA 2 Diagrama de Radiación 3 Diagrama de Radiación Es la representación gráfica de las características de radiación de una antena,

Más detalles

Universidad de Chile Facultad de Ciencias Física y Matemáticas Departamento de Ingeniería Eléctrica Antenas

Universidad de Chile Facultad de Ciencias Física y Matemáticas Departamento de Ingeniería Eléctrica Antenas Universidad de Chile Facultad de Ciencias Física y Matemáticas Departamento de Ingeniería Eléctrica Antenas Sistemas de Telecomunicaciones EL55A Laboratorio de Telecomunicaciones Espectro Electro-Magnético

Más detalles

2.2 GANANCIA, GANANCIA DIRECTIVA, DIRECTIVIDAD Y EFICIENCIA

2.2 GANANCIA, GANANCIA DIRECTIVA, DIRECTIVIDAD Y EFICIENCIA . GANANCIA, GANANCIA IRECTIVA, IRECTIVIA Y EFICIENCIA GANANCIA Otra medida útil para describir el funcionamiento de una antena es la ganancia. Aunque la ganancia de la antena está íntimamente relacionada

Más detalles

Soluciones de la ecuación de onda ( ) ( ) ( ) ONDAS PLANAS. Ecuación de onda en coordenadas cartesianas. Separación de variables.

Soluciones de la ecuación de onda ( ) ( ) ( ) ONDAS PLANAS. Ecuación de onda en coordenadas cartesianas. Separación de variables. ONDAS PLANAS Soluciones de la ecuación de onda cuación de onda en coordenadas cartesianas Ω+ Ω Ω Ω Ω + + + Ω Separación de variables Ω X Y Z d X dy dz + + + X d Y d Z d X d Y d d X dy Z d dz + + cuaciones

Más detalles

Antenas Apuntes de clase Características básicas de las antenas (borrador)

Antenas Apuntes de clase Características básicas de las antenas (borrador) Escuela de Ingeniería Eléctrica Departamento de Electrónica y Comunicaciones Antenas Apuntes de clase Características básicas de las antenas (borrador) Enero de 2003 1 Índice 1. Características básicas

Más detalles

Fuente lineal uniforme

Fuente lineal uniforme ANTENAS RADIACIÓN DE ANTENAS CILÍNDRICAS Fuente lineal unifore z R z r y x Se entiende por fuente lineal unifore un hilo etálico, alineado a lo largo del eje z, por el que circulan una corriente constante

Más detalles

G(θ) = máx{g 1 (θ), G 2 (θ)}

G(θ) = máx{g 1 (θ), G 2 (θ)} Rec. UIT-R F.1336 Rec. UIT-R F.1336 1 RECOMENDACIÓN UIT-R F.1336* DIAGRAMAS DE RADIACIÓN DE REFERENCIA DE ANTENAS OMNIDIRECCIONALES Y OTROS TIPOS DE ANTENAS DE SISTEMAS DE PUNTO A MULTIPUNTO PARA SU UTILIZACIÓN

Más detalles

Ingeniería de Telecomunicación PROPAGACIÓN DE ONDAS Apellidos, Nombre

Ingeniería de Telecomunicación PROPAGACIÓN DE ONDAS Apellidos, Nombre TSC Ingeniería de Telecomunicación PROPAACIÓN DE ONDAS Apellidos, Nombre TEST. (1% de la nota final). DNI: 1. En una línea de transmisión sin pérdidas de 5 Ω de impedancia característica se mide una ROE

Más detalles

Antenas 2

Antenas 2 1 Antenas 2 Antenas Una antena puede definirse como un dispositivo de transición entre una onda guiada y el espacio libre un conversor de electrones a fotones (o viceversa si se trata de una antena receptora)

Más detalles

1 Pérdida total (de un enlace radioeléctrico)*** (símbolos: L l o A l )

1 Pérdida total (de un enlace radioeléctrico)*** (símbolos: L l o A l ) Rec. UIT-R P.341-4 1 RECOMENDACIÓN UIT-R P.341-4 * NOCIÓN DE PÉRDIDAS DE TRANSMISIÓN EN LOS ENLACES RADIOELÉCTRICOS ** Rec. UIT-R P.341-4 (1959-1982-1986-1994-1995) La Asamblea de Radiocomunicaciones de

