Fuerza de fricción estática
|
|
|
- José Carlos Cáceres Fuentes
- hace 10 años
- Vistas:
Transcripción
1 Laboratorio de Meánia. Experimento 10 Fuerza de friión etátia Objetivo general Etudiar la fuerza de friión etátia. Objetivo epeífio Determinar lo oefiiente de friión entre diferente pareja de materiale. Teoría La fuerza de friión entre do uerpo aparee aún in que exita movimiento relativo entre ello. Cuando aí uede atúa la fuerza de friión etátia, que uualmente e denota omo f y u magnitud puede tomar valore entre ero y un máximo, el ual etá dado por f = µ N (1) max donde µ e el oefiiente de friión etátio y N e la fuerza normal. En el ao partiular, de un objeto en repoo obre un plano inlinado, omo e ilutra en la figura 1. De auerdo al diagrama de fuerza, obre ete uerpo atúan tre fuerza: La normal N, el peo W y la fuerza de friión etátia f. Figura 1 61
2 Laboratorio de Meánia. Experimento 10 Dado que el objeto etá en repoo, a partir del diagrama de fuerza e enuentran la euaione: F = mgenθ f = 0 (2) x F y = N mg oθ = 0 (3) Si e aumenta el ángulo de inlinaión gradualmente, hata que el valor θ ángulo al ual el objeto etá a punto de iniiar u movimiento, la fuerza de friión etátia alanza u valor máximo dado por la euaión (1). Depejando la friión y la normal, e tiene: f max = mgenθ N = mg oθ y utituyendo en la euaión (1) e obtiene: µ = tanθ (4) Eta euaión, permite determinar el oefiiente de friión etátia entre do materiale en ontato. Equipo y materiale 1. Plano de inlinaión variable 2. Plaa de aluminio 3. Un bloque de madera de maa variable y de ara on diferente área 4. Do pea de 100g de maa 5. Trozo de diferente materiale 62
3 Laboratorio de Meánia. Experimento 10 Proedimiento Figura 2 ATENCIÓN: Ante de iniiar la mediione, e neeario limpiar on un trapo limpio y húmedo la uperfiie que van a etar en ontato. Eto para retirar el polvo y uiedad que pudieran afetar lo reultado. Dejar ear la uperfiie ante de haer la mediione. 1. Coloar el bloque de madera on u ara de mayor área obre el plano inlinado (plátio). 2. Aumentar el ángulo de inlinaión gradualmente, hata que el objeto eté a punto de rebalar (ver figura 2) y anotar en la tabla I el valor del ángulo de inlinaión. 3. Repetir lo pao anteriore 10 vee. 4. Coloar en el hueo del bloque de madera una maa de 100g y repetir lo pao 1, 2 y 3, diez vee. Anotar lo ángulo medido en la tabla I. 5. Coloar otra maa de 100g, para alanzar 200g y repetir el pao 4. Anotar u reultado en la tabla I. 6. Calular el oefiiente de friión utilizando la euaión (4) y anotar el reultado en la última olumna de la tabla I. 63
4 Laboratorio de Meánia. Experimento Coloque obre el plano inlinado ada uno de lo diferente materiale diponible, repita el pao 2 y anote u reultado en la tabla Utilizar la herramienta omputaionale para el laboratorio de Meánia, loalizada en la direión eleionar el applet Análii etadítio de mediione y obtener el promedio y la inertidumbre (deviaión etándar). Anote u reultado en la tabla Coloque la plaa de aluminio obre el plano inlinado, y repita lo pao 7 y 8 y anote u reultado en la tabla 3. Reultado Carga Renglón (g) Tabla I Angulo θ θ ± δθ µ MATERIALES Plátio- aluminio Plátio- latón Plátio- fierro Plátio- arílio Angulo θ Tabla 2 θ ± δθ µ 64
5 Laboratorio de Meánia. Experimento 10 Tabla 3 Materiale Aluminio- aluminio Aluminio- latón Aluminio- fierro Aluminio- arílio Ángulo θ θ ± δθ µ Pregunta 1. Qué uede on el oefiiente de friión etátia al ambiar la maa del bloque de madera? 2. Qué uede on la fuerza de friión etátia máxima al ambiar la maa del bloque de madera? Debe de ambiar, porque al ambiar la maa, ambia la normal 3. Qué uede on la fuerza de friión etátia uando e ambia el ángulo de inlinaión? 4. Qué uede on la fuerza normal uando e ambia el ángulo de inlinaión? 65
