ETSAV-UPC Matemàtiques I 5

Tamaño: px
Comenzar la demostración a partir de la página:

Download "ETSAV-UPC Matemàtiques I 5"

Transcripción

1 ETSAV-UPC Matemàtiques I 5 [títol_ ] Lliçó 3. Exercicis [versió_ ] Octubre 8 [matèria_ ] Sistemes de referència. [assignatura_ ] Matemàtiques I [centre_ ] E. T. S. d'arquitectura del Vallès - Universitat Politècnica de Catalunya [url_ ] [fitxers_ ] L3_E.pdf L3_Sol.pdf [descripció_ ] Problemes i solucions sobre sistemes de referència a fins. Equacions del canvi, efecte de la referència en equacions de plans i rectes, i referències adaptades a varietats afins. E3. Solucions. Solucions d'alguns exercicis de la llista E3. 3. a. Les coordenades (x',y') de (,6) en la nova base S es calculen resolent el sistema d'equacions (,6) x '(,) y '(4, ) = +. També es poden calcular (és equivalent), multiplicant per la matriu inversa de M, on M=. La inversa és M =, i les coordenades (x',y') valen: 7 x' = y' = 6 3 b. Les coordenades (x,y) en base canònica de (,) B seran (x,y) = (,) + (4, ) = (4, ). També es poden obtenir multiplicant el vector per la matriu M. c. u' 6 3 u = u ' u u 4 u' = u u' 3.3 a. La matriu demanada és M -, com a l'exercici anterior. b. S'obtindran canviant de base el vector que s'obté al restar al punt (,3) el nou origen de coordenades (,), o sigui: x' 6 3 = y' = 3

2 ETSAV-UPC Matemàtiques I 6 De forma semblant, per a un punt genèric P=(p,p ) serà: x' 6 3 p = y' = p c. La matriu demanada és M, com a l'exercici anterior. x 4 7 = + = y Per a un punt genèric, la relació és: p 4 p ' = + p p ' 3.6 Les matrius solució són: B D B C D C C D C B D B 3.7 a. La matriu és M =, la inversa de la matriu M que es forma disposant els vectors de la nova base en columnes, M= b. Q=(3,,)=(,,) S, com a resultat de: 3 = c. De forma semblant, per a un punt genèric P=(x,y,z) el canvi és:

3 ETSAV-UPC Matemàtiques I 7 x' x x+ yz y' = y = xy z' z x y+ z on (x',y',z') representen les coordenades de P en referència S, o sigui: P=(x',y',z') S La nova referència T introdueix un canvi d'origen, i ja no n'hi haurà prou amb considerar només la matriu. Notarem amb '' (doble prima) les coordenades d'un punt genèric en T. P=(x,y,z) R =(x',y',z') S =(x'',y'',z'') T Canvi de S a T: primer s'ha d'expressar A en referència S = d'on A=(,-,-) S i després (x '',y '',z'') = (x ',y ',z') (,, ) = (x ',y ' +,z' + ) Canvi de R a T: s'obté encadenant els canvis: de R a S, i de S a T. R S ( x' y' z' ) = ( x+ y z xy x y+ z) S T (x '',y '',z'') = (x ',y ',z') (,, ) = (x ',y ' +,z' + ) = ( x+ y z,x y+,x y+ z+ ) 3.8 b. De S a C: De C a S: M= M = c. De S a C: x x' y = y' + z z' De C a S: x' x y' = y z' z 3. Notarem per R la referència tridimensional. a. (,,) R és el nou origen de coordenades, i per tant (,,) R =(,) S

4 ETSAV-UPC Matemàtiques I 8 (,,) R : per a tenir les noves coordenades, restem el nou origen i expressem el resultat com a combinació lineal dels vectors de la nova base: (,,) (,,) = (,,) = u u = (, ) S (,) = A + u + u = (,,) + (,,) + (,,) = (,,) (, ) = Au u = (,,) (,,) (,,) = (,,) b. S R R R R S R R R R c. No, perquè el punt (,,) R no és del pla. (x,y,) (,,) = (x,y,) = (x )(,,) + (y )(,,) = (x )u + (y)u R R R R R Per tant, les coordenades són (x-,y-) S e. (x',y') S= A+ x'u+ y'u = (,,) R+ x '(,,) R+ y'(,,) R= (+ x',+ y',) R x+ y+ z= f. Equacions implícites de r ( tridimensionals): z= Equacions paramètriques de r (tridimensionals): s'obtenen resolent el sistema anterior en funció d'un paràmetre, (x,y,z) = (,,) +λ(,,) Equacions implícites de r (bidimensionals, en la referència del pla): substituint x, y i z per les seves expressions corresponents en x' i y', resulta x'+y'= Equacions paramètriques de r (bidimensionals, en la referència del pla): per exemple, resolent l'equació anterior, (x',y') =λ(,) g. Equació implícita bidimensional: x'-y'= Equacions implícites tridimensionals: substituint les variables x',y' per les seves expressions equivalents en x,y,z i afegint la condició x y= z=, resulta z= Equacions paramètriques bidimensionals: resolent x'-y'= en funció d'un paràmetre, (x',y') = (,) +λ (,) Equacions paramètriques tridimensionals: (x,y,z) = (,,) +λ (,,) 3. a. P=(x',y') S significa que A P = x ' (,, ) + y '(,, ). AP denota el vector amb origen en A (l'origen de la referència S) i extrem en P, o sigui AP= P A = (x,y,z) (,,) Per tant, (x,y,z)=(,,)+x'(,-,)+y'(,,-) = (+x'+y',-x'+y',-y'). b. Si P=(x,y,z) és del pla x+y+z=, serà de la forma P=(x,y,-x-y). Les coordenades P=(x',y') S són els coeficients de la combinació lineal: (x,y,-x-y)-(,,)=x'(,-,)+y'(,,-) o equivalentment, (x-,y,-x-y)=(x'+y',-x'+y',-y') que escrit matricialment resulta: x x' y = Canvi de S a R y' xy Per resoldre aquest sistema seleccionem un menor d'ordre amb determinant no nul, i l'invertim. Per exemple,