Más detalles

Antenas Apuntes de clase Antenas elementales y dipolos (borrador)

Antenas Apuntes de clase Antenas elementales y dipolos (borrador) Escuela de Ingeniería Eléctrica Departamento de Electrónica y Comunicaciones Antenas Apuntes de clase Antenas elementales y dipolos (borrador) Enero de 3 1 Índice 1. Antenas elementales y dipolos 4 1.1.

Más detalles

4.- Qué quiere decir que una antena es un elemento pasivo? 6.- Una antena tiene una ganancia de 7dBd. Cuál es su ganancia, expresada en dbi?

4.- Qué quiere decir que una antena es un elemento pasivo? 6.- Una antena tiene una ganancia de 7dBd. Cuál es su ganancia, expresada en dbi? ANTENAS Y SISTEMAS RADIANTES 1.- Cuál es la función de una antena? 2.- Qué es el principio de reciprocidad de una antena? 3.- Qué quiere decir que una antena es muy directiva? 4.- Qué quiere decir que

Más detalles

x... Con 30 términos (15 positivos y 15 negativos) se consigue una aproximación aceptable también lo denominan algunos autores como C in

x... Con 30 términos (15 positivos y 15 negativos) se consigue una aproximación aceptable también lo denominan algunos autores como C in 3.1 ESISTENCIA DE ADIACION La potencia radiada por un radiador elemental cuya longitud tiende a cero y su corriente es constante, medida en el campo lejano, se determina por el producto vectorial de las

Más detalles

Capítulo 5 ELASTICIDAD

Capítulo 5 ELASTICIDAD Capítulo 5 ELASTICIDAD Problemas de Geotecnia y Cimientos 156 Capítulo 5 - Elasticidad PROBLEMA 5.1 Calcular el incremento de tensión en el punto A provocado por la aplicación de una carga puntual Q =

Más detalles

PROBLEMA de amplificadores de microondas (tiempo 90 minutos, puntuación 40 puntos)

PROBLEMA de amplificadores de microondas (tiempo 90 minutos, puntuación 40 puntos) Alumno: EXAMEN UBITEMA DE RADIOFRECUENCIA Y ANTENA DPTO. DE TEORÍA DE LA EÑAL Y COMUNICACIONE 1 de febrero de 11 Problema (hay que entregar la hoja de este enunciado) PROBLEMA de amplificadores de microondas

Más detalles

06/09/ Antenas 2 1

06/09/ Antenas 2 1 1 Antenas 2 1 Antenas Una antena puede definirse como un dispositivo de transición entre una onda guiada y el espacio libre un conversor de electrones a fotones (o viceversa si se trata de una antena receptora)

Más detalles

ACOPLAMIENTO ENTRE LÍNEAS DE TRANSMISIÓN. Es interesante estudiar el comportamiento de sistemas radiantes (teoría de antenas) por varias razones:

ACOPLAMIENTO ENTRE LÍNEAS DE TRANSMISIÓN. Es interesante estudiar el comportamiento de sistemas radiantes (teoría de antenas) por varias razones: 1 ACOPLAMIENTO ENTRE LÍNEAS DE TRANSMISIÓN Es interesante estudiar el comportamiento de sistemas radiantes (teoría de antenas) por varias razones: Uno de los mecanismos de introducción de ruido en sistemas

Más detalles

En la Representación 9 de la sección Representaciones del presente proyecto puede verse el perfil de esta antena.