6 Laboratorio de Meánia. Experimento Diga i on fala (F) o verdadera (V) la iguiente aeveraione: El oefiiente de friión etátia e da entre do materiale en ontato. Cada material tiene u oefiiente de friión etátia. La fuerza de friión etátia no depende del oefiiente de friión etátia. El oefiiente de friión etátia no puede er mayor que 1. 66
PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012
ESCUELA SUPERIOR POLITÉCNICA DEL LITORAL INSTITUTO DE CIENCIAS FÍSICAS PRIMERA EVALUACIÓN DE FÍSICA NIVEL 0B INVIERNO 2012 NOMBRE: Ete examen conta de 22 pregunta, entre pregunta conceptuale y problema
Análisis del lugar geométrico de las raíces
Análii del lugar geométrio de la raíe La araterítia báia de la repueta tranitoria de un itema en lazo errado e relaiona etrehamente on la ubiaión de lo polo en lazo errado. Si el itema tiene una ganania
Lugar geométrico de las raíces
Lugar geométrio de la raíe Análii del lugar geométrio de la raíe La araterítia báia de la repueta tranitoria de un itema en lazo errado e relaiona etrehamente on la ubiaión de lo polo en lazo errado. Si
Capítulo 4. R a. R b -15 V R 3 R P R 4. v Z. Palabras clave: termopar tipo T, compensación de la unión de referencia, termómetro, AD590.
5//8 Senore generadore y u acondicionadore apítulo Nota: La ecuacione, figura y problema citado en el dearrollo de lo problema de ete capítulo que no contengan W en u referencia correponden al libro impreo.
CAPÍTULO 4. INTEGRACIÓN DE FUNCIONES RACIONALES 4.1. Introducción 4.2. Raíces comunes 4.3. División entera de polinomios 4.4. Descomposición de un
CAPÍTULO. INTEGRACIÓN DE FUNCIONES RACIONALES.. Introducción.. Raíce comune.. Diviión entera de polinomio.. Decompoición de un polinomio en producto de factore.5. Método de fraccione imple.6. Método de
1,567 f 4 = R 8 f 4 = 15 cm = 41,5 cm. 1,000 f = R 8 f = 15 cm = 26,5 cm. El dioptrio esférico es, por tanto, como el que se muestra en la imagen:
0 Óptica geométrica Actividade del interior de la unidad. Tenemo un dioptrio eférico convexo de 5 cm de radio que epara el aire de un vidrio de índice de refracción,567. Calcula la ditancia focal e imagen.
ENERGÍA (I) CONCEPTOS FUNDAMENTALES
ENERGÍA (I) CONCEPTOS UNDAMENTALES IES La Magdalena. Avilé. Aturia La energía e una magnitud de difícil definición, pero de gran utilidad. Para er exacto, podríamo decir que má que de energía (en entido
CÁLCULO DE DEPÓSITOS DE HORMIGÓN ARMADO PARA AGUA
CÁLCULO D DPÓSITOS D HORIGÓN RDO PR GU DPÓSITOS CILÍNDRICOS. Determinaión de la oliitaione: La oliitaione en la parede del depóito, a una altura x on: xiale N x, ortante V x y letore x. La euaione para
Compensación en atraso
UNIVESIDAD AUÓNOMA DE NUEVO LEÓN FAULAD DE INGENIEÍA MEANIA Y ELÉIA ONOL LÁSIO M.. JOSÉ MANUEL OHA NUÑEZ ompenaión en atrao ompenador eletrónio en atrao on amplifiadore operaionale () () E E i 3 3 0,,
El estudio teórico de la práctica se realiza en el problema PTC0004-21
PRÁCTICA LTC-14: REFLEXIONES EN UN CABLE COAXIAL 1.- Decripción de la práctica a) Excitar un cable coaxial de 50 metro de longitud con un pulo de tenión de 0 a 10 voltio, 100 Khz frecuencia y un duty cycle
Análisis del Lugar Geométrico de las Raíces (LGR) o Método de Evans
Análii del Lugar Geométrio de la Raíe (LGR) o Método de Evan La araterítia báia de la repueta tranitoria de un itema en lazo errado e relaiona etrehamente on la ubiaión de lo polo en lazo errado. Si el
TEMA - IV ESPEJOS. 1. ESPEJOS ESFÉRICOS.