5 ETSAV-UPC Matemàtiques I y x' y x' = x y y' = xy y' x' = x y y' = x+ y c. equacions implícites: substituint x, y i z per les seves expressions en x',y' i z' (apartat a), s'obté que: x+ y+ z= (+ x' + y') + ( x' + y') + ( y') = = y'=- 3 z= 3 y' = 3 -y'=3 A partir de les implícites obtenim fàcilment les paramètriques: (x' pot prendre qualsevol valor, y' està determinat). (x',y') = (, 3 ) +λ (,) 3.4 Es tracta d'expressar els vèrtex del triangle en la referència de la pantalla S= { O' ; u,u } Com que e= u i e= u, la matriu de canvi d'eixos (base) serà: I el canvi global vindrà descrit per les equacions: x' x+.5 = y' y.5 S o, el que és equivalent, x' = x + 3 y' = y+ 5 Concretament, els píxels corresponents als vèrtex del triangle són: p =(3,5) p =(,5) p 3 =(3,) 3.5 Prenent nova referència S= { O ; OA, OB}, i expressant el punt desconegut C en la nova referència: C=(x,y) S on x i y es calculen resolent el sistema (,.) = x(3.5,.) + y(.9,.7), o el que és equivalent, multiplicant per la matriu inversa: x = = y El campament C té, per tant, coordenades (-.7,.8) en la nova referència, i això permet de localitzar-lo.

E0. Exercicis comentats.

E0. Exercicis comentats. ETSAV-UPC Matemàtiques I [títol_ ] Exercicis de matemàtiques I. Lliçó 0. [versió_ ] Setembre 200 [matèria_ ] Operacions amb matrius i determinants. [assignatura_ ] Matemàtiques I [centre_ ] E. T. S. d'arquitectura

Más detalles

Sèrie 5. Resolució: 1. Siguin i les rectes de d equacions. a) Estudieu el paral lelisme i la perpendicularitat entre les rectes i.

Sèrie 5. Resolució: 1. Siguin i les rectes de d equacions. a) Estudieu el paral lelisme i la perpendicularitat entre les rectes i. Oficina d Accés a la Universitat Pàgina 1 de 11 Sèrie 5 1. Siguin i les rectes de d equacions : 55 3 2 : 3 2 1 2 3 1 a) Estudieu el paral lelisme i la perpendicularitat entre les rectes i. b) Trobeu l

Más detalles

Matemàtiques 1 - FIB

Matemàtiques 1 - FIB Matemàtiques - FI 7--7 Examen Final F Àlgebra lineal JUSTIFIQUEU TOTES LES RESPOSTES. [ punts] Siguin E i F dos espais vectorials, f : E F una aplicació lineal. (a) Digueu què ha de satisfer f per tal

Más detalles

Prova d accés a la Universitat (2013) Matemàtiques II Model 1. (b) Suposant que a = 1, trobau totes les matrius X que satisfan AX + Id = A, on Id

Prova d accés a la Universitat (2013) Matemàtiques II Model 1. (b) Suposant que a = 1, trobau totes les matrius X que satisfan AX + Id = A, on Id UIB Prova d accés a la Universitat () Matemàtiques II Model Contestau de manera clara i raonada una de les dues opcions proposades. Es disposa de 9 minuts. Cada qüestió es puntua sobre punts. La qualificació

Más detalles

1.- Sabem que el vector (2, 1, 1) és una solució del sistema ax + by + cz = a + c bx y + bz = a b c. . cx by +2z = b

1.- Sabem que el vector (2, 1, 1) és una solució del sistema ax + by + cz = a + c bx y + bz = a b c. . cx by +2z = b Oficina d Organització de Proves d Accés a la Universitat Pàgina de 5 PAU 0 - Sabem que el vector (,, ) és una solució del sistema ax + by + cz = a + c bx y + bz = a b c cx by +z = b Calculeu el valor

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves dʼaccés a la Universitat. Curs 2009-2010 Matemàtiques Sèrie 1 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què és el que voleu fer i per què. Cada qüestió val

Más detalles

1. SISTEMA D EQUACIONS LINEALS

1. SISTEMA D EQUACIONS LINEALS 1. SISTEMA D EQUACIONS LINEALS 1.1 Equacions lineals Una equació lineal està composta de coeficients (nombres reals) acompanyats d incògnites (x, y, z,t..o ) s igualen a un terme independent, i les solucions

Más detalles

UIB 2 + f (x) + f(x) ց ց ր ր Per tant, el punt ( 3. Una altra forma de veure-ho és calcular la derivada segona i mirar el signe en x = 3: 2 f (x) =

UIB 2 + f (x) + f(x) ց ց ր ր Per tant, el punt ( 3. Una altra forma de veure-ho és calcular la derivada segona i mirar el signe en x = 3: 2 f (x) = El cas positiu no té solució. Si analitzam el cas negatiu, ens surt x = x+, d on x =. A continuació fem la taula següent per veure si el valor obtingut és un màxim, mínim o un punt de sella. x + f (x)

Más detalles

Resultat final, sense desenvolupar, dels exercicis i problemes proposats de cada unitat i de l apartat Resolució de problemes. En queden exclosos

Resultat final, sense desenvolupar, dels exercicis i problemes proposats de cada unitat i de l apartat Resolució de problemes. En queden exclosos DE S L U S RE S I V I C LES Resultat final, sense desenvolupar, dels exercicis i problemes proposats de cada unitat i de l apartat Resolució de problemes. En queden exclosos aquells exercicis que requereixen

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 PAU 2012

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 PAU 2012 Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 SÈRIE 4 1 1 k 1.- Determineu el rang de la matriu A = 1 k 1 en funció del valor del paràmetre k. k 1 1 [2 punts] En ser la matriu