En la Representación 9 de la sección Representaciones del presente proyecto puede verse el perfil de esta antena. 2. POSTES RADIANTES 2.1 INTRODUCCIÓN En la Representación 9 de la sección Representaciones del presente proyecto puede verse el perfil de esta antena. Es una antena de diagrama de radiación omnidireccional

Más detalles

Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento

Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento Fuerzas de un Campo Magnético sobre Cargas Eléctricas en Movimiento Ejercicio resuelto nº 1 Un electrón penetra perpendicularmente desde la izquierda en un campo magnético uniforme vertical hacia el techo

Más detalles

Planos y Rectas. 19 de Marzo de 2012

Planos y Rectas. 19 de Marzo de 2012 el Geometría en el Planos y Rectas Universidad Autónoma Metropolitana Unidad Iztapalapa 19 de Marzo de 2012 el Anteriormente vimos que es posible encontrar un número infinito de vectores, no paralelos

Más detalles

METODOS MATEMATICOS DE LA FISICA II.

METODOS MATEMATICOS DE LA FISICA II. METODOS MATEMATICOS DE LA FISICA II. EXAMEN DEL PRIMER PARCIAL 3 de enero de 24 GRUPO I (Pedro López Rodríguez).. (2.5 puntos) Calcular el flujo del campo F (x, y, z) = (x, y, 2z) a través de la superficie

Más detalles

Modelos matemáticos de diagramas de antena de sistemas de radar del servicio de radiodeterminación para uso en los análisis de interferencia

Modelos matemáticos de diagramas de antena de sistemas de radar del servicio de radiodeterminación para uso en los análisis de interferencia Recomendación UIT-R M.1851 (6/9) Modelos matemáticos de diagramas de antena de sistemas de radar del servicio de radiodeterminación para uso en los análisis de interferencia Serie M Servicios móviles,

Más detalles

RECOMENDACIÓN UIT-R S.1528

RECOMENDACIÓN UIT-R S.1528 Rec. UIT-R S.158 1 RECOMENDACIÓN UIT-R S.158 Diagramas de radiación de antena de satélite para antenas de satélite no geoestacionario con funcionamiento en el servicio fijo por satélite por debajo de 30

Más detalles

En este tema se estudian dos aspectos básicos de los emisores/radiadores de sonido

En este tema se estudian dos aspectos básicos de los emisores/radiadores de sonido Tema 3 Radiación sonora En este tema se estudian dos aspectos básicos de los emisores/radiadores de sonido Las características direccionales que explican la forma como la energía se distribuye por el medio

Más detalles

Antenas. Antenas 26/10/2015

Antenas. Antenas 26/10/2015 1 Antenas Una antena puede definirse como un dispositivo de transición entre una onda guiada y el espacio libre un conversor de electrones a fotones (o viceversa si se trata de una antena receptora) 2

Más detalles

RECOMENDACIÓN UIT-R S Formato de fichero de datos electrónico para los diagramas de antena de estación terrena

RECOMENDACIÓN UIT-R S Formato de fichero de datos electrónico para los diagramas de antena de estación terrena Rec. UIT-R S.1717 1 RECOMENDACIÓN UIT-R S.1717 Formato de fichero de datos electrónico para los diagramas de antena de estación terrena (Cuestión UIT-R 42/4) (2005) Cometido Aunque los diagramas de radiación

Más detalles

DESARROLLO DE UNA GUI PARA LA REPRESENTACIÓN 2D Y 3D DEL DIAGRAMA DE RADIACIÓN DE ANTENAS

DESARROLLO DE UNA GUI PARA LA REPRESENTACIÓN 2D Y 3D DEL DIAGRAMA DE RADIACIÓN DE ANTENAS DESARROLLO DE UNA GUI PARA LA REPRESENTACIÓN 2D Y 3D DEL DIAGRAMA DE RADIACIÓN DE ANTENAS Grado en Ingeniería en Sonido e Imagen en Telecomunicación Trabajo Fin de Grado Autor: Alejandro Albero Luna Tutor/es:

Más detalles

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com

EJERCICIOS PAU MATEMÁTICAS II ARAGÓN Autor: Fernando J. Nora Costa-Ribeiro Más ejercicios y soluciones en fisicaymat.wordpress.com GEOMETRÍA 1- Dados el punto P(1,-1,0) y la recta : 1 0 3 3 0 a) Determine la ecuación general del plano (Ax+By+Cz+D=0) que contiene al punto P y a la recta s. b) Determine el ángulo que forman el plano