IV - 0 TEMA - IV ESPEJOS.. ESPEJOS ESFÉRICOS... Poición de la imagen..2. Foco y ditancia focal..3. Potencia..4. Formación de imágene..4.. Marcha de lo rayo..4.2. Imágene en epejo cóncavo..4.3. Imágene
Diseño de Controladores Adelanto-Atraso. Sistemas de Control Prof. Mariela CERRADA
Dieño de Controladore Adelanto-Atrao Sitema de Control Prof. Mariela CERRADA G Comenadore no ideale: interretaión en el dominio del tiemo Conideremo la iguiente funión de tranferenia K z So Im Se aumenta
ÓPTICA GEOMÉTRICA. ; 2s s 40 + =
ÓPTICA GEOMÉTRICA Modelo 06. Pregunta 4a.- Se deea obtener una imagen virtual de doble tamaño que un objeto. Si e utiliza: a) Un epejo cóncavo de 40 cm de ditancia focal, determine la poicione del objeto
Física PRUEBA DE ACCESO A LA UNIVERSIDAD 2013 BACHILLERATO FORMACIÓN PROFESIONAL CICLOS FORMATIVOS DE GRADO SUPERIOR. Examen
PRUEBA DE ACCESO A LA UNIVERSIDAD 03 Fíica BACHILLERAO FORMACIÓN PROFESIONAL CICLOS FORMAIVOS DE GRADO SUPERIOR Eamen Criterio de Corrección Calificación UNIBERSIAERA SARZEKO PROBAK 03ko EKAINA FISIKA
CAPÍTULO 2 TEMAS DE DINÁMICA INCLUIDOS
CAPÍTULO TEMAS DE DINÁMICA INCLUIDOS.1. CONCEPTOS DE DINÁMICA ESTRUCTURAL Dede el punto de vita de la ingeniería ímia, el tema entral de la dinámia e etudiar y entender la vibraión de una etrutura uando
Densidad. Objetivos. Introducción. Equipo y Materiales. Laboratorio de Mecánica y fluidos Práctica 10
Densidad Objetivos Determinación de densidad de sustancias sólidas, liquidas y de soluciones. Determinar la densidad de un líquido y un sólido midiendo su masa y su volumen. Deteminar la la variación de
Soluciones Problemas Capítulo 1: Relatividad I
Soluiones Problemas Capítulo 1: Relatividad I 1) (a) La distania, d, a la que se enuentra el ohete de la Tierra viene dada por t 1 = 2s = 2d d = t 1 2 = 3 11 m = 3 1 7 km. (b) El tiempo que tarda la primera
Transformaciones geométricas
Tranformacione geométrica Baado en: Capítulo 5 Del Libro: Introducción a la Graficación por Computador Fole Van Dam Feiner Hughe - Phillip Reumen del capítulo Tranformacione bidimenionale Coordenada homogénea
REGISTROS CONTABLES Y AJUSTES
REGISTROS CONTABLES Y AJUSTES Aiento de Ajute Para conocer el monto de la utilidad o pérdida del período, la emprea preparan el etado de reultado final del período contable. Para conocer con preciión el
Diagramas de bloques
UNIVRSIDAD AUTÓNOMA D NUVO LÓN FACULTAD D INNIRÍA MCANICA Y LÉCTRICA Diagrama de bloque INNIRÍA D CONTROL M.C. JOSÉ MANUL ROCHA NUÑZ M.C. LIZABTH P. LARA HDZ. UNIVRSIDAD AUTÓNOMA D NUVO LÓN FACULTAD D
La solución del problema requiere de una primera hipótesis:
RIOS 9 Cuarto Simpoio Regional obre Hidráulica de Río. Salta, Argentina, 9. CALCULO HIDRAULICO EN RIOS Y DISEÑO DE CANALES ESTABLES SIN USAR ECUACIONES TRADICIONALES Eduardo E. Martínez Pérez Profeor agregado
TRIEDRO DE FRENET. γ(t) 3 T(t)
TRIEDRO DE FRENET Matemática II Sea Γ R 3 una curva y ean γ : I = [a,b] R 3, γ(t = (x(t,y(t,z(t una parametrización regular y α : I = [a,b ] R 3 u parametrización repecto el parámetro arco. A partir de
9.7 Sin hacer cálculos, indica las características de la imagen que se formará en un espejo de 15 cm de radio, cuando el objeto está situado a 7 cm.