Más detalles

Proves d accés a la Universitat per a més grans de 25 anys Convocatòria 2013

Proves d accés a la Universitat per a més grans de 25 anys Convocatòria 2013 Pàgina 1 de 5 Sèrie 3 Opció A A1.- Digueu de quin tipus és la progressió numèrica següent i calculeu la suma dels seus termes La progressió és geomètrica de raó 2 ja que cada terme s obté multiplicant

Más detalles

1. Què tenen en comú aquestes dues rectes? Com són entre elles? 2. En què es diferencien aquestes dues rectes?

1. Què tenen en comú aquestes dues rectes? Com són entre elles? 2. En què es diferencien aquestes dues rectes? En la nostra vida diària trobem moltes situacions de relació entre dues variable que es poden interpretar mitjançant una funció de primer grau. La seva expressió algebraica és del tipus f(x)=mx+n. També

Más detalles

TEMA 5 : Resolució de sistemes d equacions

TEMA 5 : Resolució de sistemes d equacions TEMA 5 : Resolució de sistemes d equacions 5.1. EQUACIÓ LINEAL AMB n INCÒGNITES Una equació lineal de n incògnites es qualsevol expressió de la forma: a 1 x 1 + a 2 x 2 +... + a n x n = b, on a i b son

Más detalles

ACTIVITATS. a) b) c) d) INS JÚLIA MINGUELL 2n Batxillerat. dv, 18 de març Alumne:

ACTIVITATS. a) b) c) d) INS JÚLIA MINGUELL 2n Batxillerat. dv, 18 de març Alumne: INS JÚLIA MINGUELL 2n Batxillerat Matemàtiques Tasca Continuada 4 «Matrius i Sistemes d equacions lineals» Alumne: dv, 18 de març 2016 LLIURAMENT: dm, 5 d abril 2016 NOTA: cal justificar matemàticament

Más detalles

x + 2 y = 3 2 x y = 1 4 x + 3 y = k a) Afegiu-hi una equació lineal de manera que el sistema resultant sigui incompatible.

x + 2 y = 3 2 x y = 1 4 x + 3 y = k a) Afegiu-hi una equació lineal de manera que el sistema resultant sigui incompatible. 1998 - Sèrie 3 - Qüestió 4 Discutiu el sistema d'equacions a x y + 2 z = (2 a) 2 x + 3 y z = 3a x + 2 y z = 2a segons els valors del paràmetre a. 1999 - Sèrie 1 - Qüestió 1 Resoleu el sistema següent per

Más detalles

Tema 2: GEOMETRIA ANALÍTICA AL PLA

Tema 2: GEOMETRIA ANALÍTICA AL PLA Tema : GEOMETRIA ANALÍTICA AL PLA Vector El vector AB és el segment orientat amb origen al punt A i extrem al punt B b a A B Les projeccions del vector sobre els eixos són les components del vector: a

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 PAU 2009

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 PAU 2009 Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 SÈRIE 1 QÜESTIONS 1.- Considereu la matriu A = ( ) A 2 1 0 =. 2 1 [2 punts] ( ) a 0. Calculeu el valor dels paràmetres a i b perquè

Más detalles

c) C = (c ij ) de tres files i tres columnes per a) u r = (1, 2, 3, 4), c) u r = (1, 1, 1), v r = (2, 4, 8) i w r = (3, 9, 27)

c) C = (c ij ) de tres files i tres columnes per a) u r = (1, 2, 3, 4), c) u r = (1, 1, 1), v r = (2, 4, 8) i w r = (3, 9, 27) SOLUCONAR Unitat 8 Comencem Cada 100 g de producte d un determinat aliment conté 0,06 g de vitamina A, 0,3 g de vitamina B i 0, g de calci. Anàlogament, un altre aliment conté 0,1 g de vitamina A, 0, g

Más detalles

Resolucions de l autoavaluació del llibre de text

Resolucions de l autoavaluació del llibre de text Pàg. 1 de 1 Tenim els vectors u(3,, 1), v ( 4, 0, 3) i w (3,, 0): a) Formen una base de Á 3? b) Troba m per tal que el vector (, 6, m) sigui perpendicular a u. c) Calcula u, ì v i ( u, v). a) Per tal que

Más detalles

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera:

Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: Un sistema lineal de dues equacions amb dues incògnites és un conjunt de dues equacions que podem representar de la manera: ax + by = k a x + b y = k Coeficients de les incògnites: a, a, b, b. Termes independents:

Más detalles

Àlgebra lineal i equacions diferencials. Curs 2001/02 Exemple de diagonalització.

Àlgebra lineal i equacions diferencials. Curs 2001/02 Exemple de diagonalització. Considerem la matriu Àlgebra lineal i equacions diferencials Química Curs 2001/02 Exemple de diagonalització. A = M 3 (R). Calculeu els valors propis de la matriu A. Calculeu els vectors propis pels valors

Más detalles

VECTORS I RECTES AL PLA. Exercici 1 Tenint en compte quin és l'origen i quin és l'extrem, anomena els següents vectors: D

VECTORS I RECTES AL PLA. Exercici 1 Tenint en compte quin és l'origen i quin és l'extrem, anomena els següents vectors: D VECTORS I RECTES AL PLA Un vector és un segment orientat que és determinat per dos punts, A i B, i l'ordre d'aquests. El primer dels punts s'anomena origen i el segons es denomina extrem, i s'escriu AB.

Más detalles

Deduce razonadamente en que casos los planos π 1 y π 2 son o no paralelos:

Deduce razonadamente en que casos los planos π 1 y π 2 son o no paralelos: GEOMETRÍA Junio 98 Deduce razonadamente en que casos los planos y son o no paralelos: a) : x + y + z = y : x + y z = 4 b) : x y + z = 4 y : x y + z = Obtén la distancia entre los planos y cuando sean paralelos.

Más detalles

Districte Universitari de Catalunya

Districte Universitari de Catalunya Proves d Accés a la Universitat. Curs 2012-2013 Matemàtiques Sèrie 4 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què voleu fer i per què. Cada qüestió val 2 punts.