Más detalles

dy v 4 cos 100 t 20 x v 4 ms a 400 sen 100 t 20 x a 400 T 0,686 s f 1,46 s k 2,617 m 2 f 9,173rad s v

dy v 4 cos 100 t 20 x v 4 ms a 400 sen 100 t 20 x a 400 T 0,686 s f 1,46 s k 2,617 m 2 f 9,173rad s v 01. Una onda transversal se propaga a lo largo de una cuerda horizontal, en el sentido negativo del eje de abscisas, siendo 10 cm la distancia mínima entre dos puntos que oscilan en fase. Sabiendo que

Más detalles

Problemas de Filtros Digitales FIR. VENTANAS

Problemas de Filtros Digitales FIR. VENTANAS Problemas de Filtros Digitales FIR. VENTANAS Síntesis de Filtros Digitales FIR. Ventanas 1.- Se pretende diseñar un filtro FIR de fase lineal tipo II (número de coeficientes par y simetría par en la respuesta

Más detalles

flujo irreversible de energía que se aleja de la fuente transportada por dichas ondas.

flujo irreversible de energía que se aleja de la fuente transportada por dichas ondas. Radiación Qué es radiación? ONDAS ELECTROMAGNÉTICAS Se genera una OEM debido a configuraciones de cargas aceleradas y corrientes variables. ONDAS ACÚSTICAS Se genera una onda acústica propagativa debido

Más detalles

Patrones de Radiación. Rogelio Ferreira Escutia

Patrones de Radiación. Rogelio Ferreira Escutia Patrones de Radiación Rogelio Ferreira Escutia Diagrama de Radiación 2 Diagrama de Radiación Es la representación gráfica de las características de radiación de una antena, en función de la dirección (coordenadas

Más detalles

Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas.

Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas. Lección 7. Ecuaciones de Maxwell. Ondas electromagnéticas. 201. Escribir las ecuaciones de Maxwell válidas en medios materiales. Definir los diferentes términos y su significado físico. Deducir las condiciones

Más detalles

Física 2º Bto. (A y B) Movimiento ondulatorio. Campos gravitatorio y eléctrico 19 marzo 2008

Física 2º Bto. (A y B) Movimiento ondulatorio. Campos gravitatorio y eléctrico 19 marzo 2008 Alumno o alumna: Puntuación: 1. El oscilador armónico Una partícula de 1,4 kg de masa se conecta a un muelle de masa despreciable y constante recuperadora k = 15 N/m, de manera que el sistema se mueve

Más detalles

La siguiente tabla presenta las medidas en radianes y en grados de varios ángulos frecuentes, junto con los valores de seno, coseno, y tangente.

La siguiente tabla presenta las medidas en radianes y en grados de varios ángulos frecuentes, junto con los valores de seno, coseno, y tangente. Solución. En el primer cuadrante: En el segundo cuadrante: En el tercer cuadrante: En el cuarto cuadrante: cos θ 0, sin θ 0 tan θ 0 cos θ 0, sin θ 0 tan θ 0 cos θ 0, sin θ 0 tan θ 0 cos θ 0, sin θ 0 tan

Más detalles

Objetivos específicos. Introducción Teórica. Guía

Objetivos específicos. Introducción Teórica. Guía 6 1 Facultad: Ingeniería. Escuela: Electrónica. Asignatura: Propagación y Antenas. Título: Otras Antenas. Lugar de Ejecución: Telecomunicaciones Objetivos específicos Describir las características de la

Más detalles

Ingeniería Electrónica ELECTROMAGNETISMO Cátedra Ramos-Lavia Versión

Ingeniería Electrónica ELECTROMAGNETISMO Cátedra Ramos-Lavia Versión Versión 2013 1 TRABAJO PRÁCTICO N 0: Modelo Electromagnético 0.1 - Cuáles son las cuatro unidades SI fundamentales del electromagnetismo? 0.2 - Cuáles son las cuatro unidades de campo fundamentales del

Más detalles

TEMA: Directores y Reflectores. Objetivos. Facultad: Ingeniería Escuela: Electrónica Asignatura: Propagación y antenas. Equipos y materiales