9 Óptica geométrica EJERCICIOS PROPUESTOS 9. Indica la caracterítica de la imagen que oberva una perona que e etá mirando en un epejo plano. La imagen e virtual derecha. Virtual, porque e puede ver pero
Automá ca. Ejercicios Capítulo2.DiagramasdeBloquesyFlujogramas
Automáca Ejercicio Capítulo.DiagramadeBloqueyFlujograma JoéRamónlataarcía EtheronzálezSarabia DámaoFernándezPérez CarlooreFerero MaríaSandraRoblaómez DepartamentodeecnologíaElectrónica eingenieríadesitemayautomáca
CURSO AVANZADO DE DISEÑO Y CÁLCULO DE ESTRUCTURAS DE HORMIGÓN ARMADO. Albacete. Abril-julio de 2010.
COL. OFICIAL INGENIEROS AGRÓNOMOS DE ALBACETE COL. OFICIAL INGENIEROS TÉCNICOS AGRICOLAS DE CENTRO (ALBACETE) E.T.S. INGENIEROS AGRÓNOMOS DE ALBACETE CURSO AVANZADO DE DISEÑO Y CÁLCULO DE ESTRUCTURAS DE
Compensador en adelanto por el método de respuesta en frecuencia
Copenador en adelanto por el étodo de repueta en freuenia CONROL CLÁSICO Copenador eletrónio en adelanto on aplifiadore operaionale E E 0 ( ( RR R R 4 RC + R4C R C + R C i 3 3 + + RC R C + + + + R4C RC
Errores y Tipo de Sistema
rrore y Tipo de Sitema rror dinámico: e la diferencia entre la eñale de entrada y alida durante el período tranitorio, e decir el tiempo que tarda la eñal de repueta en etablecere. La repueta de un itema
FRICCIÓN TRABAJO Y POTENCIA.
INSTITUTO POLITÉCNICO NACIONAL CECyT N 13 RICARDO FLORES MAGÓN LABORATORIO DE FÍSICA II PRÁCTICA No. 10 FRICCIÓN TRABAJO Y POTENCIA. NOMBRE. GRUPO. No. BOLETA. FECHA. EQUIPO No. ASISTENCIA. BATA. REPORTE.
Actividades del final de la unidad
Actividade del final de la unidad. Explica brevemente qué entiende por foco ditancia focal para un dioptrio eférico. Razona cómo erá el igno de la ditancia focal objeto la ditancia focal imagen egún que
masa densidad M V masa densidad COLEGIO NTRA.SRA.DEL CARMEN_TECNOLOGÍA_4º ESO EJERCICIOS DEL PRINCIPIO DE ARQUÍMEDES.-
1.Explia el prinipio de Arquímedes y ita dos ejemplos, de la vida real, en los que se ponga de manifiesto diho prinipio. El prinipio de Arquímedes india que un uerpo sumergido en un fluido experimenta
Compensación en adelanto
UNIVESIDAD AUÓNOMA DE NUEVO LEÓN FAULAD DE INENIEÍA MEANIA Y ELÉIA ONOL LÁSIO M.. JOSÉ MANUEL OHA NUÑEZ ompenaión en adelanto ompenador eletrónio en adelanto on amplifiadore operaionale () () E E i 0,,
Inversión en el plano
Inversión en el plano Radio de la circunferencia x 2 + y 2 + Ax + By + D = 0 Circunferencia de centro (a, b) y radio r: (x a) 2 + (y b) 2 = r 2. Comparando: x 2 + y 2 2ax 2by + a 2 + b 2 r 2 = 0 con x
PRÁCTICA 15 El espectrómetro de difracción
PRÁCTICA 15 El espectrómetro de difracción Laboratorio de Física General Objetivos Generales 1. Medir el rango de longitudes que detecta el ojo humano. 2. Analizar el espectro de emisión de un gas. Equipo
PRÁCTICA NÚMERO 1 DENSIDAD DE UNA SUSTANCIA. I. Objetivo Determinar la densidad de un líquido y un sólido midiendo su masa y su volumen.