Más detalles

TEMA 4: Equacions exponencials i logarítmiques

TEMA 4: Equacions exponencials i logarítmiques TEMA 4: Equacions exponencials i logarítmiques 4.1. EXPONENCIALS Definim exponencial de base a i exponent n:. Propietats de les exponencials: (1). (2) (3) (4) 1 (5) 4.2. EQUACIONS EXPONENCIALS Anomenarem

Más detalles

Unitat 2 EQUACIONS DE PRIMER GRAU. Matemàtiques, Ciència i Tecnologia 5. TRANSFORMACIONS D EXPRESSIONS ALGEBRAIQUES UNITAT 2 EQUACIONS DE PRIMER GRAU

Unitat 2 EQUACIONS DE PRIMER GRAU. Matemàtiques, Ciència i Tecnologia 5. TRANSFORMACIONS D EXPRESSIONS ALGEBRAIQUES UNITAT 2 EQUACIONS DE PRIMER GRAU Unitat 2 EQUACIONS DE PRIMER GRAU 37 38 Matemàtiques, Ciència i Tecnologia 5. TRANSFORMACIONS D EXPRESSIONS ALGEBRAIQUES UNITAT 2 QUÈ TREBALLARÀS? què treballaràs? En acabar la unitat has de ser capaç

Más detalles

Oficina d Accés a la Universitat Pàgina 1 de 12 PAU 2015

Oficina d Accés a la Universitat Pàgina 1 de 12 PAU 2015 Oficina d Accés a la Universitat Pàgina 1 de 12 Sèrie 5 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què voleu fer i per què. Cada qüestió val 2 punts. Podeu utilitzar

Más detalles

E3. Exercicis comentats

E3. Exercicis comentats ETSAV-UPC Matemàtiques I 1 [títol_ ] Exercicis de matemàtiques I. Lliçó 3. [versió_ ] Novembre 11 [matèria_ ] Corbes del pla. Les còniques. [assignatura_ ] Matemàtiques I [centre_ ] E. T. S. d'arquitectura

Más detalles

( 2 3, utilitzeu la matriu inversa B 1 ( 1 4 ( 2 1. Matrius i determinants Sèrie 3 - Qüestió 4. Donada la matriu B =

( 2 3, utilitzeu la matriu inversa B 1 ( 1 4 ( 2 1. Matrius i determinants Sèrie 3 - Qüestió 4. Donada la matriu B = 1998 - Sèrie 3 - Qüestió 4 Donada la matriu B = ( 2 3, utilitzeu la matriu inversa B 1 1 1) B X B = ( 1 4 3 2). per trobar una matriu X tal que 2004 - Sèrie 1 - Qüestió 3 Considereu les matrius Trobeu

Más detalles

TEMA 4 : Matrius i Determinants

TEMA 4 : Matrius i Determinants TEMA 4 : Matrius i Determinants MATRIUS 4.1. NOMENCLATURA. DEFINICIÓ Una matriu és un conjunt de mxn elements distribuïts en m files i n columnes, A= Aquesta és una matriu de m files per n columnes. És

Más detalles

corresponent de la primera pàgina de l examen.

corresponent de la primera pàgina de l examen. Oficina d Accés a la Universitat Pàgina 1 de 5 PAU 017 SÈRIE PAUTES PER ALS CORRECTORS RECORDEU: - Podeu valorar amb tants decimals com considereu convenient, però aconsellem no fer ho amb més de dos.

Más detalles

SOLUCIONARI Unitat 5

SOLUCIONARI Unitat 5 SOLUCIONARI Unitat 5 Comencem Escriu tres equacions que no tinguin solució en el conjunt. Resposta oberta. Per exemple: a) x b) 5x 0 c) x Estableix tres equacions que no tinguin solució en el conjunt.

Más detalles

Definir els límits d integració en dominis 3D (R 3 ) Càlcul 2 - Aula Lliure

Definir els límits d integració en dominis 3D (R 3 ) Càlcul 2 - Aula Lliure Definir els límits d integració en dominis 3D (R 3 ) Càlcul 2 - Aula Lliure Quim Primavera 2017 Introducció Estem a l espai (R 3 ) i els punts del domini tenen tres components: (x, y, z). El nostre domini

Más detalles

Geometria / GE 2. Perpendicularitat S. Xambó

Geometria / GE 2. Perpendicularitat S. Xambó Geometria / GE 2. Perpendicularitat S. Xambó Vectors perpendiculars Ortogonal d un subespai Varietats lineals ortogonals Projecció ortogonal Càlcul efectiu de la projecció ortogonal Aplicació: ortonormalització

Más detalles

Oficina d Accés a la Universitat Pàgina 1 de 10 PAU 2014 Criteris específics de correcció i qualificació per ser fets públics un cop finalitzades

Oficina d Accés a la Universitat Pàgina 1 de 10 PAU 2014 Criteris específics de correcció i qualificació per ser fets públics un cop finalitzades Oficina d Accés a la Universitat Pàgina 1 de 10 SÈRIE 3 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què voleu fer i per què. Cada qüestió val punts. Podeu utilitzar

Más detalles

Exercicis resolts de Matemàtiques I pels graus d'economia i Empresa. Àlgebra Lineal. Oriol Roch Casellas

Exercicis resolts de Matemàtiques I pels graus d'economia i Empresa. Àlgebra Lineal. Oriol Roch Casellas Exercicis resolts de Matemàtiques I pels graus d'economia i Empresa Àlgebra Lineal Oriol Roch Casellas Departament de Matemàtica Econòmica, Financera i Actuarial Facultat de Ciències Econòmiques i Empresarials

Más detalles

Examen Final 17 de gener de 2013

Examen Final 17 de gener de 2013 MATEMÀTIQUES FIB-UPC Examen Final 7 de gener de 03 a) Representeu gràficament la corba definida per l equació y = x 5x. b) Determineu si el conjunt C = { x R x 5x 6 } és fitat superiorment inferiorment)

Más detalles

1.- Elements d una recta Vector director d una recta Vector normal d una recta Pendent d una recta