TEMA: Directores y Reflectores. Objetivos. Facultad: Ingeniería Escuela: Electrónica Asignatura: Propagación y antenas. Equipos y materiales 1 Facultad: Ingeniería Escuela: Electrónica Asignatura: Propagación y antenas TEMA: Directores y Reflectores. Objetivos Constatar la influencia de los elementos parásitos actuando como directores y reflectores

Más detalles

PROBLEMAS TEMA 1 INTRODUCCIÓN. DEFINICIONES BÁSICAS

PROBLEMAS TEMA 1 INTRODUCCIÓN. DEFINICIONES BÁSICAS INTRODUCCIÓN. DEFINICIONES BÁSICAS PROBLEMA 1 Se desea obtener un filtro paso banda que cumpla las especificaciones indicadas en la plantilla de atenuación de la figura a partir de un filtro paso bajo

Más detalles

PROBLEMAS TEMA 2 TEORÍA DE LA APROXIMACIÓN

PROBLEMAS TEMA 2 TEORÍA DE LA APROXIMACIÓN PROBLEMAS TEMA TEORÍA DE LA APROXIMACIÓN PROBLEMA : Determinar la función de transferencia de un filtro paso bajo máximamente plano que cumplan las especificaciones de la figura: a) Determinar el orden

Más detalles

Radiación acústica producida por un transductor

Radiación acústica producida por un transductor Capítulo 5 Radiación acústica producida por un transductor 5.1. Introducción Al dispositivo físico comúnmente empleado para radiar ondas acústicas se le denomina transductor electroacústico. Los transductores

Más detalles

Problema 1 (2 puntos, tiempo recomendado 50 minutos)

Problema 1 (2 puntos, tiempo recomendado 50 minutos) Problema 1 (2 puntos, tiempo recomendado 50 minutos) En la figura 1 se representa un rectificador trifásico totalmente controlado, que alimenta a una carga resistiva a través de un filtro L. Datos: Tensión

Más detalles

OPCIÓN A. Como es campo gravitatorio es conservativo, la energía mecánica se conserva y será la misma la de la superficie que la del infinito

OPCIÓN A. Como es campo gravitatorio es conservativo, la energía mecánica se conserva y será la misma la de la superficie que la del infinito OPCIÓN A Pregunta a) Como es campo gravitatorio es conservativo, la energía mecánica se conserva y será la misma la de la superficie que la del infinito E mecánica (superficie) = E mecánica ( ) E c (superficie)

Más detalles

Polarización: ejercicio adicional

Polarización: ejercicio adicional Polarización: ejercicio adicional Física, 1er Cuatrimestre 013, FCEyN-UBA. Por Luciano A. Masullo Se tiene una fuente que emite un haz de luz no polarizada, con intensidad I o y longitud de onda λ = 600nm

Más detalles

G(ϕ) = 10 para 48 ϕ 180

G(ϕ) = 10 para 48 ϕ 180 Rec. UIT-R F.699-4 Rec. UIT-R F.699-4 1 RECOMENDACIÓN UIT-R F.699-4* DIAGRAMAS DE RADIACIÓN DE REFERENCIA DE ANTENAS DE SISTEMAS DE RADIOENLACES CON VISIBILIDAD DIRECTA PARA UTILIZARLOS EN LOS ESTUDIOS

Más detalles

Física Ondas 10/11/06

Física Ondas 10/11/06 Física Ondas 10/11/06 I.E.S. Elviña DEPARTAMENTO DE FÍSICA E QUÍMICA Nombre Problemas [5 Ptos.] 1. Para el proyectil de la figura, calcula: (a) El vector velocidad con que se incrusta en el suelo. [1]

Más detalles

[ ] 2, 2, 3 [ ( )] 2, 2, 3 CAMPOS: SUPERFICIES ( ) Hallar un vector unitario normal a la superficie x 2 y + 2xz = 4 en el punto (2, 2,3).