PRÁCTICA NÚMERO DENSIDAD DE UNA SUSTANCIA I. Objetivo Determinar la densidad de un líquido y un sólido midiendo su masa y su volumen. II. Material. Una balanza granataria de 0. gramo.. Una probeta de 0-00
Instituto Tecnológico de Ciudad Juárez Laboratorio de Física Mecánica Clásica Práctica # 5 Fuerzas de fricción estática y dinámica
Instituto Tecnológico de Ciudad Juárez Laboratorio de Física Mecánica Clásica Práctica # 5 Fuerzas de fricción estática y dinámica I. Introducción. El deslizamiento de un cuerpo sobre la superficie de
CAPACITANCIA Y ARREGLOS DE CAPACITORES. Ejercicios de Capacitancia
APAITANIA Y ARREGLOS DE APAITORES Ejercicios de apacitancia.- Las placas de un capacitor tienen un área de 0.04 m y una separación de aire de mm. La diferencia de potencial entre las placas es de 00 V.
UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA DE ALTA FRECUENCIA. TALLER 2: Fabricación y medición de inductancias
UNIVERSIDAD DE GUADALAJARA, CUCEI DEPARTAMENTO DE ELECTRÓNICA ELECTRÓNICA DE ALTA FRECUENCIA TALLER : Fabricación y medición de inductancia OBJETIVO: Lograr la habilidad ara imlementar inductore de caracterítica
CENTRO DE ENSEÑANZA TÉCNICA INDUSTRIAL. Un fasor es un numero complejo que representa la amplitud y la fase de una senoide
Faore La enoide e exprean fácilmente en término de faore, e má cómodo trabajar que con la funcione eno y coeno. Un faor e un numero complejo que repreenta la amplitud y la fae de una enoide Lo faore brinda
Tema 3. TRABAJO Y ENERGÍA
Tema 3. TRABAJO Y ENERGÍA Físia, J.. Kane, M. M. Sternheim, Reverté, 989 Tema 3 Trabajo y Energía Cap.6 Trabajo, energía y potenia Cap. 6, pp 9-39 TS 6. La arrera Cap. 6, pp 56-57 . INTRODUCCIÓN: TRABAJO
Para aprender Termodinámica resolviendo problemas
GASES REAES. Fator de ompresibilidad. El fator de ompresibilidad se define omo ( ) ( ) ( ) z = real = real y es funión de la presión, la temperatura y la naturaleza de ada gas. Euaión de van der Waals.
"DETERMINACIÓN EXPERIMENTAL DE LA LEY DE ENFRIAMIENTO DE NEWTON"
EXPERIMENTO FA5 LABORATORIO DE FÍSICA AMBIENTAL "DETERMINACIÓN EXPERIMENTAL DE LA LEY DE ENFRIAMIENTO DE NEWTON" MATERIAL: 1 (1) PLACA CALEFACTORA CON TERMOSTATO. 2 (2) TERMOPARES TIPO "K". 3 (1) TERMÓMETRO
Lupa. [b] Vamos a suponer que el objeto se encuentra a 18 cm de la lupa (véase la ilustración anterior).