1.- Elements d una recta Vector director d una recta Vector normal d una recta Pendent d una recta .- Elements d una recta..- Vector director d una recta..- Vector normal d una recta.3.- Pendent d una recta.- Equacions d una recta..- Equació ectorial, paramètrica i contínua..- Equació explícita.3.-

Más detalles

Unitat 2. POLINOMIS, EQUACIONS I INEQUACIONS

Unitat 2. POLINOMIS, EQUACIONS I INEQUACIONS Unitat 2. POLINOMIS, EQUACIONS I INEQUACIONS 2.1. Divisió de polinomis. Podem fer la divisió entre dos monomis, sempre que m > n. Si hem de fer una divisió de dos polinomis, anirem calculant les divisions

Más detalles

E1. Exercicis comentats

E1. Exercicis comentats ETSAV-UPC Matemàtiques I [títol_ ] Exercicis de matemàtiques I. Lliçó. [versió_ ] Setembre 200 [matèria_ ] Sistemes d equacions lineals. [assignatura_ ] Matemàtiques I [centre_ ] E. T. S. d'arquitectura

Más detalles

4. EQUACIONS DE PRIMER GRAU AMB UNA INCÒGNITA

4. EQUACIONS DE PRIMER GRAU AMB UNA INCÒGNITA Definició d'equació. Equacions de primer grau amb una incògnita 1. EQUACIONS: DEFINICIONS Equació: igualtat entre dues expressions algebraiques. L'expressió de l'esquerra de la igualtat rep el nom de PRIMER

Más detalles

= 1+ β, essent α i β paràmetres reals. a la recta r 2. i el pla Π d equació

= 1+ β, essent α i β paràmetres reals. a la recta r 2. i el pla Π d equació Problema A Setembre 0 + y z = En l espai es té la recta r i el pla Π d equacions r x + mz = 0, on x y z = 0 m és un paràmetre real a) Un vector director de la recta r b) El valor de m per al qual la recta

Más detalles

Examen FINAL M2 FIB-UPC 12 de juny de 2015

Examen FINAL M2 FIB-UPC 12 de juny de 2015 Examen FINAL M FIB-UPC 1 de juny de 015 1. ( punts Sigui a R, calculeu els límits següents segons els valors d a: n + n n + a+ a+n a n n n, n n + n!.. ( punts Considereu la integral següent: I = 1.8 1

Más detalles

P =

P = RECULL DE PROBLEMES SOBRE MTRIUS I DETERMINNTS QUE HN SORTIT LES PROVES DE SELECTIVITT ) PU LOGSE 004 Sèrie Qüestió 3: Considereu les matrius compleixi X + = B. = i B =. Trobeu una matriu X que ) PU LOGSE

Más detalles

DOSSIER D ACTIVITATS D ESTIU MATEMÀTIQUES 2n d ESO

DOSSIER D ACTIVITATS D ESTIU MATEMÀTIQUES 2n d ESO Institut Galileo Galilei Departament de Matemàtiques Curs 015-16 DOSSIER D ACTIVITATS D ESTIU MATEMÀTIQUES n d ESO A continuació tens una sèrie d'exercicis i activitats relacionats amb els continguts treballats

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 16 PAU cx by + 2z = b. 2a+b c = a+c 2b 1 b = a b c

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 16 PAU cx by + 2z = b. 2a+b c = a+c 2b 1 b = a b c Oficina d Organització de Proves d Accés a la Universitat Pàgina de 6 PAU 0 SÈRIE 4.- Sabem que el vector (,, ) és solució del sistema ax + by + cz = a+c bx y + bz = a b c. cx by + z = b Calculeu el valor

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 11 PAU 2008

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 11 PAU 2008 Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 11 PAU 008 SÈRIE Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals Ara bé, dins de cada pregunta podeu utilitzar

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2009 QÜESTIONS

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2009 QÜESTIONS Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 009 SÈRIE 4 QÜESTIONS 1. Considereu el sistema d inequacions següent: x 0, y 0 x+ 5y 10 3x+ 4y 1 a) Dibuixeu la regió de solucions

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 7 PAU 2007

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 7 PAU 2007 Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 7 PAU 007 SÈRIE 3 Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals Ara bé, dins de cada pregunta podeu utilitzar

Más detalles

ETSAV-UPC Matemàtiques I 4

ETSAV-UPC Matemàtiques I 4 ETSAV-UPC Matemàtiques I 4 [título_ ] Lección. Ejercicios [versión_ ] Octubre 2008 [materia_ ] Algoritmos y conceptos preliminares. [asignatura_ ] Matemàtiques I [centro_ ] E. T. S. d'arquitectura del

Más detalles

PROBLEMES DE SELECTIVITAT - MATEMÀTIQUES I - SOLUCIONS

PROBLEMES DE SELECTIVITAT - MATEMÀTIQUES I - SOLUCIONS Si a=, compatible indeterminat amb un grau de llibertat (una recta) Si a, compatible determinat (un punt) x+y-z=6 Per a positiu: 6a) No b) Es demostra (Bolzano) 7a) Si a=-, són paral lels Si a -, es tallen

Más detalles

Vector unitari Els vectors unitaris tenen de mòdul la unitat. Calculem el vector unitari del vector següent manera: ( ) ( )

Vector unitari Els vectors unitaris tenen de mòdul la unitat. Calculem el vector unitari del vector següent manera: ( ) ( ) GEOMETRIA EN L ESPAI VECTORS EN L ESPAI OPERACIONS AMB VECTORS Un vector és un segment orientat en l espai que té un mòdul, una direcció i un sentit coneguts: té un extrem i un origen (Exemple: vector

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 PAU 2008 QÜESTIONS

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 PAU 2008 QÜESTIONS Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 6 SÈRIE 4 Aquestes pautes no preveuen tots els casos que en la pràctica es poden presentar. Tampoc no pretenen donar totes les possibles

Más detalles

Nom i Cognoms: Grup: Data:

Nom i Cognoms: Grup: Data: n BATX MA ) Raoneu la certesa o falsedat de les afirmacions següents: a) Si A és la matriu dels coeficients d'un sistema d'equacions lineals i Ampl és la matriu ampliada del mateix sistema. Rang(A) Rang