[ ] 2, 2, 3 [ ( )] 2, 2, 3 CAMPOS: SUPERFICIES ( ) Hallar un vector unitario normal a la superficie x 2 y + 2xz = 4 en el punto (2, 2,3). CAMPOS SUPERFICIES Hallar un vector unitario normal a la superficie x 2 y + 2xz 4 en el punto (2, 2,3). Solución I.T.I. 98, I.T.T. 99, 02 En primer lugar deberíamos verificar que el punto (2, 2,3) pertenece

Más detalles

3.1 Consideraciones generales sobre antenas.

3.1 Consideraciones generales sobre antenas. 3.1 Consideraciones generales sobre antenas. El Institute of Electrical and Electronics Engineers (IEEE) define una antena como aquella parte de un sistema transmisor o receptor diseñada específicamente

Más detalles

3.5 ANTENAS MICROSTRIP

3.5 ANTENAS MICROSTRIP 3.5 ANTENAS MICROSTRIP 3.5.1 Descripción general 3.5. Alimentación de un parche sencillo 3.5.3 Modelo de línea de transmisión 3.5.4 Campo de radiación 3.5.5 Impedancia de entrada 3.5.6 Métodos de análisis

Más detalles

DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES RADIACIÓN Y PROPAGACIÓN Examen extraordinario. 5 de septiembre de 2005

DEPARTAMENTO DE SEÑALES, SISTEMAS Y RADIOCOMUNICACIONES RADIACIÓN Y PROPAGACIÓN Examen extraordinario. 5 de septiembre de 2005 Examen extraorinario. 5 e septiembre e 005 PROBLEMA: (5 puntos) Se ispone e os reflectores parabólicos simples centraos e 0 cm e iámetro para formar un raioenlace e 5 km e vano y funcionano a 30 GHz. Los

Más detalles

SEMINARIO DE MEDIDAS DE EMISIONES ELECTROMAGNÉTICAS

SEMINARIO DE MEDIDAS DE EMISIONES ELECTROMAGNÉTICAS SEMINARIO DE MEDIDAS DE EMISIONES ELECTROMAGNÉTICAS Informe de medidas de emisiones electromagnéticas de RF y BF. Madrid, Abril de 2006 Colegio Oficial de Ingenieros Don/doña Curso de emisiones Año 2004,

Más detalles

3) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro.

3) a) En qué consiste la refracción de ondas? Enuncie sus leyes. b) Qué características de la onda varían al pasar de un medio a otro. Movimiento ondulatorio Cuestiones 1) a) Explique la periodicidad espacial y temporal de las ondas y su interdependencia. b) Una onda de amplitud A, frecuencia f, y longitud de onda, se propaga por una

Más detalles

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica

Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica Álgebra y Geometría Analítica I - LF 2016 Práctica 1: Algunos elementos de la Geometría Analítica 1. a) Marcar en un eje los puntos a(1);b( 2) y c(4). b) Hallar los puntos simétricos respecto al origen

Más detalles

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 13 de agosto de 2017

PRUEBAS EBAU FÍSICA. Juan P. Campillo Nicolás 13 de agosto de 2017 Juan P. Campillo Nicolás 3 de agosto de 07 . Gravitación.. Un satélite meteorológico de masa m = 680 kg describe una órbita circular a una altura h = 750 km sobre la superficie terrestre. a) Calcula el

Más detalles

RECOMENDACIÓN UIT-R S.731 *

RECOMENDACIÓN UIT-R S.731 * Rec. UIT-R S.731 1 RECOMENDACIÓN UIT-R S.731 * Diagrama de radiación contrapolar de referencia de estación terrena para utilizar en la coordinación de frecuencias y la evaluación de la interferencia en

Más detalles

TEMA 4: ANTENAS LINEALES

TEMA 4: ANTENAS LINEALES TEMA 4: ANTENAS NEAES 4.1 Dipolos eléctricos 4. Balunes 4.3 El monopolo sobre plano conductor 4.4 Dipolos paralelos a un plano conductor 4.5 Antenas Yagi-Uda 4.6 Otras antenas lineales RDPR-4-1 Antenas