íica de 2º Bachillerato Actividad Para ver un objeto con mayor detalle, utilizamo un dipoitivo compueto de una única lente, llamado corrientemente lupa. [a] Indica el tipo de lente que debemo utilizar
PROBLEMAS RESUELTOS SELECTIVIDAD ANDALUCÍA 2001 QUÍMICA TEMA 5: EQUILIBRIO QUÍMICO
PROBLEMAS RESUELOS SELECIVIDAD ANDALUCÍA 001 QUÍMICA EMA 5: EQUILIBRIO QUÍMICO Junio, Ejeriio 4, Opión A Junio, Ejeriio 3, Opión B Junio, Ejeriio 6, Opión B Reserva 1, Ejeriio 3, Opión A Reserva 1, Ejeriio
Momentos de Inercia de cuerpos sólidos: EJE. Varilla delgada. Disco. Disco. Cilíndro. Esfera. Anillo I = MR
91 Momentos de Ineria de uerpos sólidos: EJE Varilla delgada 1 I = ML 1 Diso 1 I = M Diso 1 I = M 4 ilíndro 1 I = M Esfera I = M 5 Anillo I = M 9 Observaión: Los momentos de ineria on respeto a ejes paralelos
GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I TRABAJO Y ENERGIA COEFICIENTE DE FRICCIÒN
GUIAS ÚNICAS DE LABORATORIO DE FÍSICA I TRABAJO Y ENERGIA COEFICIENTE DE FRICCIÒN SANTIAGO DE CALI UNIVERSIDAD SANTIAGO DE CALI DEPARTAMENTO DE LABORATORIOS COEFICIENTE DE FRICCIÓN 1. OBJETIVO Estudio
Presión en un fluido en reposo (Líquidos Inmiscibles y Densidad)
Presión en un fluido en reposo (Líquidos Inmiscibles y Densidad) Laboratorio de Mecánica y fluidos Objetivos Determinar la densidad relativa de un líquido empleando el tubo en U. Determinar la presión
SEGUNDO PARCIAL - Física 1 30 de junio de 2010
Intituto de Fíica Facultad de Ingeniería Univeridad de la República SEGUNDO PARCIAL - Fíica 1 30 de junio de 010 g= 9,8 m/ Cada pregunta tiene ólo una repueta correcta. Cada repueta correcta uma 6 punto.
1.1. Introducción y conceptos básicos
Tema 1 Variables estadísticas Contenido 1.1. Introducción y conceptos básicos.................. 1 1.2. Tipos de variables estadísticas................... 2 1.3. Distribuciones de frecuencias....................
Estrategias De Ventas
Territorios de Venta Donde están los lientes? Merado - Meta Estrategias De Ventas Ing. Heriberto Aja Leyva Objetivo Estableer los objetivos de ventas y prourar una obertura efiaz en el Territorio de ventas
DETERMINACION DEL VALOR DE LA CUOTA Y EL CRONOGRAMA DE PAGOS DE CREDITOS DE CONSUMO. 1 2 3 n-1
DETERMINACION DEL VALOR DE LA CUOTA Y EL CRONOGRAMA DE PAGOS DE CREDITOS DE CONSUMO Edpyme Raíz utiliza, para el álulo de su ronograma de pagos, el método de la uota fija. Esto signifia que ada pago periódio
UNIDAD 4 PROCESOS DE MARKOV
UNIDAD 4 PROCESOS DE MARKOV Anteriormente se han cubierto modelos estáticos, esto es, modelos cuyos parámetros permanecen sin cambio a través del tiempo. Con excepción de programación dinámica donde se
www.fisicaeingenieria.es
1) Epejo cóncavo y convexo 1.1) Criterio de igno en óptica geométrica Lo objetivo principale en óptica geométrica on la determinación, en función de la poición del objeto y u tamaño, de la poición de la
LABORATORIO DE MECÁNICA LEY DE HOOKE
No 6 LABORATORIO DE MECÁNICA LEY DE HOOKE DEPARTAMENTO DE FÍSICA Y GEOLOGÍA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Objetivo General: Estudiar experimentalmente el comportamiento
El proyecto Eratóstenes. Guía para el estudiante.