Más detalles

GEOMETRÍA ANALÍTICA PLANA

GEOMETRÍA ANALÍTICA PLANA GEOMETRÍA ANALÍTICA PLANA Un vector fijo es un segmento orientado que va del punto A (origen) al punto B (extremo). Módulo del vector : Es la longitud del segmento AB, se representa por. Dirección del

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 11 PAU 2005

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 11 PAU 2005 Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 11 PAU 005 SÈRIE. Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals. Ara bé, dins de cada pregunta podeu utilitzar

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2012

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 10 PAU 2012 Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 1 SÈRIE 3 1.- Digueu per a quin valor del paràmetre m els plans π 1 : x y +mz = 1, π 2 : x y +z = m, π 3 : my +2z = 3, tenen com a

Más detalles

t2 Donat el PVI següent, que depèn d un paràmetre µ R,

t2 Donat el PVI següent, que depèn d un paràmetre µ R, Nom i cognoms: A 1 Equacions Diferencials (40131 Examen Final Juny 018 Temps: 3h... [Test ] [ Nota important: respostes correctes +1 punt incorrectes 0.5 punts ] { t1 x Donat el sistema d EDOs 3x y y y

Más detalles

Matemàtiques. Proves d accés a la Universitat per a més grans de 25 anys. Sèrie. el polinomi 2. Solució: tercera arrel. i , i.

Matemàtiques. Proves d accés a la Universitat per a més grans de 25 anys. Sèrie. el polinomi 2. Solució: tercera arrel. i , i. Pàgina 1 5 Proves d accés a la Universitat per a més grans 5 anys Abril 015 Sèrie Exercicis Opció A A1.- Consireu el polinomi 7 6. Justifiqueu que 1 i són dues arrels l polinomi. Determineu la tercera

Más detalles

Les equacions dels elements geomètrics

Les equacions dels elements geomètrics Les equacions dels elements geomètrics Les equacions dels elements geomètrics La suma d un punt més un vector Si P és un punt i v és un vector, la suma del punt P més el vector v és un altre punt, Q, de

Más detalles

ÀLGEBRA LINEAL I GEOMETRIA. PROBLEMES

ÀLGEBRA LINEAL I GEOMETRIA. PROBLEMES TEXTOS DOCENTS 199 ÀLGEBRA LINEAL I GEOMETRIA. PROBLEMES Robert Estalella Guillem Anglada Rosendo Vílchez Rosario López Ferran Sala Departament d Astronomia i Meteorologia U UNIVERSITAT DE BARCELONA B

Más detalles

Apèndix Àlgebra lineal amb wxmaxima

Apèndix Àlgebra lineal amb wxmaxima Apèndix Àlgebra lineal amb wxmaxima Objectius 1. Definir matrius amb wxmaxima. 2. Aplicar amb wxmaxima operacions amb matrius. 3. Aplicar transformacions elementals de matrius. 4. Calcular el determinant

Más detalles

GEOMETRIA ANALÍTICA PLANA

GEOMETRIA ANALÍTICA PLANA GEOMETRIA ANALÍTICA PLANA Un vector fix és un segment orientat que va del punt A (origen) al punto B (extrem). M òdul del vector AB, es representa pe r. : É s la long itud del segment Direc ció del vector

Más detalles

UNITAT 3: SISTEMES D EQUACIONS

UNITAT 3: SISTEMES D EQUACIONS UNITAT 3: SISTEMES D EQUACIONS 1. EQUACIONS DE PRIMER GRAU AMB DUES INCÒGNITES L equació x + y = 3 és una equació de primer grau amb dues incògnites : x i y. Per calcular les solucions escollim un valor

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 5 PAU 2005 QÜESTIONS

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 5 PAU 2005 QÜESTIONS Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 5 PAU 005 SÈRIE Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals. Ara bé, dins de cada pregunta podeu utilitzar

Más detalles

DOSSIER PREPARACIÓ RECUPERACIÓ MATEMÀTIQUES Setembre 3r ESO

DOSSIER PREPARACIÓ RECUPERACIÓ MATEMÀTIQUES Setembre 3r ESO Generalitat de Catalunya Departament d Ensenyament Institut Pompeu Fabra DOSSIER PREPARACIÓ RECUPERACIÓ MATEMÀTIQUES Setembre 3r ESO Nom i Cognoms:... INSTRUCCIONS: - Aquest dossier serveix per a preparar

Más detalles

Institut d Educació Secundària. x b) A partir de la gràfica d aquesta funció, indica quin és el domini i el recorregut.

Institut d Educació Secundària. x b) A partir de la gràfica d aquesta funció, indica quin és el domini i el recorregut. Generalitat de Catalunya Departament d Educació Institut d Educació Secundària Jaume Balmes Departament de Matemàtiques MS Àlgebra i uncions I Nom: Grup: ) Resol les següents equacions: a) 7+ 3+ c) 3 +

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 9 PAU 2006 Pautes de correcció

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 9 PAU 2006 Pautes de correcció Oficina d Organització de Proves d Accés a la Universitat Pàgina de 9 PAU 006 SÈRIE Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals Ara bé, dins de cada pregunta podeu utilitzar

Más detalles

Convocatòria Matemàtiques. Proves d accés a la universitat per a més grans de 25 anys. Sèrie 1. Fase específica

Convocatòria Matemàtiques. Proves d accés a la universitat per a més grans de 25 anys. Sèrie 1. Fase específica Proves d accés a la universitat per a més grans de 25 anys Matemàtiques Sèrie 1 Fase específica Exercicis Qualificació 1 2 3 Convocatòria 2017 4 5 Problema Suma de notes parcials Qualificació final Qualificació

Más detalles

Generalitat de Catalunya Departament d Educació Institut d Educació Secundària Jaume Balmes

Generalitat de Catalunya Departament d Educació Institut d Educació Secundària Jaume Balmes Genealitat de Catalunya Depatament d Educació Institut d Educació Secundàia Jaume Balmes Depatament de Matemàtiques 2n BATX MA Geometia Nom i Cognoms: Gup: Data: 5x y+ z= 0 1) Donat el pla π: ax 6y + 4z

Más detalles

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 12 PAU 2007

Oficina d Organització de Proves d Accés a la Universitat Pàgina 1 de 12 PAU 2007 Oficina d Organització de Proves d Accés a la Universitat Pàgina de PAU 007 SÈRIE Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals Ara bé, dins de cada pregunta podeu utilitzar

Más detalles

10 Àlgebra vectorial. on 3, -2 i 4 són les projeccions en els eixos x, y, y z respectivament.