Más detalles

Propagación básica de ondas electromagnéticas. Fórmula de Friis

Propagación básica de ondas electromagnéticas. Fórmula de Friis Propagación básica de ondas electromagnéticas. Fórmula de Friis Laboratorio de Electrónica de Comunicaciones Dpto. de Señales y Comunicaciones, U.L.P.G.C 1. Introducción El objetivo de esta práctica es

Más detalles

Problema 1 (3 puntos - 50 minutos) El diagrama de Bode de la figura representa la respuesta en frecuencia del sistema G(s). Se pide: Magnitude (db)

Problema 1 (3 puntos - 50 minutos) El diagrama de Bode de la figura representa la respuesta en frecuencia del sistema G(s). Se pide: Magnitude (db) EXAMEN DE SEPTIEMBRE DE SEVOSISTEMAS (6/7) Problema (3 puntos - 5 minutos) El diagrama de Bode de la figura representa la respuesta en frecuencia del sistema G(s). Se pide: a) Obtener la expresión analítica

Más detalles

1. Para una línea sin pérdidas de impedancia característica de 50 [ ohms] determinar:

1. Para una línea sin pérdidas de impedancia característica de 50 [ ohms] determinar: 1. Para una línea sin pérdidas de impedancia característica de 50 [ ohms] determinar: a) Una expresión para el módulo del fasor del voltaje V(z ) en la línea, si ésta está terminada en una carga Z L puramente

Más detalles

ÁLGEBRA II (LSI PI) UNIDAD Nº 2 GEOMETRÍA ANALÍTICA. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO

ÁLGEBRA II (LSI PI) UNIDAD Nº 2 GEOMETRÍA ANALÍTICA. Facultad de Ciencias Exactas y Tecnologías UNIVERSIDAD NACIONAL DE SANTIAGO DEL ESTERO 17 ÁLGEBRA II (LSI PI) UNIDAD Nº GEOMETRÍA ANALÍTICA Facultad de Ciencias Exactas y Tecnologías aa Error! No hay texto con el estilo especificado en el documento. 1 UNIVERSIDAD NACIONAL DE SANTIAGO DEL

Más detalles

Resistencia de pérdidas de un Dipolo

Resistencia de pérdidas de un Dipolo Resistencia de pérdidas de un Dipolo Figura : Elemento diferencial de longitud de un Dipolo de media onda cuya resistencia diferencial es dr = R i dz, donde L es la longitud del dipolo y a radio del alambre.

Más detalles

Seminario de Física. 2º bachillerato LOGSE. Unidad 2. Campo Eléctrico. A) Interacción Electrostática: Principio de Superposición de campos eléctricos.

Seminario de Física. 2º bachillerato LOGSE. Unidad 2. Campo Eléctrico. A) Interacción Electrostática: Principio de Superposición de campos eléctricos. A) Interacción Electrostática: Principio de Superposición de campos eléctricos. 1.- La distancia entre el electrón y el protón en el átomo de hidrógeno es 5,3 10-11 m. Compara los módulos de las fuerzas

Más detalles

Pregunta 1 (1.5 p) Física Aplicada (Forestales) Examen Ordinario TEORÍA. APELLIDOS y NOMBRE: Gráfica B. Gráfica A

Pregunta 1 (1.5 p) Física Aplicada (Forestales) Examen Ordinario TEORÍA. APELLIDOS y NOMBRE: Gráfica B. Gráfica A PELLIDOS y NOMRE: L TEORÍ DEE CONTESTRSE EXCLUSIVMENTE EN EST HOJ, QUE SE DEVOLVERÁ (NO OLVIDE CONSIGNR NOMRE Y PELLIDOS) NTES DE EMPEZR EL EXMEN DE PROLEMS. Pregunta 1 (1.5 p) Física plicada (Forestales)

Más detalles

Comunicaciones Inalámbricas Capitulo 3: Antenas. Víctor Manuel Quintero Flórez Claudia Milena Hernández Bonilla