El proyecto Eratóstenes. Guía para el estudiante. En esta actividad vas a trabajar en colaboración con estudiantes de otra escuela para medir el radio de la Tierra. Vas a usar los mismos métodos y principios
Cantidad de movimiento Angular:
1 Cantidad de moimiento Angular: 1.- Una partícula de maa kg e muee en el plano XY con una elocidad contante igual a î m, i en cierto intante e halla en el punto,4, Calcular u cantidad de moimiento con
LABORATORIO DE MECANICA FUERZA CENTRÍPETA
8 LABORATORIO DE MECANICA FUERZA CENTRÍPETA DEPARTAMENTO DE FISICA Y GEOLOGIA UNIVERSIDAD DE PAMPLONA FACULTAD DE CIENCIAS BÁSICAS Objetivos Comprobar experimentalmente la relación entre la fuerza centrípeta
UNIVERSIDAD DE COSTA RICA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA ELÉCTRICA LABORATORIO DE MÁQUINAS ELÉCTRICAS I
UNIVERSIDAD DE COSTA RICA FACULTAD DE INGENIERÍA ESCUELA DE INGENIERÍA ELÉCTRICA LABORATORIO DE MÁQUINAS ELÉCTRICAS I Reporte 1 INTEGRANTES FÉLIX SUÁREZ BONILLA A45276 FECHA DE ENTREGA JUEVES, 15 DE FEBRERO
PRACTICA Nº 4 EL OSCILOSCOPIO
PRACTICA Nº 4 EL OSCILOSCOPIO Objetivos Comprender el principio de funcionamiento del osciloscopio analógico y estar en capacidad de identificar los diferentes bloques de controles en los instrumentos
Carga y descarga de capacitores
Carga y descarga de capacitores Autores Frigerio, Paz La Bruna,Gimena Larreguy, María Romani, Julieta [email protected] [email protected] [email protected] [email protected] Laboratorio de Física
Práctica #12 Figura 1. Diagrama de conexiones para la práctica #12
Práctica #12 Durante esta práctica se hizo el siguiente montaje: Figura 1. Diagrama de conexiones para la práctica #12 En el que se utilizó dos celdas solares, lámpara que simula la radiación solar y un
Segunda Ley de Newton
Segunda Ley de Newton Laboratorio de Mecánica y fluidos Objetivos El alumno entenderá la relación entre las fuerzas de la naturaleza y el movimiento. El estudiante encontrará la relación entre las fuerzas
Núcleo e Imagen de una Transformación Lineal
Núleo e Imagen de una Transformaión Lineal Departamento de Matemátias CCIR/ITESM 8 de junio de Índie 7.. Núleo de una transformaión lineal................................. 7.. El núleo de una matri la
LABORATORIO DE FUNDAMENTOS FÍSICOS II LEY DE INDUCCIÓN DE FARADAY
Departamento de Física ------------------------------------------------------------------------------------------------------------------------ LABORATORIO DE FUNDAMENTOS FÍSICOS II Grados TIC PRÁCTICA
Procesos ARIMA estacionales
Capítulo 6 Procesos ARIMA estacionales 6.1. INTRODUCCIÓN Otra causa de no estacionaridad es la estacionalidad: En una serie mensual con estacionalidad anual, cada mes tiene una media distinta, con lo cual
Técnica Imitación Carey Café y sus Aplicaciones sobre Madera
Técnica Imitación Carey Café y sus Aplicaciones sobre Madera Paola Andrea Ruiz Rojas. Periodista M&M Una de las técnicas pertenecientes a los Falsos Acabados sobre madera que mayor demanda tiene en el
INSTRUCCIONES DE INSTALACIÓN
INSTRUCCIONES DE INSTALACIÓN 1/5 Estimado cliente, Le damos las gracias por comprar nuestro piso de chapa de madera Par-ky. Es esencial que lea atentamente estas instrucciones antes de comenzar la instalación.
-14 - ENTALPÍA DE FUSIÓN DEL HIELO
-4 - ENTALPÍA DE FUSIÓN DEL HIELO OBJETIVO Determinar la entalpía de usión del hielo utilizando el método de las mezlas. Previamente, ha de determinarse el equivalente en agua del alorímetro, K, para uantiiar
Funciones definidas a trozos
Concepto de función Dominio de una función Características de las funciones Intersecciones con los ejes Crecimiento y decrecimiento Máximos y mínimos Continuidad y discontinuidad Simetrías Periodicidad
PRÁCTICA NÚMERO 8 EL POLARÍMETRO Y LA ACTIVIDAD ÓPTICA
PRÁCTICA NÚMERO 8 EL POLARÍMETRO Y LA ACTIVIDAD ÓPTICA I. Objetivos. 1. Estudiar el efecto que tienen ciertas sustancias sobre la luz polarizada. 2. Encontrar la gráfica y ecuación de la concentración
MEDIDA DEL CALOR ESPECÍFICO