10 Àlgebra vectorial. on 3, -2 i 4 són les projeccions en els eixos x, y, y z respectivament. 10 Àlgebra vectorial ÀLGEBR VECTORIL Índe P.1. P.. P.3. P.4. P.5. P.6. Vectors Suma i resta vectorial Producte d un escalar per un vector Vector unitari Producte escalar Producte vectorial P.1. Vectors

Más detalles

AVALUACIÓ DE QUART D ESO

AVALUACIÓ DE QUART D ESO AVALUACIÓ DE QUART D ESO FULLS DE RESPOSTES I CRITERIS DE CORRECCIÓ Competència matemàtica FULL DE RESPOSTES VERSIÓ AMB RESPOSTES competència matemàtica ENGANXEU L ETIQUETA IDENTIFICATIVA EN AQUEST ESPAI

Más detalles

FUNCIONS EXPONENCIALS I LOGARÍTMIQUES. MATEMÀTIQUES-1

FUNCIONS EXPONENCIALS I LOGARÍTMIQUES. MATEMÀTIQUES-1 FUNCIONS EXPONENCIALS I LOGARÍTMIQUES. 1. Funcions exponencials. 2. Equacions exponencials. 3. Definició de logaritme. Propietats. 4. Funcions logarítmiques. 5. Equacions logarítmiques. 1. Funcions exponencials.

Más detalles

Oficina de Coordinació i d'organització de les PAU de Catalunya Pàgina 1 de 8 PAU SÈRIE 3 Pautes de correcció (PAU 2002) MATEMÀTIQUES

Oficina de Coordinació i d'organització de les PAU de Catalunya Pàgina 1 de 8 PAU SÈRIE 3 Pautes de correcció (PAU 2002) MATEMÀTIQUES Oficina de Coordinació i d'organització de les PAU de Catalunya Pàgina 1 de 8 SÈRIE 3 () MATEMÀTIQUES Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals (ara bé, dins de cada pregunta

Más detalles

Criteris generals per a la correcció:

Criteris generals per a la correcció: Oficina d Accés a la Universitat Pàgina 1 de 13 Sèrie 2 Responeu a CINC de les sis qüestions següents. En les respostes, expliqueu sempre què voleu fer i per què. Cada qüestió val 2 punts. Podeu utilitzar

Más detalles

CARTES DE FRACCIONS. Materials pel Taller de Matemàtiques

CARTES DE FRACCIONS. Materials pel Taller de Matemàtiques CARTES DE FRACCIONS Aquesta proposta és adequada pel primer cicle d ESO perquè permet recordar mitjançant un joc, una sèrie de conceptes que ja s han treballat a l Educació Primària. Per això resulta una

Más detalles

Matemàtiques Sèrie 1. Instruccions

Matemàtiques Sèrie 1. Instruccions Proves d accés a cicles formatius de grau superior de formació professional inicial, d ensenyaments d arts plàstiques i disseny, i d ensenyaments esportius 0 Matemàtiques Sèrie SOLUCIONS, CRITERIS DE CORRECCIÓ

Más detalles

SOLUCIONS DE LES ACTIVITATS D APRENENTATGE

SOLUCIONS DE LES ACTIVITATS D APRENENTATGE 30 SOLUCIONS DE LES ACTIVITATS D APRENENTATGE Activitat 1 Completa la taula següent: Graus Minuts Segons 30º 30 x 60 = 1.800 1.800 x 60 = 108.000 45º 2.700 162.000 120º 7.200 432.000 270º 16.200 972.000

Más detalles

TEMA 6 : Geometria en l espai. Activitats

TEMA 6 : Geometria en l espai. Activitats TEMA 6 : Geometria en l espai Activitats 1. Siguin els punts A(1,2,3), B(0,1,3) i C(2,3,1) a) Trobeu el vector b) Calculeu el mòdul del vector c) Trobeu el vector unitari d igual direcció que el vector

Más detalles

Nom i Cognoms: Grup: Data:

Nom i Cognoms: Grup: Data: Generalitat de Catalunya Departaent d Educació Institut d Educació Secundària Jaue Bales Departaent de Mateàtiques n BATX MA Àlgebra i vectors No i Cognos: Grup: Data: 1) Discutiu i resoleu en els casos

Más detalles

MMF 10 / 1. Mecànica 7. Petites oscil lacions S. Xambó

MMF 10 / 1. Mecànica 7. Petites oscil lacions S. Xambó MMF 10 / 1. Mecànica 7. Petites oscil lacions S. Xambó L'objecte d'aquesta secció és analitzar el comportament d'un sistema mecànic lagrangià natural (és a dir, que les lligadures no depenen del temps)

Más detalles

Expressions algebraiques

Expressions algebraiques 7 Expressions algebraiques Objectius En esta quinzena aprendràs a: Utilitzar lletres per representar nombres desconeguts. Trobar el valor numèric d una expressió algebraica. Sumar, restar i multiplicar

Más detalles

RECULL DE PROBLEMES DE VECTORS QUE HAN SORTIR A LES PAU DE MATEMÀTIQUES B =,

RECULL DE PROBLEMES DE VECTORS QUE HAN SORTIR A LES PAU DE MATEMÀTIQUES B =, RECULL DE PROBLEMES DE VECTORS QUE HAN SORTIR A LES PAU DE MATEMÀTIQUES PAU LOGSE 999 Sèrie Problema : (Incomplet Donats els punts de l'espai A (,,0, B ( 0,,0, C (,0,0 i D ( 0,,0 a Són coplanaris? Formen