Comunicaciones Inalámbricas Capitulo 3: Antenas. Víctor Manuel Quintero Flórez Claudia Milena Hernández Bonilla Comunicaciones Inalámbricas Capitulo 3: Víctor Manuel Quintero Flórez Claudia Milena Hernández Bonilla Maestría en Electrónica y Telecomunicaciones II-2013 Componente fundamental de sistemas de comunicaciones

Más detalles

Redes Inalámbricas Cables y antenas

Redes Inalámbricas Cables y antenas Redes Inalámbricas Cables y antenas SASCO 16 de febrero de 2012 Tabla de contenidos 1 2 Cables Guías de ondas Conectores y adaptadores 3 4 Reflectores Amplificadores Si bien hablamos de redes inalámbricas

Más detalles

Medida del campo magnético terrestre

Medida del campo magnético terrestre Práctica 8 Medida del campo magnético terrestre 8.1 Objetivo El objetivo de esta práctica es medir el valor del campo magnético terrestre. Para ello se emplea un campo magnético de magnitud y dirección

Más detalles

SERIE ÁLGEBRA VECTORIAL

SERIE ÁLGEBRA VECTORIAL SERIE ÁLGEBRA VECTORIAL 1.-Sea C(2, -3, 5) el punto medio del segmento dirigido AB. Empleando álgebra vectorial, determinar las coordenadas de los puntos A y B, si las componentes escalares de AB sobre

Más detalles

RECOMENDACIÓN 683 * (Programa de Estudios 31D/6)

RECOMENDACIÓN 683 * (Programa de Estudios 31D/6) Rc. 683 1 RECOMENDACIÓN 683 * MÉTODO PARA LA PREDICCIÓN DE LA INTENSIDAD DE CAMPO DE LA ONDA IONOSFÉRICA CUANDO SE PROPAGA EN DIRECCIÓN DE AERONAVES A UNOS 500 khz (Programa de Estudios 31D/6) Rc. 683

Más detalles

Conceptos básicos sobre antenas

Conceptos básicos sobre antenas Cursos Extensión Universitaria Conceptos básicos sobre antenas Miguel Fernánz García Departamento Ingeniería Eléctrica Campus Universitario 33204 Gijón, Asturias, Spain e-mail: mfgarcia@tsc.uniovi.es Índice

Más detalles

Vectores equipolentes. Vector libre. Componentes de un vector

Vectores equipolentes. Vector libre. Componentes de un vector 1.- VECTORES. OPERACIONES Vector fijo Un vector fijo AB es un segmento orientado con origen en el punto A y extremo en B Todo vector fijo AB tiene tres elementos: Módulo: Es la longitud del segmento AB.

Más detalles

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores).

C/ Fernando Poo 5 Madrid (Metro Delicias o Embajadores). Cuestión. OPCION A Dado que el área barrida por el cometa respecto al sol, ha de ser la misma en intervalos de tiempo iguales, en aquel punto en el que el cometa está más alejado al sol(afelio), el cometa

Más detalles

ONDAS. Modelo Pregunta 2B.- La función matemática que representa una onda transversal que avanza

ONDAS. Modelo Pregunta 2B.- La función matemática que representa una onda transversal que avanza ONDAS Junio 2013. Pregunta 1A.- Una onda transversal, que se propaga en el sentido positivo del eje X, tiene una velocidad de propagación de 600 m s 1 y una frecuencia de 500 Hz. a) La mínima separación

Más detalles

REPASO DE ALGEBRA VECTORIAL

REPASO DE ALGEBRA VECTORIAL REPASO DE ALGEBRA VECTORIAL Vectores en R 2 : Un vector v en el plano R 2 = XY es un par ordenado de números reales (a,b). Los números reales a y b se llaman componentes del vector v. El vector cero es

Más detalles

Características de las antenas transmisoras en ondas métricas y decimétricas

Características de las antenas transmisoras en ondas métricas y decimétricas Recomendación UIT-R BS.1195-1 (01/2013) Características de las antenas transmisoras en ondas métricas y decimétricas Serie BS Servicio de radiodifusión (sonora) ii Rec. UIT-R BS.1195-1 Prólogo El Sector

Más detalles