Laboratorio de Física General Primer Curso (Termodinámica) MEDIDA DEL CALOR ESPECÍFICO Fecha: 07/02/05 1. Objetivo de la práctica Familiarizarse con las medidas calorimétricas mediante la medida del calor
Práctica E4: Medida de potencia en circuitos trifásicos
Medida de potencia en circuitos triásicos: ráctica E4 ráctica E4: Medida de potencia en circuitos triásicos. Objetivos os objetivos de la práctica son:.- Medida de la potencia activa, reactiva y el actor
Experimento 7 MOMENTO LINEAL. Objetivos. Teoría. Figura 1 Dos carritos sufren una colisión parcialmente inelástica
Experimento 7 MOMENTO LINEAL Objetivos 1. Verificar el principio de conservación del momento lineal en colisiones inelásticas, y 2. Comprobar que la energía cinética no se conserva en colisiones inelásticas
Wilfrido Massieu ALUMNO GRUPO EQUIPO PROFESOR FECHA CALIF. PRACTICA No. 6
INSTITUTO POLITÉCNICO NACIONAL Centro De Estudios Científicos Y Tecnológicos Wilfrido Massieu LABORATORIO DE ÍSICA I ALUMNO GRUPO EQUIPO PROESOR ECHA CALI. PRACTICA No. 6 1. NOMBRE: EQUILIBRIO DE UERZAS
UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº
UNIVERSIDAD SIMON BOLIVAR DEPARTAMENTO DE ELECTRONICA Y CIRCUITOS LABORATORIO DE MEDICIONES ELECTRICAS EC 1281 PRACTICA Nº 4 Objetivos EL OSCILOSCOPIO Comprender el principio de funcionamiento del osciloscopio
VELOCIDAD INSTANTANEA
VELOCIDAD INSTANTANEA OBJETIVOS DE APRENDIZAJE Determinar experimentalmente la veloidad instantánea de un móvil en un punto fijo de su trayetoria a través de un gráfio de veloidad media versus tiempo en
Examen funciones 4º ESO 12/04/13
Examen funciones 4º ESO 12/04/13 1) Calcula el dominio de las siguientes funciones: a. b. c. d. Calculamos las raíces del numerador y del denominador: Construimos la tabla para ver los signos: - - 0 +
A estas alturas de nuestros conocimientos vamos a establecer dos reglas muy prácticas de cómo sumar dos números reales:
ADICIÓN Y RESTA DE NUMEROS REALES ADICIÓN L a adición o suma de números reales se representa mediante el símbolo más (+) y es considerada una operación binaria porque se aplica a una pareja de números,
Recuerda lo fundamental
álculo de probabilidades Recuerda lo fundamental Nombre y apellidos:... urso:... Fecha:... ÁLULO DE PROBABILIDADES EXPERIENIAS ALEATORIAS Experiencias aleatorias son aquellas cuyo resultado depende...
TERMOMETRÌA Y CALORIMETRÌA
TERMOMETRÌA Y CALORIMETRÌA Termómetros Basados en alguna propiedad física de un sistema que cambia con la temperatura: Volumen de un líquido Longitud de un sólido Presión de un gas a volumen constante
Tema 1: La conducta del consumidor
Tema 1: La conducta del consumidor 1.1. Las preferencias del consumidor. Concepto de utilidad. 1.2. La restricción presupuestaria. 1.3. La elección del consumidor. 1.4. Los índices del coste de la vida.
EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO
EL PÉNDULO SIMPLE: DETERMINACIÓN DE LA ACELERACIÓN DE LA GRAVEDAD (A) FUNDAMENTO Se denomina péndulo simple (o péndulo matemático) a un punto material suspendido de un hilo inextensible y sin peso, que
Formas de Representación en Estadística Descriptiva
Formas de Representación en Estadística Descriptiva Problema 1. Las tablas que aparecen a continuación contienen los datos de un estudio sobre el número de alumnos reprobados, por curso, en el Departamento
EQUILIBRIO QUÍMICO QCA 04 ANDALUCÍA
1.- Considérese el siguiente sistema en equilibrio: SO 3 (g) SO (g) + 1/ O (g) H > 0 Justifique la veraidad o falsedad de las siguientes afirmaiones: a) Al aumentar la onentraión de oxígeno, el equilibrio
SOLUCIONES DE LOS EJERCICIOS DE LA OLIMPIADA DEL FASE LOCAL
SOLUCIONES DE LOS EJERCICIOS DE LA OLIMIADA DEL 1. FASE LOCAL ución ejercicio nº 1 Una plataforma circular, colocada horizontalmente, gira con una frecuencia de vuelta por egundo alrededor de un eje vertical
Teoría de Colas (Líneas de Espera) Administración de la Producción
Teoría de Cola (Línea de Epera) Adminitración de la Producción 3C T La cola La cola on frecuente en nuetra vida cotidiana: En un banco En un retaurante de comida rápida Al matricular en la univeridad Lo