Más detalles

QUÍMICA 2 BATXILLERAT. Unitat 1 CLASSIFICACIÓ DE LA MATÈRIA LES SUBSTÀNCIES PURES

QUÍMICA 2 BATXILLERAT. Unitat 1 CLASSIFICACIÓ DE LA MATÈRIA LES SUBSTÀNCIES PURES QUÍMICA 2 BATXILLERAT Unitat 1 CLASSIFICACIÓ DE LA MATÈRIA LES SUBSTÀNCIES PURES Les substàncies pures dins la classificació de la matèria Les SUBSTÀNCIES PURES (també anomenades espècies químiques) només

Más detalles

Geometria Analítica del pla

Geometria Analítica del pla Geometria Analítica del pla Continguts 1. Vectors Vectors fixos i vectors lliures Operacions amb vectors Combinació lineal de vectors Punt mitjà d un segment Producte escalar Aplicacions del producte escalar

Más detalles

Geometria / GQ 2. Invariants euclidians de les còniques S. Xambó

Geometria / GQ 2. Invariants euclidians de les còniques S. Xambó Geometria / GQ 2. Invariants euclidians de les còniques S. Xambó,, Classificació de còniques mitjançant invariants Obtenció de les equacions reduïdes i canòniques a partir dels invariants Exemple: àrea

Más detalles

f =. El pendent de la recta tangent

f =. El pendent de la recta tangent Oficina d'organització de Proves d'accés a la Universitat Pàgina 1 de 11 PAU 004 SÈRIE. Avalueu cada pregunta en punts i mitjos punts, però no en altres decimals. Ara bé, dins de cada pregunta podeu utilitzar

Más detalles

Matemàtiques Aplicades a les Ciències Socials Criteris específics de correcció Model 2

Matemàtiques Aplicades a les Ciències Socials Criteris específics de correcció Model 2 Prova d accés a la Universitat (2011) Matemàtiques Aplicades a les Ciències Socials Criteris específics de correcció Model 2 Cada qüestió té una puntuació màxima de. Cal tenir presents les puntuacions

Más detalles

REPÀS D ALGEBRA 2n BATXILLERAT

REPÀS D ALGEBRA 2n BATXILLERAT REPÀS D LGEBR n BTXILLERT VECTORS Un vector v és combinació lineal (C.L.) dels vectors { v,v,,vk} { v,v,,vk} { v,v,,vk} { v,v,,v } és base d un espai vectorial V { v,v,,v } quan v = av + av + + ak vk,

Más detalles

LES FRACCIONS Una fracció és part de la unitat Un tot es pren com a unitat La fracció expressa un valor amb relació a aquest tot

LES FRACCIONS Una fracció és part de la unitat Un tot es pren com a unitat La fracció expressa un valor amb relació a aquest tot LES FRACCIONS Termes d una fracció: a b Numerador Denominador 1.- ELS TRES SIGNIFICATS D UNA FRACCIÓ 1.1. Una fracció és part de la unitat Un tot es pren com a unitat La fracció expressa un valor amb relació

Más detalles

Geometria analítica del pla

Geometria analítica del pla 8 Geometria analítica del pla Objectius Aquesta quinzena aprendràs a: Reconèixer els elements d'un vector identificant quan dos vectors són equipol lents. Fer operacions amb vectors lliures tant analíticament

Más detalles

Inferència de Tipus a Haskell

Inferència de Tipus a Haskell Inferència de Tipus a Haskell Mateu Villaret 21 d abril de 2008 1 Exemple d inferència de tipus Considerem la definició en Haskell de la funció map Haskell Code 1 map f [] = [] 2 map f (x: xs) = (f x)

Más detalles

Tema 3: EQUACIONS I INEQUACIONS

Tema 3: EQUACIONS I INEQUACIONS Tema 3: EQUACIONS I INEQUACIONS Igualtats algebraiques Es poden diferenciar: identitats i equacions a) Identitats Són igualtats que sempre es compleixen, per qualsevol valor numèric que donem a les lletres.

Más detalles

Exercicis de rectes en el pla

Exercicis de rectes en el pla Equacions de la recta 1. Escriu les diferents equacions de la recta que passa pel punt P(3, 4) i que té com a vector director el vector v = ( 5, 2). 2. Per a la recta d equació director. 6 + y = 1, escriu

Más detalles

Derivació Funcions Vàries Variables

Derivació Funcions Vàries Variables Derivació Funcions Vàries Variables Jordi Villanueva Departament de Matemàtica Aplicada I Universitat Politècnica de Catalunya 24 de febrer de 2016 Jordi Villanueva (MA1) Derivació Funcions Vàries Variables

Más detalles

Oficina d Accés a la Universitat Pàgina 1 de 6 PAU z y 2

Oficina d Accés a la Universitat Pàgina 1 de 6 PAU z y 2 Oficina d Accés a la Universitat Pàgina 1 de 6 PAU 014 SÈRIE 3 1. En Pol, la Júlia i la Maria han comprat un regal. La Júlia ha gastat la meitat que la Maria, i en Pol n ha gastat el triple que la Júlia.

Más detalles

MMF 10 / 1. Mecànica 5. Dinàmica del sòlid rígid: tensor d inèrcia S. Xambó

MMF 10 / 1. Mecànica 5. Dinàmica del sòlid rígid: tensor d inèrcia S. Xambó MMF 10 / 1. Mecànica 5. Dinàmica del sòlid rígid: tensor d inèrcia S. Xambó Preliminars matemàtics Tensor d inèrcia Teorema d Steiner Moment angular Energia cinètica Moments d inèrcia Moments i eixos principals

Más detalles

Matemàtiques 1 - FIB

Matemàtiques 1 - FIB Matemàtiques 1 - FIB 8-1-016 Examen F1 Grafs JUSTIFIQUEU TOTES LES RESPOSTES 1 (a) [05 punts] Doneu la definició de la matriu d incidències d un graf (b) [15 punts] Enuncieu i proveu el Lema de les encaixades

Más detalles